
Opportunistic Wireless Crowd Charging of IoT
Devices from Smartphones

Aashish Dhungana and Eyuphan Bulut

Department of Computer Science, Virginia Commonwealth University

401 West Main St. Richmond, VA 23284, USA

{dhunganaa, ebulut}@vcu.edu

Abstract—Current research that use wireless charging for the
energy replenishment of nodes in a network mostly considers
charging of sensors from special mobile charging vehicles (MCV)
and focuses on optimal path planning of these MCVs. However,
it may not be practical to use such vehicles due to its operational
cost and other restrictions. To this end, in this paper, we
consider to utilize smartphones owned by people and let the low
cost Internet of Things (IoT) devices harvest energy from the
smartphones that pass by. We study the wireless crowd charging
of such IoT devices from these smartphones in an opportunistic
manner, without changing their actual trajectories. As each
smartphone user will limitedly support such a crowd charging
process, the selection of IoT devices that will be charged from
each smartphone has to be determined based on the trajectories
of smartphone users. To address that, we model the problem
using Mixed Integer Linear Programming (MILP) and decide the
optimal charging relation between smartphones and IoT devices.
Through simulations on both synthetic and real user traces, we
show that MILP based solution offers a more successful crowd
charging outcome with a better charging ratio than the greedy
approach where the IoT devices can harvest maximum possible
energy from all users encountered.

Index Terms—Crowd charging, wireless energy harvesting,
opportunistic network, wireless power transfer.

I. INTRODUCTION

Internet of Things (IoT) technology has enabled many

devices to be connected to collect and exchange data in

various applications including smart cities [1], environmental

monitoring [2], localization [3] and home automation. As the

operation of IoT devices mostly depend on capacity limited

batteries, their energy constraint has to be addressed for

continuous operation. One common approach is to harvest

energy from surrounding environment, such as solar, wind, or

vibration [4], however its performance highly varies in practice

and is intermittent and limited due to the uncontrollable

environmental conditions such as cloudy skies [5].
Thanks to the recent breakthroughs in wireless power trans-

fer (WPT) [6] and RF based energy harvesting techniques [7],

wireless charging of low-power IoT devices and sensors have

been considered as a practical remedy. Most of the current

research, however, considers charging of sensors from mobile

charging vehicles (MCV) such as robots, and UAVs and

focuses on the optimal path planning of these MCVs in

order to replenish the energy of sensors before they face

energy shortage [8]–[10]. There are also studies that focus on

designing novel beamforming based WPT systems [11]–[13]

for IoT devices.

Fig. 1: Overview of the wireless crowd charging system. IoT devices
on the routes of smartphone users receive wireless energy from
smartphones opportunistically. Each IoT device needs to select the
set of smartphones that they will harvest energy from considering
the charging thresholds of smartphones and their spatio-temporal
trajectory distributions.

In this paper, our goal is to leverage the smartphones owned

by people to wirelessly charge the IoT devices in their vicinity.

The advantage of using smartphones as in the roles of mobile

charging vehicles is that they are carried by people and most

of the time they are charged at home during night by people

thus there is no dedicated effort for their mobility and energy

management. The idea of crowd charging has recently been

considered in several different domains. For example, it has

been considered for the charging of smartphones in a mobile

social network environment [14]–[17], and for the charging of

electric vehicles (EV) [18], [19] from other EVs with excessive

energy. To the best of our knowledge, there is also only one

very recent work [20] that considers charging of IoT devices

from smartphones and studies a game theoretical incentive

framework. However, authors assume that smartphone users

will be provided incentives to change their regular routes and

charge the IoT devices, which may not work in practice.

Contrary to this study, in this paper, we study the charging

of IoT devices from smartphones in an opportunistic manner,

i.e., without having the smartphone users deviate from their

original path or making them have a stop for charging the

devices. An example scenario for the proposed system is

illustrated in Fig. 1.
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The goal is to let the IoT devices harvest energy from

the smartphones of users who are passing by them. While

the mobility cannot be controlled per definition of the sce-

nario, there are things that could be managed to increase

the performance of the proposed wireless crowd charging

scenario. For example, the power levels of the transmitters

in the smartphones can be adjusted to maximize the wireless

charging performance when they are in the vicinity of the

IoT devices in need. Note that while it is technically possible

to achieve long distance charging at higher charging rates

(e.g., as high as to fully charge even a smartphone), due to

the Federal Communications Commission (FCC) regulations

which mandate a maximum of 1 watt power transmission,

there is a limit on what is achievable. While the 1 watt

power limit causes harvesting of very small energy (e.g., a few

milliwatts in three feet) and will not help realize the charging

of a smartphone, it will help power many low-power IoT

devices in public and commercial places such as thermometers,

window sensors, and motion sensors at reasonable distances.

In this crowd charging model, we assume that users will

follow their regular trajectories which are known or could be

predicted. The IoT devices on their paths will be eligible to

harvest energy from smartphones, however each smartphone

will have a certain threshold up to which it can share energy.

Note that we do not allow the mobile users to stop or alter

its paths in anyway in order to charge the IoT devices.

We assume IoT devices are equipped with energy receiv-

ing capabilities and mobile users are equipped with energy

transmitting capabilities. Such an energy harvesting can be

achieved utilizing wireless energy sharing methods including

far [21], [22] or near [23], [24] field technologies. The energy

consumption due to mobility and other factors are not taken

into consideration since this is beyond the focus of this paper.

We propose an optimal user selection strategy for IoT devices

(through communication and agreement between smartphones

and IoT devices) with a goal of maximizing the total charging

coverage (i.e., number of fully charged devices) and total

energy harvested in the network. Through simulations, we

evaluate the performance of proposed solution using traces

generated from a real dataset as well as random walk based

simulations. The results show the benefit of optimal selection

strategy over a greedy approach where the IoT devices harvest

maximum possible energy from all users encountered.

The rest of the paper is organized as follows. We provide

our system model and assumptions in Section II. In Section

III, we provide the details of the proposed Mixed Integer

Linear Programming (MILP) based solution and the greedy

approach. Then, in Section IV, we provide the details of the

simulations made and show the simulation results that evaluate

the performance of the proposed solution. Finally, we end up

with conclusion in Section V.

II. SYSTEM MODEL

We assume a set S = {s1, s2, . . . sm} of static IoT devices

(e.g., sensors) that are rechargeable. Each sensor is equipped

Notations Description

S Set of IoT devices in the crowd charging system.
U Set of mobile users in the crowd charging system.
P (si, uj) Power rate of sensor si received from user uj per

min.
pmin Minimum power dissipated upon contact with IoT

devices.
pc(si) Power consumption rate per min for sensor si.
En(si) Total energy need for a sensor si for a day.
Et(si) Total energy received by IoT device si by time t.
CR Total Charging Ratio.
T Deadline for completing charging.
εsi,uj (t) Total energy provided by user uj to IoT device si.

EU Total energy harvested by all IoT devices at the end
of deadline (T).

ūj Energy sharing threshold for mobile user j.

TABLE I: Notations and their description

with wireless energy harvesting equipment and thus can har-

vest energy from the smartphones of mobile users passing by.

We assume a set U = {u1, u2, . . . un} of mobile users that

participate to the crowd charging of IoT devices registered

in the system. Both the IoT devices and mobile users are

distributed in a two-dimensional region.

For the energy harvesting model, we assume a simplified

commonly used [20], [25] empirical wireless energy harvest-

ing model which is defined as follows:

P(si, uj) =

{
α

(d+β)2 ljpmin, if d ≤ r,

0, d > r.
(1)

where P(si, uj) is the power rate of a sensor si received

from a user uj per min. α and β are the environmental

constraints and r is the maximum charging range for sensors.

Similarly, pmin is the minimum power dissipated when the

IoT device harvests energy from a nearby mobile user. lj is

the charging level of a mobile device which we set to 6 for

the rest of the paper. Also, let pc(si) be the consumption rate

of sensor si per min. We calculate the energy need of sensor

si for a day as:

En(si) = pc(si)× 24× 60

We assume that sensors can harvest energy up to its need

and no more. The model assumes that mobile users crowd

charges the devices as an energy backup for the next day,

hence we do not take into account the energy loss due to

consumption by the devices. Also, since the main goal is to see

the benefit of crowd charging for IoT devices, we do not take

into the energy consumption by the mobile devices. However,

we assume that there is a threshold to identify the maximum

amount of energy that can be shared by a given mobile user

to prevent excessive utilization of a single user device. We

denote this threshold for uj as ūj . Let Et(si) be the total

energy received by the IoT device si by time t and let CR be

the ratio of totally charged IoT devices at the end of deadline

T. CR can be expressed formally as:

CR =
|{si | si ∈ S, ET(si) = En(si)|}

|S| (2)

377

Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on March 24,2021 at 16:57:49 UTC from IEEE Xplore.  Restrictions apply. 



where |S| is the total number of available IoT devices in the

network.

Similarly, since we do not consider losses due to mobility

and other factors, the total energy harvested can be calculated

based on the total energy provided by all users. Let EU be

the total energy harvested from a set U of mobile users at the

end of deadline T. Then, EU can be expressed as:

EU =
T∑
t=0

∑
si∈S

∑
uj∈U

εsi,uj
(t) (3)

where εsi,uj
(t) is the total actual energy provided by the user

uj to the sensor si at time t. Note that εsi,uj
(t) will be less

than or equal to P(si, uj) at any time t. The notations used

throughout the paper and their descriptions are summarized in

Table I.

III. PROPOSED SOLUTION

In this section, we first provide a greedy approach for energy

harvesting scheduling of IoT devices from smartphones and

then provide the details of a Mixed Integer Linear Program-

ming (MILP) based optimal user selection strategy.

1) Greedy Charging (GC): In this simple approach, we

allow the IoT devices to greedily harvest energy from the

mobile devices they encounter. That is, as the smartphone users

move following their own trajectories and when they come

to the transmission range of IoT devices, the devices harvest

energy following (1) until their needed energy amount En is

satisfied. Note that as there is a limit on the amount of energy

that can be shared by each smartphone, once the charging of

earlier IoT devices on the trajectory of a smartphone user make

the smartphone reach that limit, it stops charging thus the IoT

devices in the rest of the trajectory will not benefit from this

smartphone. Moreover, if this smartphone is their only option

to be charged, then they will not be charged as the drawback

of this greedy approach.

2) Optimal Charger (OC) selection: The objective of op-

portunistic crowd charging is to maximize the amount of

energy harvested in the network with a goal of fully charging

the IoT devices that fall on the trajectory of the mobile users

without any deviation from their original trajectories. However,

due to the overlap between the sets of IoT devices that are

on the trajectories of each smartphone user, the selection of

IoT devices which will harvest energy from each smartphone

is critical. To this end, we utilize a Mixed Integer Linear

Programming (MILP) based optimal charger selection strategy

to maximize the amount of energy harvested and number of

IoT devices charged.

Since, we do not allow mobile users to change their tra-

jectory to charge the IoT devices and we only allow a certain

percentage of user energy to be harvested, the greedy selection

of users to harvest energy from can cause some IoT devices

not charged in the amount of their need from the users passing

by them. Thus, an optimal selection of chargers is important

for IoT devices to gain the optimal benefit. The MILP program

for optimal charger selection is formulated as below:

max (EU + CR) (4)

s.t. 0 ≤ εsi,uj
(t) ≤ min(En(si)− Et(si),P(si, uj)))

(5)
T∑
t=0

∑
si∈S

εsi,uj (t) ≤ ūj × 100, ∀uj ∈ U (6)

Et(si) =
∑

uj∈U,d∈1..t

εsi,uj
(d), ∀si ∈ S (7)

EU ≤
∑
si∈S

En(si) (8)

The objective function (4) first aims to maximize the total

energy harvested in the network from users U and also aims

to increase the total charging ratio (CR), which is defined as

the number of IoT devices fully charged for the same total

energy harvested. Note that the objective function is indeed

M×EU +CR, where M is the largest possible value for CR,

so it gives priority to EU over CR. Since CR ≤M = 1, we

simply write it as in (4) without presence of M = 1. Constraint

(5) denotes how much energy can be harvested from mobile

user u given the user node and IoT devices are within the

transmission range (r). Similarly, constraint (6) restricts each

mobile user to share more energy than the predefined upper

threshold (ūj). We use 100 as the current mobile user’s energy

since we assume that each node will always have sufficient

energy for the IoT device to harvest from. Constraint (8)

limits the total energy harvested by the total energy demand

in the network. Overall, with all these constraints, we want

to utilize the energy from smartphones as efficient as possible

within their limitations (e.g., mobility, threshold on the energy

amount that can be shared). The ideal goal is to fully supply

the demand from all IoT devices and fully charge each of them

separately.

IV. EVALUATIONS

In this section, we provide the evaluation of the proposed

crowd charging based solutions for IoT devices. We first

provide the details of the simulation setting used, then list

the performance metrics and provide the results.

Simulation setting. We develop a custom Java based simulator

to simulate the crowd charging scenario studied. We use two

different user traces to evaluate our proposed methods:

• Synthetic traces: We generate trajectories for multiple

users that move on a 1km by 1km torus using random

walk mobility model whose parameters are shown in

Table II. We set ūj to 0.2 and the number of users to

30 when generating different results. We also deploy 20

IoT devices on the same area and set the charging range

to 30 m.

• KAIST traces [26]: These traces contain trajectories for

92 mobile users. We set number of IoT devices to 12 and

generate results for different number of users. Similarly,

we set ūj to 0.2 to generate results for different number of
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Parameters Values

Constant α in wireless energy harvesting model 0.64
Constant β in wireless energy harvesting model 10
Number of IoT devices |S| [20, 12]
Charging range (r) [30, 50] m
Energy sharing threshold for mobile users (ūj ) 0.2
Minimum energy dissipated upon contact pmin in
unit/min

600

Consumption power rate for sensor pc(si) of si in
unit/min

[0.02 - 0.06]

Charging level lj 6
Deadline T 300 min
Torus area 1 km × 1 km
Speed (min, max) of users in random walk (4, 10)
Epoch period (min, max) in random walk (8, 15) min

TABLE II: Simulation parameters and their values

users. In addition, we also show results based on varying

ūj . The charging range is set to 50 m.

The simulation parameters and their values are summarized in

Table II.

Performance metrics. In order to evaluate the performance

of the proposed charger selection strategies, we utilize two

performance metrics:

• Charging Ratio (CR): This is the total number of sensors

fully charged (e.g., sensor si is fully charged if it harvests

all of its demanded energy En(si) at the end of deadline

(T)) to the total number of sensors in the network. It is

calculated using (2).

• Supply Demand Ratio: This metric is the indication of

how much energy is harvested in the network given

a certain amount of energy demand. A higher supply

demand ratio means a higher energy harvested in the

network. This metric can be expressed as:

EU∑
i∈S En(si)

.

Results. We first look at the performance comparison of MILP

based solution to greedy solution in the KAIST traces shown

in Fig. 2. Fig. 2a shows the charging ratio achievable from

both strategies. We can clearly see that optimal charging

strategy outperforms greedy approach. With increasing number

of users, the available energy in the network increases, thus

IoT devices are able to harvest more energy and consequently

receive sufficient energy to be fully charged. Similarly, Fig.

2b shows the total supply demand ratio achievable using

greedy and optimal (i.e., MILP based) charging strategies. The

optimal charging strategy is able to harvest more energy even

with fewer users due to its smart selection of charging users.

However, when the number of users are increased, even greedy

method is able to obtain total supply demand ratio of 1. Fig. 2c

shows the charging ratio obtained for different energy sharing

threshold. To this end, we use 50 users and 12 IoT devices to

generate these results. We can see that when we increase the

sharing threshold, the IoT devices can harvest more energy

during the limited contact duration of nodes and IoT devices
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Fig. 2: Comparison of Greedy Charging (OC) against Optimal

Charging (OC) in terms of (a) charging ratio given different

number of mobile users, (b) supply demand ratio for different

number of mobile users (when ūj = 0.2), (c) charging ratio

for varying ūj , (d) supply demand ratio for varying ūj (when

|U | = 50) using KAIST traces.

and thus the number of fully charged IoT devices increases.

Similarly, Fig. 2d shows achievable supply demand ratio for

increasing sharing threshold. In all the cases, we can see the

optimal charging strategy outperforms the greedy approach for

charger selection.

Also, in Fig.3, we show the charging ratio and supply

demand ratio for different number of users and different shar-

ing thresholds using synthetic traces. We consider 30 mobile

users and 20 IoT devices to generate these results. From

Fig. 3a, we can see that optimal charging is able to charge

more IoT devices with a given number of users than greedy

approach. However, when the number of users is increased to

70, both methods can charge all the IoT devices. This clearly

shows the benefit of optimal charging strategy over greedy

charging especially when there are limited number of users

in the network. Similarly, Fig. 3b shows the total achievable

supply demand ratio for different number of mobile users. As

expected, the optimal strategy is able to harvest more energy

from users due to its careful selection of charging users thus

provides a higher supply demand ratio. Fig. 3c and Fig. 3d

show the impact of sharing threshold on achievable charging

ratio and supply demand ratio, respectively. The results show

that optimal charging strategy outperforms greedy approach

again in this setting, by providing higher charging ratio and

supply demand ratio especially when the amount of energy

shared by smartphones is limited (i.e., sharing threshold is

small).
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Fig. 3: Comparison of Greedy Charging against Optimal

Charging in terms of (a) charging ratio given different number

of mobile users, (b) supply demand ratio for different number

of mobile users (when ūj = 0.2), (c) charging ratio for varying

ūj , (d) supply demand ratio for varying ūj (when |U | = 30)

using synthetic traces.

V. CONCLUSION

In this paper, we study the wireless crowd charging of

IoT devices from the smartphones owned by people that are

passing by. In contrast to prior work, we study a crowd

charging scenario in an opportunistic manner and assume

that the user devices charge the IoT devices through their

originally scheduled paths. In other words, they do not change

their trajectories for the purpose of charging the devices.

We study two different charging strategies, namely, a greedy

approach and optimal charging strategy that is determined by

a MILP based model. Through simulations on both synthetic

and real user traces, we show that MILP based strategy can

achieve a better charging ratio than the greedy approach while

providing more supply demand ratio. For future work, we plan

to introduce limited deviations in user trajectories to improve

the performance of crowd charging scenario for IoT devices.
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