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Abstract—Thanks to the recent advances in wireless power
transfer technology and its adoption in mobile portable devices
(e.g., smartphones), an alternative energy replenishment option
for users has emerged through peer-to-peer energy sharing
among devices. Such a notion of energy sharing among nodes in a
mobile opportunistic network can help balance the energy levels
of nodes and can keep them connected, prolonging the lifetime
of the network. Existing works studying the energy balancing
problem mainly focus on decreasing of the energy difference
among nodes as fast as possible, thus consider sharing of the
energy among meeting nodes equally. However, in an opportunis-
tic network consisting of mobile devices carried by people (i.e.,
also called mobile social network), due to the underlying social
relations between people, there will be multiple social groups
affecting the contact relations between nodes. While nodes in the
same group interact more often, the nodes in different groups
interact less frequently. Moreover, there is usually a smaller
number of nodes from different groups that interact (i.e., bridge
nodes), providing limited opportunity for energy transfer between
groups. In this study, we look at the energy balancing problem
considering the underlying social network structure and present
a two-stage social-aware energy balancing protocol for a fast
balancing process. To this end, we integrate the roles of nodes
(e.g., bridge/non-bridge node) as well as the average energy
differences between different groups to determine the amount
of energy transfer between meeting nodes. Through simulations,
we demonstrate that the proposed social-aware energy balancing
protocol performs better than the state-of-the-art.

Index Terms—Energy balancing, social network structure,
wireless energy transfer, opportunistic network, crowd charging.

I. INTRODUCTION

Wireless charging based energy replenishment of battery-
powered devices has recently attracted a lot of attention thanks
to recent advances in the technology and its convenience.
While most of the earlier studies have focused on the wireless
rechargeable sensor networks [1] and considered the charging
of sensor nodes from mobile charger vehicles, there is a grow-
ing number of interesting research studies that utilize wireless
charging for the energy management and replenishment of
various types of mobile devices (e.g., Internet of Things [2])
and vehicles (e.g., electric vehicles [3]).

One recent research problem that utilize wireless charging is
the energy balancing problem [4]–[6] which aims to equalize
the energy levels of nodes through peer-to-peer energy sharing
and minimize the sum of the differences of their energy from
the average energy in the network as much as possible. In sce-
narios where there is no external mobile charger device can be
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Fig. 1: An example contact graph in a mobile opportunistic
network with two social groups. Bridge nodes are the only
nodes that can help transfer energy between different groups.

used due to environmental restrictions and operational costs,
such an energy balancing process indeed offers a solution to
prolong the network life time which is usually defined as the
time until the first node in the network dies.

Depending on the network application considered, an energy
balancing process comes with several challenges. For example,
in a static network consisting of nodes at fixed locations [6],
the selection of nodes that will harvest energy from others
who will also need to adjust their power levels will be critical.
Similarly, in an opportunistic network, as the energy exchanges
can only happen during non-deterministically occurring meet-
ings of nodes, for an efficient and fast balancing process, the
amount of energy that will be shared among nodes at every
meeting opportunity has to be determined carefully [4], [5].

Thanks to the recent adoption of wireless charging technol-
ogy in smartphones and its bidirectional consideration (e.g.,
research prototypes [7], [8], and products in market such as
Samsung Galaxy S10), an energy balancing problem has been
recently considered under the concept of crowd charging [9].
Mobile users who are friends of each other or have been
provided some sort of incentive, charge the other users’
devices from their own devices during their encounter times so
that they continue to be functional. While the existing energy
balancing protocols proposed for opportunistic networks can
be used for such crowd charging scenarios, they will have a
slow balancing process as they do not take into account the
underlying social relations between the peers. These relations
however determine the intermeeting times of nodes and the
energy exchange opportunities between nodes.

Consider the example provided in Fig. 1. The ten nodes in
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an opportunistic network is divided into two social groups or
communities due to their contact relations. The nodes in each
group opportunistically meet with each other more often, even
though not each pair meet, and the nodes in different groups
meet less frequently. We call the nodes that connect the nodes
of two groups as bridge nodes and they are the only nodes
that can realize the energy transfer between these two groups.
As existing solutions [4], [5], [10]–[12] solely focus on the
reduction of energy difference between nodes, they suggest
an energy exchange between the nodes in the opposite sides
of the average energy in the network. However, for example,
if the current average energy levels of nodes within these two
social groups are different than each other, in the meeting of,
say, node 5 and node 6, if the energy levels of these nodes
are closer to each other and they have both less or more than
the average energy in the network (i.e., at the same side with
respect to average energy), they will miss the opportunity to
transfer energy from one group to another, while this could
be a very rare opportunity. In this paper, we address this issue
through a new energy balancing protocol.

Our goal in this paper is to develop an energy balancing
protocol among a population of mobile nodes that interact
opportunistically under their socially defined relationships.
We target a fast energy balancing process while trying to
reduce the energy difference between the nodes in the net-
work. To this end, we consider the underlying social groups
between the nodes that affect their contact patterns in the
design of the energy sharing protocol and propose a two-stage
approach. In the first stage, we aim to equalize the average
energy levels of different groups through energy exchanges
between bridge nodes, which is also supported by maximum
possible energy transfers from/to bridge nodes to/from non-
bridge nodes within groups. In the second stage, we target an
internal energy balancing process within each group. Through
simulations, we evaluate the performance of the proposed
social-aware energy balancing protocol and compare with a
state-of-the-art protocol which does not take into account the
social component. The results show that the proposed approach
can reduce the energy difference among nodes faster especially
when the initial average energy levels of different groups are
different.

The rest of the paper is structured as follows. In Section II,
we provide an overview of the literature that study energy
balancing problem leveraging peer-to-peer energy sharing. In
Section III, we present the system model together with the
assumptions made and the description of the problem. In
Section IV, we give the details of the proposed social-aware
energy balancing protocol. Section V presents the simulation
settings used and provides the performance evaluation and
comparison of the proposed approach with the existing work.
Finally, we end up with conclusion in Section VI.

II. RELATED WORK

Peer-to-peer wireless energy sharing [13] has recently at-
tracted a lot of attention by researchers and several problems
have been studied for various application scenarios [14]–[21].

These include energy balancing among nodes, incentivizing
nodes for relaying of messages from other nodes, finding
crowd charging peers and skipping of charging sessions.
Particularly, in energy balancing studies [4], [5], [10] the goal
is to exploit opportunistic node meetings to let the nodes
exchange energy towards balancing the energy levels of all
nodes in the network. However, these studies assume that all
nodes are interacting with each other and at each meeting of
nodes at opposite sides (i.e., one node having less energy than
the average energy and the other node having higher energy
than the average energy), they share their total energy equally
(or in a weighted manner depending on the significance of
each node [4]). This indeed causes an unnecessary energy
loss, thus in [12] a loss-aware sharing protocol is proposed
using the final expected average energy in the network, instead
of the current average, to decide opposite side nodes. Energy
amount shared is also decided based on the closeness of energy
levels of the nodes to this final average instead of blindly
equalizing the energy levels of nodes. On the other hand, that
study also assumes that the contact graph among nodes is a
complete graph. However, not all nodes in an opportunistic
network interact with each other. Such heterogeneous contact
relations among nodes have been considered in [11] and the
final optimal achievable average energy is found via a Mixed
Integer Linear Programming (MILP) based solution and the
corresponding energy exchanges between nodes are defined
deterministically.

Despite these various studies looking at energy balancing
problem, none of them considers the underlying social group
structure inside an opportunistic network which has a key
role in the contact relations among nodes. To the best of our
knowledge, there is only one recent study [9] that considers
the social component in the design of a peer-to-peer energy
sharing or wireless crowd charging scenario. The study simply
considers self reported friendship relations of users in an on-
line social network as well as their social groups to decide if an
energy exchange between users will happen. While the results
provided in this study show that crowd charging process is
influenced by these online social network relations, it does not
provide any conclusion and does not propose any new energy
sharing protocol that will improve the process. Moreover, the
study mostly focuses on the online social network structure
among the users in the opportunistic network. Contrary to
this study, in this paper, we study the impacts of social
group structure integrated in the opportunistic physical contact
relations among users. Thus, the social component part we
study is different than how it is considered in this previous
work. Moreover, we propose a new energy sharing protocol
that takes into account the roles of users in the social network
model as well as the differences of average energy levels in
different groups.

III. SYSTEM MODEL

A. Assumptions

We assume that there is a set of m mobile nodes M =
{u1, u2, ..., um}, each having a limited battery capacity, and
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TABLE I: Notations

Notation Description
m Number of nodes in the network.
P Interaction protocol between nodes for energy exchange.
β Energy loss rate.
ε Transferred energy.
Et(u) Energy of user u’s device at time t.
λi Average intermeeting rate between nodes in group i.
λi,j Average intermeeting rate between a node in group i and

a node in group j.
N (u) Neighbors of node u in the contact graph.
Gu Social group of node u.
Bu Represents if the node is bridge node (1) or not (0).
Et Average energy in the network at time t.
E(Gu) Average energy in the group of node u
δ(P,Q) Total variation distance between two distributions, P , Q.

equipped with necessary hardware for energy sending and
receiving. When two nodes meet opportunistically, they ex-
change energy according to an energy sharing protocol P .
The energy of a node u at time t is denoted by Et(u). Each
node u belongs to a social group denoted by Gu, which is pre-
determined through a social network analysis on the contact
relations between nodes. We assume each pair of nodes,
(ui, uj), interacts in an exponentially distributed manner, with
an average rate of λi for each pair of nodes within group i and
with a rate of λij � λi for nodes from group i and group j.
The energy loss rate due to wireless charging technology used
is denoted by β, which is assumed to be a constant in [0, 1).
That is, when two nodes u and u′ interact at time t and node
u transfers ε energy to node u′, node u′ will receive (1− β)ε
energy and their new energy levels will be:

(Et(u), Et(u
′)) = P(Et−1(u), Et−1(u′))

= (Et−1(u)− ε, Et−1(u′) + (1− β)ε)

We denote the set of neighbors of a node u in the contact
graph by N (u) and define the bridge nodes as the nodes that
have at least one neighbor node from a different group. That
is, for a node u:

Bu =

{
1, if ∃u′ ∈ N (u) s.t. Gu 6= Gu′ ,

0, otherwise.

As in previous work [4], [5], [10]–[12], for simplicity, we
assume that there is no or minimal energy loss that can be
neglected due to mobility or other activities of the nodes,
as this is beyond the focus of the current paper. We also
assume that each node knows the average energy level in the
network and within their own group, which can be realized
via cellular communication with a central server. Note that as
these values only change when nodes interact and exchange
energy, which happens rarely in an opportunistic network, such
a communication overhead will be low. The notations used
throughout the paper are summarized in Table I.

B. Problem Description

The goal is to achieve a fast energy balancing among a set of
nodes with as low variation as possible. We define the energy

difference among nodes using the total variation distance from
probability theory as in [4].

Let P, Q be two probability distributions defined on a sample
space M. The total variation distance is calculated as:

δ(P,Q) =
∑
x∈M

|P (x)−Q(x)| (1)

Here, we do not divide the sum by two to keep the actual
differences. At any time, we define the energy distribution Et
on a sample space M by

Et(u) =
Et(u)

Et(M)
,where, Et(M) =

∑
x∈M

Et(x) (2)

for any u ∈ M. We also define the average energy in the
network at time t as

Et =
Et(M)

m
(3)

The objective, by any time t, can then be formally defined as:

min δ(Et,U) (4)

where U denotes the uniform energy distribution on M (i.e.,
Et(u) = Et ∀u).

IV. SOCIAL-AWARE ENERGY BALANCING

In this section, we give the details of the proposed social-
aware crowd charging process that aims to balance the energy
levels of nodes in the network. In particular, we target speeding
up the balancing process thus consider the underlying social
group structure among the nodes in the network and take into
account their roles in the energy exchange protocol.

As the nodes within the same social group or community
interact more often compared to the nodes in different groups,
the energy balancing process can be slow if there is a remark-
able difference in the average energy levels of different groups.
To this end, we propose a two-stage approach where we apply
different rules of energy exchange at different stages.

In the first stage, our goal is to equalize the average energy
levels of nodes in different groups. The energy exchange
between groups can only happen at the meetings of nodes
from each group called bridge nodes. However, these inter-
group meetings happen less frequently compared to intra-
group meetings of nodes. Thus, each of such meeting oppor-
tunity should be benefited at maximum capacity. To address
that, we adjust the energy levels of bridge nodes during their
intra-group meetings. Consider the different cases of node
meetings in Fig.2. If the meeting nodes are in the same
group and have the same role (i.e., both bridge or non-bridge
node), any potential energy exchange between nodes will not
help increase the amount of energy shared between groups.
However, if one node (u) is a bridge node and the other one
(u′) is a non-bridge node as in Fig.2b, adjusting the energy
level of u would help in inter-group energy exchanges. If the
group of these nodes has more average energy than the other
group’s average, maximizing node u’s energy level will lead to
more energy exchange opportunity to other group. Similarly, if
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Fig. 2: Different cases of node meetings require different
energy sharing procedures in different stages.

node u’s group has lower energy than other group’s energy, it
can minimize its energy by transferring energy to node u′. This
provides node u more space to receive energy from the nodes
of other group in case they meet and can potentially reduce the
average energy difference between groups quickly. When the
nodes from different groups meet (both will be bridge nodes),
they also exchange energy from the node with higher average
group energy to the node with lower average group energy but
this should not be more than needed. Once the two groups’
average energy levels are equalized, they should stop sharing
further and second stage starts.

The second stage stops the interaction of nodes from differ-
ent groups. It targets intra-group meetings and let the nodes
exchange energy if they are at different sides of the average
energy. Note that this is necessary in order to make sure
that energy variation distance in the network decreases [4],
[5], [10]. Here, in order to prevent unnecessary losses during
intra-group meetings and energy exchanges, we adopt the
opportunistic closer protocol [11] in this stage. That is, if one
node has more energy than the average energy and the other
one has less than the average energy, they first compute their
energy difference from average energy and make the closer
one reach the average energy through a sufficient amount of
energy exchange (i.e., sending or receiving) with other node.

Algorithm 1 shows the interaction process of this F irst
Group Then Individual protocol, or PFGTI in short. In the
first stage, if the nodes in the same group meet (lines 2-8),
we allow an energy exchange only if their roles are different
i.e., case b in Fig. 2. To this end, we first find the average
energy level in the meeting nodes’ group and check if it is
more than any other group’s average energy (lines 5-7). If it
is the case, the bridge node should receive as much energy as
possible from the non-bridge node so that when it meets a node
from the other group it can share energy to that node with a
maximum capacity. Similarly, if other group has more energy,
then the bridge node should send maximum possible energy to

Algorithm 1: FirstGroupThenIndividual (u, u′, t)
Input: (u, u′): Interacting nodes

t: Time of interaction
1 if Stage = 1 then
2 if Gu = Gu′ then
3 if Bu 6= Bu′ then
4 (ub, ur) ← (Bu = 1 ?, (u, u′), (u′, u))
5 (u+, u−) ←

(E(Gub
) > E(G′ 6= G) ?(ur, ub), (ub, ur))

6 m = min{E(u+)(1− β), 100− E(u−)}
7 PFGTI(Et−1(u+), Et−1(u−)) =

(Et−1(u+) - m/(1− β), Et−1(u−) +m)
8 end
9 else

10 (u+, u−) ←
(E(Gu) > E(Gu′) ?(u, u

′), (u′, u))
11 Edif = |E(Gu)− E(Gu′)|
12 m = min{E(u+)(1− β), 100− E(u−), Edif

(1+β)}
13 PFGTI(Et−1(u+), Et−1(u−)) = (Et−1(u+) -

m/(1− β), Et−1(u−) +m)
14 if m =

Edif

(1+β) then
15 Stage = 2
16 end
17 end
18 else
19 if Gu = Gu′ then
20 if (Et−1(u) > Et−1 and Et−1(u′) < Et−1)

then
21 (u+, u−) ← (u, u′)
22 else
23 if (Et−1(u) < Et−1 and Et−1(u′) >

Et−1) then
24 (u+, u−) ← (u′, u)
25 end
26 end
27 if (u+, u−) is set then
28 δt−1(u

+) = Et−1(u
+)− Et−1

29 δt−1(u
−) = Et−1 − Et−1(u−)

30 if δt−1(u+)(1− β) > δt−1(u
−) then

31 PFGTI(Et−1(u+), Et−1(u−)) =
(Et−1(u+) - δt−1(u

−)
(1−β) , Et−1)

32 else
33 PFGTI(Et−1(u+), Et−1(u−)) = (Et−1,

Et−1(u
−) + (1− β)δt−1(u+))

34 end
35 end
36 end
37 end

non-bridge node so that bridge node will have enough space
when it meets a node from the other group. If the nodes from
different groups meet (lines 10-17), in the first stage they find
the maximum possible energy sharing between nodes towards
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Fig. 3: Comparison of proposed social-based algorithm with the state-of-the-art algorithm in terms of (a) variation distance,
(b) variation distance at each total energy level, (c) variation distance at each total number of interactions, (d) total energy
remaining in the entire network, (e) total energy remaining in group 1, (f) total energy remaining in group 2, (g) total number
of interactions, and (h) total number of inter-group interactions.

equalizing the average energy levels of groups and apply that.
If the energy shared is equal to the amount that will equalize
different group’s average energies, the second stage starts. In
the second stage (lines 19-37), we allow only the nodes in
the opposite sides of the average energy in the network share
energy. The actual amount of energy shared is defined by the
node whose energy is closer to the current average in the
network.

V. SIMULATIONS

In this section, we present the results of our evaluation
through simulations. We generate a network of m = 100 nodes
and split them equally into two groups. In order to introduce
a difference in the initial average energy levels of groups, we
assign an energy in [0, 70] units randomly for the nodes in
the first group and in [30, 100] units randomly for the nodes
in the second group. For the nodes in the same group, we
generate a meeting pattern using exponential distribution with

a rate, λ1 = λ2, randomly selected from 200 sec to 400 sec.
Similarly, for the nodes in different groups, we generate a
meeting pattern using exponential distribution with a rate, λ1,2,
randomly selected from 700 sec to 1200 sec. However, we only
allow 0.2% of node pairs from different groups interact.

From the beginning of the simulation, we let the devices
interact and exchange energy based on the characteristics of
each protocol proposed. We then compare the proposed social-
aware protocol with a state-of-the-art protocol called POA [4],
[5], [10], in terms of several metrics. Note that in the original
POA, each node locally estimates the average energy level in
the network using the ratio of the total energy seen in the
encountered nodes to the number of encountered nodes. For
a fair comparison, we assume that each node has the global
information and knows the exact average energy in the network
in that protocol too, thus name this version as P∗OA. Note that
P∗OA performs better than POA. We repeat each simulation
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1000 times for statistical smoothness. Error bars are not shown
as the results were highly concentrated around the mean. We
also use an energy loss rate, β, of 0.2.

In Fig. 3a, we first show the total variation distance compar-
ison for these two protocols. While PFGTI causes an increase
initially due to the energy exchanges in the first period,
which does not worry about balancing individual node energies
but focus on balancing the group level average energies, it
provides a smaller variation distance than the P ∗OA eventually.
Variation distance at a given energy available in the network as
well as at each total number of interactions are also shown in
Fig. 3b and Fig. 3c, respectively. The results show that PFGTI
can achieve better variation distance that is not possible by
P ∗OA, but at some earlier times, its performance is not as good
as P ∗OA due to its two-stage design. Looking at the total energy
available in the network shown in Fig. 3d, we see that there is
more loss in PFGTI . However, this is expected and if reducing
the variation distance is the priority, this additional loss could
be justified. Note that as shown in Fig. 3e, the total energy
level (as well as average energy level as each group has equally
50 nodes) increases in the earlier times (i.e., first stage) with
PFGTI , while P ∗OA can only increase it slowly. Similarly, as
shown in Fig. 3f, second group’s energy decreases faster with
PFGTI thanks to its design in the first stage.

The number of total interactions with an energy exchange
between nodes, as shown in Fig. 3g, also shows that P ∗OA
causes more interactions initially which are mostly intra-group
meetings. However, once the nodes in each group reaches its
best energy level within the constraints of node meetings, the
only interactions for energy exchange happen between nodes
in different groups. But due to the greedy energy sharings in
earlier times, the inter-group interactions and their contribution
to the reduction of variation distance is very slow. On the
contrary, PFGTI allows limited but critical interactions at first,
then through intra-group interactions it achieves balancing in
each group. As shown in Fig. 3h, we also see that after certain
time inter-group interactions stop for the proposed approach
while they continue for P ∗OA.

VI. CONCLUSION

In this paper, we study the energy balancing problem
in opportunistic networks considering the underlying social
network structure in their contact graph. We aim a fast
balancing process towards minimization of variation distance
of energy levels of nodes in the network. We propose a
two-stage protocol where we aim to balance average energy
levels between groups in the first stage and then aim to
balance individual energy levels in the second stage. Our
simulation results show that the proposed algorithm can indeed
achieve a better variation distance however, it comes with some
additional energy loss which could be justified if variation
distance reduction is the priority. In our future work, we
will consider more than two groups and extend the proposed
solution to such general social network structures. Moreover,
we will focus on reducing the energy loss while still achieving
a better energy balance.
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