2254

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.23, NO. 12, DECEMBER 2012

Exploiting Friendship Relations for Efficient
Routing in Mobile Social Networks

Eyuphan Bulut, Member, IEEE, and Boleslaw K. Szymanski, Fellow, IEEE

Abstract—Routing in delay tolerant networks is a challenging problem due to the intermittent connectivity between nodes resulting in
the frequent absence of end-to-end path for any source-destination pair at any given time. Recently, this problem has attracted a great
deal of interest and several approaches have been proposed. Since Mobile Social Networks (MSNs) are increasingly popular type of
Delay Tolerant Networks (DTNs), making accurate analysis of social network properties of these networks is essential for designing
efficient routing protocols. In this paper, we introduce a new metric that detects the quality of friendships between nodes accurately.
Utilizing this metric, we define the community of each node as the set of nodes having close friendship relations with this node either
directly or indirectly. We also present Friendship-Based Routing in which periodically differentiated friendship relations are used in

forwarding of messages. Extensive simulations on both real and synthetic traces show that the introduced algorithm is more efficient

than the existing algorithms.

Index Terms—Delay tolerant networks, mobile social networks, routing, efficiency

1 INTRODUCTION

ELAY Tolerant Networks (DTNs) [1] [2] are a class of

wireless networks in which a stable path from source to
destination is unlikely to exist at any time instance, thus, long
and variable delays occur in routing of messages. These
networks are usually sparse and the connection between their
nodes changes frequently. Among many real life examples of
DTNs, Mobile Social Networks (MSNs) are of growing
significance as a result of the rapid and wide spread use of
various personal wireless devices (e.g., cell phones, GPS
devices) among people and their surroundings.

In mobile social networks, there is a potential of
collaborative data gathering via already deployed and
human maintained devices. Therefore, opportunistic routing
of messages in these networks has been studied by many
researchers. However, due to the challenging network
environment (intermittent connectivity causing lack of stable
end-to-end path between nodes) in these networks, efficient
routing of messages is not an easy task. To ease these
difficulties and enable nodes to make right forwarding
decisions while routing messages, inherent social network
properties of these networks need to be utilized. The direct
connectivity (opportunity for message transfers) between
human-carried devices is enabled when they get into each
other’s range. Thus, the relationship defining the frequency
and duration of the connectivity between nodes has to be
analyzed to route messages efficiently. For example, con-
sider a high school network. A student has a higher chance to
see students in the same class (and therefore higher chance to

o The authors are with the Department of Computer Science, Rensselaer
Polytechnic Institute, Troy, NY 12180.
E-mail: {bulute, szymansk)@cs.rpi.edu.

Manuscript received 22 Aug. 2011; accepted 17 Feb. 2012; published online
2 Mar. 2012.

Recommended for acceptance by P. Santi.

For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2011-08-0556.
Digital Object Identifier no. 10.1109/TPDS.2012.83.

1045-9219/12/$31.00 © 2012 IEEE

transfer data to them) than the students from other classes
that this student can meet only during breaks.

In this paper, exploiting friendship-based social network
features of an MSN, we present a new routing algorithm:
Friendship-Based Routing. To analyze social relations between
nodes (i.e., people), we need to define their friendships in
terms of their behaviors. For this purpose, we introduce new
metric measuring different aspects of friendship behavior
from the encounter history of nodes. Utilizing this metric, we
find both the direct and indirect close friends of each node.
We handle the indirect relations between nodes in the context
of routing in a way that differs from previous approaches.
Moreover, we also take into account the periodicity of
friendship relations and propose to use different friendship
communities in different time periods of a day as a better way
of handling periodic variation of relations than what
previous solutions proposed.

The rest of the paper is organized as follows: in Section 2,
we present an overview of previous work. In Section 3, we
give the detailed design of proposed routing algorithm. In
Section 4, we present our simulation model and its results.
In Section 5, we discuss the presented algorithm and our
future work. Finally, we offer conclusions in Section 6.

2 RELATED WORK

In this section, we first overview the state-of-the-art in
general DTN routing algorithms and then specifically look
at the social-based routing that utilize the social network
features in their designs and are proposed mainly for
MSNs.

2.1 General DTN Routing Algorithms

Recently, several DTN routing algorithms have been
proposed based on different techniques (multicopy based
[3], [4], [5], [6], single-copy based [7], [8], [9], [10], erasure
coding based [11], [12], [13], [14], [15]).

Published by the IEEE Computer Society

BULUT AND SZYMANSKI: EXPLOITING FRIENDSHIP RELATIONS FOR EFFICIENT ROUTING IN MOBILE SOCIAL NETWORKS

The pioneering algorithm in the category of multicopy-
based routing algorithms is Epidemic Routing [3] in which
whenever two nodes are in contact with each other, they
exchange their messages so that they both have the same list
of message copies. As the result, the fastest spread of copies
is achieved yielding the shortest delivery time and the
minimum delay. The major drawback of this approach is
excessive usage of bandwidth, buffer space and energy due
to the greedy spreading of copies. Therefore, several
algorithms were proposed (e.g., Controlled Flooding [4],
Spray and Wait [5], Multiperiod Spray and Wait [6]) to limit
the distribution of the message copies while still achieving
high delivery rates.

One of the first studies in the category of single-copy-
based algorithms is Prophet [7]. The approach is based on
the observation that the movement of nodes in a typical
mobile ad hoc network might be predictable based on
repeating behavioral patterns (i.e., if a node has visited a
location several times before, it is likely that it will visit that
location again). Accordingly, Lindgren et al. propose a
probabilistic routing model where the forwarding decisions
are made by considering the predicted future delivery
probabilities (that are computed from previous node
encounters and updated with aging and transitivity
mechanisms) of meeting nodes. Following the same for-
warding idea, several algorithms, mainly differing from
each other in terms of delivery probability computation, are
proposed. For example, in [9] and [30], the time passed
since the last encounter of nodes with the destination is
utilized and the messages are forwarded toward nodes with
recent meetings with the destination. Moreover, in Max-
Prop [10] prioritization of the schedule of packets that will
be transmitted to other nodes or that will be dropped from
the buffer (due to overflow) is also taken into account in the
routing decisions, thus better performance results are
achieved when the nodes have limited resources (e.g.,
buffer, bandwidth).

In erasure-coding-based routing, the source converts its
message into a large set of blocks such that the original
message can be constructed from a subset of these blocks.
Then, these blocks are distributed to the different nodes in
the network and delivery of at least some minimum number
of them to the destination is equivalent to delivery of the
entire message. The idea is first used in [11], where Wang et
al. present its advantages (i.e., robustness to failures) over
multicopy-based routing. Then, in some subsequent stu-
dies, its different variants are presented. In [12] and [13],
optimal splitting of erasure coded blocks over multiple
delivery paths (contact nodes) and multiple time periods to
optimize the probability of successful message delivery is
studied. A similar approach focusing on nonuniform
distribution of encoded blocks among the nodes is also
presented in [14]. Moreover, in [15], even a hybrid routing
algorithm combining the strengths of multicopy-based and
erasure coding-based approaches is proposed. In addition
to encoding each message into a large number of small
blocks, the algorithm also replicates these blocks to increase
the delivery rate.

2.2 Social-Based Routing for MSNs

Besides the above studies, most of which assume that nodes
move according to simplistic random mobility models,

2255

many recent studies have focused on MSNss (special type of
DTNs consisting of human-carried devices) and analyzed
the social network properties of these networks to assist
the design of efficient routing algorithms. Even though the
algorithms presented in these studies could fit into the
categories listed in previous section, below we will list them
separately since, similar to the proposed algorithm in this
paper, they all use social network features in their designs.

In [16], Daly and Haahr use both social similarity (to
detect nodes that are part of the same community) and ego-
centric betweenness metric (to identify nodes bridging
different communities) to increase routing performance.
When two nodes encounter each other, they calculate the
joint utility function comprised of these two metrics for each
of their destinations. Then, the node having higher utility
for the message’s destination is given the message.

In [17], each node is assumed to have two rankings: global
and local. While the former denotes the popularity (ie.,
connectivity) of the node in the entire society, the latter
denotes its popularity within its own community. Messages
are forwarded to nodes having higher global ranking until a
node in the destination’s community is found. Then, the
messages are forwarded to nodes having higher local
ranking within destination’s community. A distinction
between local community members and others is also made
in [18] and the distribution of message copies is optimally
balanced between these two kinds of encountered nodes. In
[19], a community-based epidemic forwarding scheme is
introduced. First, the community structure of the network is
detected using local information of nodes. Then, the message
is forwarded to each community through gateways.

Additionally, in some other studies, several interesting
properties of social networks are considered. In [20],
irregular deviations from the habitual activities of nodes
are considered and it is shown that the worst case
performance of routing can be improved by scattering
multiple copies of a message in the network such that even
deviant (less frequently encountered) nodes will be close to
at least one of these copies. In [21], the effect of socially
selfish behavior of nodes on routing is studied.

In this paper, we introduce a new routing algorithm
different from all above studies. First, we define a new
metric to understand social relations between nodes more
accurately. Second, we propose a local community forma-
tion based on this new friendship detection metric. We use
not only direct relations but also indirect ones in a different
way than it was considered previously. Third, we introduce
a new approach to handle periodic changes of node
relations. Throughout the presentation of all these features
of our design, we show in detail how they differ from the
previous work.

It is also important to note that since in the design of
social-based routing algorithms, community detection is an
important parameter (since it defines the forwarding of
messages between encountering nodes), some recent
studies [22] specifically focus on the detection of commu-
nities or clusters in MSNs (or in general, in DTNs). To this
end, algorithms and metrics from different areas (e.g.,
complex networks [23]) are also utilized. Both, strong
interactions among the nodes within a community and
interactions (which might be different from intracommunity

2256

(a)

[[.

f > time

0 (b) T
t

t]
A]
0 ©) T

e N s A s O s B

P> time

P time

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23,

NO. 12, DECEMBER 2012

(@

| —» time
0 T
(e)
I —» time
0 ® T
4 4 [S
} ’_| ,_| ,_l > time
0 T

Fig. 1. Six different encounter histories between nodes i and j in the time interval [0, T']. Shaded boxes show durations of the encounters between

nodes.

behavior [24]) between the nodes of different communities
(through bridging nodes) are considered.

In this paper, we also use community concept in the
design of the proposed routing algorithm. However, unlike
others, we define communities from each node’s point of
view, utilizing time dependent interactions of a node with
other nodes. Thus, it is possible that a node ¢ may include
another node j in its community (through indirect friend-
ship definition), but node j might not include node ¢ in its
community. We elaborate on this issue in Section 3.2.

3 THE PROPOSED ALGORITHM

3.1 Analysis of Node Relations

The intermittent connectivity between nodes in an MSN
makes the routing of messages possible only in opportu-
nistic manner. That is, message exchanges occur only when
two nodes come within the range of each other and one of
them assesses that it has lower delivery probability than the
other. Hence, the link quality between each pair of nodes
needs to be estimated accurately (from contact history) to
consider the possible forwarding opportunity arising from
the encounter. As a result, the periodic encounters between
nodes can be condensed to a single link weight and the
corresponding graph including links with weights exceed-
ing certain threshold can be constructed.

In previous works, several metrics, including the en-
counter frequency, the total or average contact period and
the average separation period [19], were used to extract the
quality of links between pairs of nodes. However, all these
metrics have some deficiencies in accurate representation of
the forwarding opportunities arising from encounters
between nodes. For example, consider the six different
encounter histories of two nodes, i and j, in Fig. 1, where
shaded boxes show encounter durations between these
nodes in the time interval T In cases a and b, the encounter
frequencies are the same but the contact durations between
nodes are longer in case b than in case a. Hence, encounter
pattern b offers better forwarding opportunities than a
does." Comparing cases b and ¢, we notice that the contact
durations are the same but the encounter frequencies are
different. Since frequent encounters enable nodes to
exchange messages more often, case c is preferable to case
b for opportunistic forwarding.

1. It should be noted that the comparison of all configurations in terms of
message exchange opportunity obviously depends on the application
scenario which defines the packet size. However, without loss of generality,
we assume here that the encounter durations are long enough for sending a
packet.

Among the previously proposed metrics, encounter
frequency fails to represent the stronger link when cases a
and b are considered, and the total contact duration fails for
cases b and c. Although average separation period can
assign correct link weights representing the forwarding
opportunity in cases q, b, and ¢, it fails in other cases. When
we compare cases ¢ and d, both the contact durations and
the encounter frequencies are the same. However, case c is
preferred to d due to the even distribution of contacts. In
[19], preference of case c is achieved by utilizing irregula-
rities in separation period as a penalty factor. However,
deciding on how much it will affect the link quality in
different cases is still difficult. Furthermore, for the cases
such as e and f, average separation period fails to assign
accurate link weights. If ¢; = ¢, average separation period
cannot differentiate between cases b and e but case e is
preferable due to its longer contact duration (average
separation period can even give preference to case b if ¢
is slightly less than t). Similarly, if ¢; =t3, average
separation period cannot differentiate between cases b and
f, even though case b offers better forwarding opportunity.

To find a link metric that reflects the node relations (also
the forwarding opportunities) more accurately, we consid-
ered the following three behavioral features of close friend-
ships: high frequency, longevity, and regularity. In other
words, for two nodes to be considered friends of each other,
they need to contact frequently and regularly in long-lasting
sessions. Here, frequency refers to average intermeeting
time while regularity refers to the variance of the inter-
meeting time. Hence, two nodes may meet infrequently but
regularly (e.g., once a week) and still be considered friends.
This is of course a weaker friendship than the one with both
frequent and regular contacts. The previous metrics take
into account some of these features but not all of them at the
same time. We account for these properties in a new metric
that we called Social Pressure Metric (SPM). It may be
interpreted as a measure of a social pressure that motivates
friends to meet to share their experiences. In our setting, this
amounts to answering the question “what would be the
limit with time unit tending to zero of the average message
forwarding delay to one node () if the other (i) had a new
message to deliver at each time unit?” (we use the limit in
the definition to make the measure time unit independent).
Then, we define the link quality (w; ;) between each pair as
the inverse of this value. More formally:

BULUT AND SZYMANSKI: EXPLOITING FRIENDSHIP RELATIONS FOR EFFICIENT ROUTING IN MOBILE SOCIAL NETWORKS

where f(t) represents the time remaining to the next
encounter of the two nodes at time ¢. If at time ¢, the nodes
are in contact, then f(t) =0, otherwise, f(t)=tpet —¢,
where ¢, is the time of the next meeting between nodes i
and j. Hence, each intermeeting time ¢;,., contributes the
term 2, /(2T) to SPM. If there are n intermeeting times in
the time period T, then SPM;; = (3_7_, t7,,,.,)/(2T) and
Wi,j = (QT)/(Z;lzl tzzntenm)'

The larger the value of w; j, the closer the friendship (the
higher the forwarding opportunities) between nodes i and
J. Clearly, increasing the time the nodes are in contact
decreases SPM as does equalizing the time between
encounters. Finally, splitting the intermeeting times into
the larger number of smaller pieces also decreases the SPM.
Hence, indeed, this metric combines the three desired
properties of the friendship behaviors discussed above into
a single measure. To illustrate the benefits of this metric,
we notice that when it is used to evaluate all cases in Fig. 1,
the resulting weights will accurately indicate which case
offers more forwarding opportunities. It should also be
noted that SPM is computed from the history of the
encounters of the node. As additional node encounters
happen, the corresponding SPM value is updated easily.

3.2 Friendship Community Formation

Using its encounter history, each node can compute
qualities (w;; values) of its links with other nodes. Then,
it can define its friendship community as a set of nodes
having a link quality with itself larger than a threshold (7).
This set will include only direct friends. However, two
nodes that are not close friends directly still can be close
indirect friends. This happens if they have a very close
friend in common so that they can contact frequently
through this common friend. Moreover, the relations
between nodes may show periodic changes. For example,
they could depend on the time of the day or the day of the
week considered. Therefore, both strong indirect relation-
ships and periodic variations of relationships must be
addressed when forming friendship communities.

3.2.1 Handling Indirect Relationships

To find indirect friendships between nodes in a way
relevant for routing, we propose to use relative SPM (or
simply RSPM) metric. Consider the sample encounter
history shown in Fig. 2 in which the upper diagram shows
the contacts between nodes i and j, while the lower one
shows the contacts between nodes j; and k. We define
RSPM,; ; as the answer to the question “what would be the
average delivery delay of node i’s continuously generated
messages if they followed the path <, j, k>?” Each indirect
information passing consists of two stages. The first one
starts at the last meeting of node i with node j and ends at
the time node i’s next contact with node j ends (assuming
that any message generated at node ¢ can be transferred to
node j when they are in contact). However, if there are
several subsequent meetings with j before any meeting of j
with £, then the last one is considered. We denote duration
of this stage as t,, where = denotes the number of indirect
information passing occurring. During this stage, node ¢
transfers messages to node j. The second stage starts when
the first one ends and it finishes when node j meets node k.

2257

P time

P time
— \—

tb_l th2 tb,3

Fig. 2. Encounter history between nodes i and j (upper diagram) and
between nodes j and & (lower diagram) in the same time interval [0, T7].

The duration of this session is denoted ¢, ,. During this
stage, the messages accumulated at j merely wait for the
meeting with the destination (without accumulating further
at node j). Example is given in Fig. 2, in which in time T,
there are three full information passing sessions between
nodes ¢ and k via node j, and the beginning of the fourth
one. Denoting the number of such sessions as n, RSPM,; ;;
is computed as:

n tag
=10

L1 (2lostor + 1)
2T '

Since the intermediate node, j, records all of its past
contact times with ¢ and k, it can compute the value of
RSPM, ;.

In Algorithms 1-3, we give the details of computation of
SPM and RSPM values from a node’s point of view. At the
beginning, each node j initializes its parameters as
described in Algorithm 1. Then, when a new node m is
encountered, it updates the value of SPM[m] and for each
of its other contacts, ¢, it updates the value of RSPM][i][m] if
node m is encountered first time after its meeting with node
i (Algorithm 2). When the meeting of a node with another
node m ends, it also updates the value of SPM[m] and sets
the end time of current t,(m, k) and start time of next
ty(m, k) to the current time ¢ for each of its other contacts k
(Algorithm 3).

Algorithm 1. initialize (node j)
1: foreach i € N and i # j do

2: cur_totallli] =0

3 (i) =0

4: foreachke Nand k# j# i do
5. tstert(i k) =0

6: (i k) =0

7: cur_total2[i][k] =0

8: end for

9: end for

Algorithm 2. neighborDetected (node m, time ¢)

1 #8lart(m) = ¢

2: nt = 310 (m) — 4 (m)

3: cur_totall[m]+ = "t<"2t+1)

4: SPM[m] = cur_total[m]/2t

5: for each i € N and i # m do

6: ti(i,m) =t

7: if t(i,m) > 19 (i, m) then

8: ty(i,m) = (i, m) — 5t (i, m)
9: to(i,m) = (i, m) — 97 (i, m)

2258

10: cur_total2[i)[m]+ = 2ty (i, m)t, (i, m) + (t.(i,m))*
11: RSPM[i][m] = cur_total2[i][m]/2t

12: tstart (i m) =t (i, m)

13: end if

14: end for

Algorithm 3. neighborLeft (node m, time t)

1 tod(m) =t

2: SPM[m)] = cur_totall[m]/2t
3: for each k € N and k£ # m do
4 to(myk) =t

5. ttart(m k) =1t

6: end for

In an MSN, each node can detect its direct friendships
from its own history (by computing SPM values). How-
ever, to detect indirect friendships, a node needs RSPM
values from its friends. Once such RSPM values are
received and updated at the encounter times with friends,
each node can form its friendship community using the
following definition:

F, ={jlwi; > 7 and i # j} U
{klwijr > 7and w;; > 7 and i # j # k},

where w;;, =1/ RSPM; ;. The above equation enables
nodes to detect their one-hop direct and two-hop indirect
friends. Indirect friendships can also be generalized to
friends more than two hops away. However, we have not
included such extension because [19] demonstrated that
nodes in the same community are usually at most two hops
away from each other.

Clearly, the introduced method for detecting the indirect
strong links between nodes is different than previous
approaches (based on transitivity [7], [9], [19]) which
basically consider the links between node pairs separately
and assume a virtual link between node i and k if w; jw;; > 7.
However, in our model, we can detect indirect relations more
accurately. For example, if node j has a weak direct link with
node k, w; jw;;, may be less than 7. However, if node j usually
meets node k in a short time right after its meeting with node
i, our metric can still identify node k as a friend of node 7. This
definition of indirect node relations is particularly mean-
ingful within the context of routing because a node receives a
message from one of its contacts and sends it to another
contact. That is, it holds the message between its meetings
with two different nodes. Hence, this metric accurately
estimates the quality of indirect message exchange opportu-
nity between two nodes.

Relativity is significant in handling indirect node
relations because recent studies [34] [35] have shown that
the intermeeting times between most of the node pairs fit to
log-normal distribution. Thus, their future contact times
might depend on their past contacts and the time passed
since their last encounters (due to nonmemoryless property
of the log-normal distribution). Moreover, some other
studies (see [36]) point out that the mobility of many real
objects are at least weakly periodic in which case also the

2. Limiting friends to two hops away does not limit routing path to any
number of hops. The message still may travel several hops before reaching
destination, depending on the encounters of the nodes that carry it.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.23, NO. 12, DECEMBER 2012

future contact times depend on the time passed since the
last encounter. Inspired by these studies, we investigated a
possible correlation between the meetings of two different
nodes. To this end, we computed average relative inter-
meeting times of a popular node with other nodes using the
MIT [29] and Haggle [39] traces. We define average relative
intermeeting time of node A with C relative to B, 74(C|B),
as the average time that passes from the moment node A
met B to the time it meets C.

Fig. 3 shows these results. For each data set, the upper
plot shows the 3D view of 74(C|B) and the lower plot
shows the contour plot displaying the isolines of 4(C|B).
The diagonals and the Ath row and column in the plots are
assumed to be zero since we computed 7,4(C|B) values for
A # B # C. Moreover, if there is no instance of the case (in
all traces) in which node A meets node C' after it meets node
B, we set 74(C|B) = —1.

If there were no correlation between the meetings of node
A with other nodes, for a given C, 74(C|B) would have the
same value for all B’s and entire rows would have been of
the same color in contour plots. In contrast, we observe
different colors within the rows, indicating that the meetings
of node A with different nodes are not independent of each
other (since there are many nodes in MIT traces and the
contacts are infrequent, plots require a careful inspection to
reveal that). This observation is consistent with the real-
world scenarios. For example, consider the meetings of a
person going from home to work every morning. After
meeting family members (while leaving home), this person
meets later office friends. Yet, on the way to the office, this
person meets the security guard at the gate to the workplace
a few moments before meeting office friends. In other words,
for this person, meetings with office friends are correlated
with meetings with the security guard. Consequently, in
many MSNs in real life, there will be correlation between the
meetings of nodes. Thanks to such correlation, the quality of
indirect relationship computed from the history of encoun-
ters will be useful for routing of messages.

3.2.2 Handling Periodic Variation in Node Relations
Node relations in an MSN often change with time periodi-
cally. Such periodic changes must be addressed for accurate
computation of link qualities between nodes. When we
analyzed two commonly used mobile social network data
(MIT Reality data set [29] and Haggle data set [39], see
Section 4 for details), we have observed periodic [25]
variations in node relations.

In Figs. 4 and 5, we plotted the distribution of encounter
times of two different nodes® in each data set with other
nodes in their data set. Clearly, nodes encounter other nodes
in some specific periods of the day. For example, in MIT
traces, node 28 meets with node 38 usually between 9 a.m. to
7 p.m. while it meets with node 48 usually between 1 p.m. to
7 p.m. Similar behavior is also seen in Haggle traces.

Considering the fact that main activities of people are
periodig, it is reasonable to expect similar behaviors in other
MSNs. For instance, ¢ can be a friend from school, work, or
home of a node j and their encounter times then would

3. These nodes are 28 and 56 in MIT traces, 39 and 21 in Haggle traces.
We selected these nodes because they are the ones with the highest number
of encounters (with other nodes).

BULUT AND SZYMANSKI: EXPLOITING FRIENDSHIP RELATIONS FOR EFFICIENT ROUTING IN MOBILE SOCIAL NETWORKS

MIT Traces

N W B~ O

o =

Relative intermeeting time (sec)

(a) m56(C|B) in MIT traces

2259

Haggle Traces

©

Relative ntermeeting time (sec)

(b) 71 (C|B) in Haggle traces

Fig. 3. Relative intermeeting times of popular nodes in MIT and Haggle traces. In figures, B represents the id of the node already met (relative node)

and C represents the id of the node to be met.

differ accordingly. Moreover, ¢ can be a friend from both
school and home of j in which case they stay together
during the entire day.

To capture the impact of temporal changes of node
relations on the link quality, previous works have proposed
to use some aging mechanisms [7] [27] and time and density

Meetings of Node 28 (MIT Trace) Meetings of Node 56 (MIT Trace)

RICES:

B

©
T 9
R

Q

Q
6p 6pm - g
3pmp

3pm

Time from the start of day
o
5
3
Time from the start of day
o
5
5
T
(e}

6am |- - - -

10 20 30 40 50 60 70 80 90
Node ids

0 10 20 30 40 50 60 70 80 90 0
Node ids

Fi

ig. 4. Encounter distributions of node 28 and 56 in MIT traces.

Mestings of Node 21 (Haggle Trace)

Meetings of Node 39 (Haggle Trace)

Time from the start of day
Time from the start of day

0 10 20 30 40 0 10 20 30 40
Node ids Node ids

Fig. 5. Encounter distributions of node 39 and 21 in Haggle traces.

window-based aggregations of node relations [8] [28].
However, these mechanisms do not take into account the
periodicity of node relations and react slowly to temporal
changes of link quality. For example, if an aging mechanism
is used, around 7 p.m., the quality of link from node 56 to
node 38 (see Fig. 4) starts to decrease with aging effect* but
still keeps a high value for some time. Yet, node 56 usually
does not meet with node 38 until 10 a.m. next day.
Therefore, forwarding a message considering an aged but
still strong link quality may cause high delays when the link
is already in its periodic low. Similarly, if a window-based
aggregation (e.g., last 6 hour encounter history) is used, at
10 a.m., the link quality will be zero due to lack of contact
between nodes 56 and 38 in the last window of encounters.
Thus, meeting of these two nodes in the near future will be
considered very improbable, while the real data indicates
the contrary.

To reflect the periodic variation of the strength of
friendship, we propose to use periodic friendship commu-
nities in our protocol. That is, each node i computes its F; for
different periods of the day and has different friendship
communities in different periods. For example, if we divide
a day into three hour periods, as shown in Fig. 4, node 85
will be the only friend of node 56 in period 3 a.m.-6 a.m.,
whereas nodes 28, 85, and 95 will be friends of node 56 in

4 wij= wwvo/, where t is the time since the last encounter and 0 < o < 1
is aging parameter.

12am. 3am. 6a.m. 9am. 12pm. 3pm. 6pm. 9pm. 12am.
Day 1 | | [[]
ow2 | [T | | |
Day 3 | [01 |
Day 4 | | | |
Dayl Day2 Day3 Day4
(6am.-9am) 1
0
(12 p.m. - 3 p.m.)

Fig. 6. Sample contact history between two nodes (upper) and the
updated contact history for three different periods (lower).

period 9 p.m.-12 am. In Haggle traces (Fig. 5), we also
observe similar situations. While nodes 23, 24, 35, and 36 are
friends of node 21 in period 9 p.m.-12 a.m., node 20 is its
only friend in period 12 a.m.-3 a.m. However, if an aging
mechanism were used, these four nodes would have still
been considered good friends of node 21 in period 12 a.m.-3
a.m. because even though the corresponding link weights
are decreasing, they are still high enough to indicate
friendship. In Haggle traces, for some nodes, all of the
contacts may be squeezed into 9 a.m.-6 p.m. range of work
hours. However, with a careful look, one can easily detect
similar examples even within this time range (e.g., in Fig. 5a,
node 11 is the friend of node 39 only from 9 a.m. to 1 p.m.).

To be able to compute its friendship community for each
period, a node i first needs to convert the time of its
encounters to the local time of each period. Consider the
upper graph in Fig. 6 where a sample four day contact
history between two nodes is illustrated. If three-hour ranges
are used to define periods, the encounters within each
specific three-hour period should be considered separately
to analyze the friendship relations within the periods.
Therefore, the encounter history has to be updated for each
period as illustrated in the lower graph in Fig. 6. As shown,
corresponding periods of the contact history in a day (global
time) are concatenated to form the updated contact history of
a period (local time). In Algorithm 4, we show how each
period forms and maintains its own contact history as the
events (neighbor entering or neighbor leaving the commu-
nication range of a node) occur in global time. Once each
node generates an event handler for each of its periods with
the given start and end indexes (e.g., the start and end
indexes for period (6 a.m.-9 a.m) are 21,600 and 32,400 s), the
local contact history for each period can be generated
following the steps in Algorithm 4. First the global time of
the event is converted to local time (in seconds) using the
update_time() method (Algorithm 5). Then, using stack, the
start and end times of contacts within the period are
detected. Note that, as it is seen in lines 8-9 of Algorithm 4,
when the event handler of a period notices that a full
encounter according to the local clock of the period has
finished, it calls neighborDetected() (Algorithm 2) and
neighborLeft() (Algorithm 3) methods to compute the
SPM and RSP M values within the period (using encounter
times according to the local clock of the period).

TABLE 1

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.23, NO. 12, DECEMBER 2012

Updated Times (in Seconds) of Encounters in Fig. 6

for Two Different Periods

Conta¢t Global time | Local timein (6 | Local time in
id of encounter | a.m.-9 am) pe- | (12 p.m.-3 p.m)
(t_start, t_end) riod period

(17800, 37000) (0, 10800) 0, 0)

(48600, 61200)

(10800, 10800)

(5400, 10800)

(73800, 83700)

(10800, 10800)

(10800, 10800

(91800, 100800)

(10800, 10800)

(10800, 10800

(126000, 154800

(21600, 21600)

(10800, 21600

(191700, 203400

(21600, 30600)

(32400, 32400)

(21600, 25200

(264600, 283320

(32400, 34920)

)
)
)
(21600, 21600)
)
(32400, 32400)

)

)
)
(207720, 219600)
)
)

(318600, 331200

(43200, 43200)

(43200, 43200

=[O Q0| \J| O UT| M| W N[=

0 (338400, 343800)

(43200, 43200)

(43200, 43200)

The bold values in local times show the start and end times of local
encounters in corresponding period.

Algorithm 4. periodEventHandler (event e, node m, time ¢,
time start_index, time end_index)

1: t,pq = update_time(t, start_index, end_index)

2: if (Stack is not empty) then
if (value at top of Stack # t,,q) then
4 if (Stack.size = 2) then
5 if (e is neighbor detection) then
6: ty = Stack.pop()
7.
8
9

ty = Stack.pop()
neighborDetected(m, t)
neighborLeft(m, ,)

10: else if (e is neighbor leaving) then
11: Stack.pop()

12: end if

13: end if

14: Stack.push(typq)

15: else

16: if (Stack.size = 1) then
17: Stack.pop()

18: end if

19: end if

20: else

21: Stack.push(typa)

22: end if

Algorithm 5. update_time (time ¢, time start_inder, time
end_index)
1: d = |(t — end_index) /86400 |
2: period_length = end_index — start_index
3: if ((¢ < start_index + (d + 1) x 86400) and
(t > end_index + dx86400)) then
tupd = (d + 1) X period_length
else
tupd = (t%86400) — start_index + (d+ 1) x
period_length
71 return ty,q
8: end if
In Table 1, we give the list of the encounter times in
Fig. 6 according to both the global time (in seconds) and
the local time of periods (6 am.-9 am.) and (12 p.m.-3
p-m.). The bold values in local times show the start and
end times of local encounters (that trigger the run of

SARRS LN

BULUT AND SZYMANSKI: EXPLOITING FRIENDSHIP RELATIONS FOR EFFICIENT ROUTING IN MOBILE SOCIAL NETWORKS

neighbor Detected() and neighborLe ft()) in the correspond-
ing period.

3.3 Forwarding Algorithm

Once a node constructs its friendship community for each
period based on its current encounter history, it decides
whether to forward a message to the encountered node using
the procedure in Algorithm 6. If a node i having a message
for node d meets with node j, it forwards the message to j if
and only if node j’s friendship community (Fj(pid)) in the
current period pid includes® node d and node j is a stronger
friend of node d than node i is. Accordingly, even if node j
has a stronger link with node d than node i has, if node j does
not include d in its current friendship community (i.e.,
weight of link between j and d is less than 1), node ¢ will not
forward the message to node j.

Algorithm 6. messageForward (met node j, time ¢, period
length 1)
1: //1i=1id of the node running the algorithm

pid = |t/1]
if ((pid+1) x I —t) < t; then

pid = pid + 1
end if
Request/Receive friendship quality (fq(j,d) =
max{w;q, Wjanya}) Of j for each destination d of i’s
current messages in period pid
7: /] £q(j, d) is not returned if it is less than 7 and

d € Fj(pid) if it is returned.
8: for each message m with destination d do

9: if d € Fj(pid) then
10: if fq(j,d) > fq(i,d) then
11: Forward the message m to j
12: end if
13: end if
14: end for

For an efficient routing, we also need to handle period
boundary cases which arise when the encounter of twonodes
is close to the end of the current period. In such a case, nodes
use their friendship communities in the next period. For
example, if we use three hour periods for community
formation and node ¢ meets node j at 2:45 p.m., it would be
better if both nodes use their communities (so the link
weights) in the next three hour period (3 p.m.-6 p.m.) to check
whether the destination is included. Since the time remaining
in the current period is very short, using the current
communities may lead to inefficient forwarding decisions.
In our algorithm, we use threshold t;, and let the nodes use
next period’s community information if remaining time to the
end of current period is less than ¢; (lines 3-5 in Algorithm 6).

4 EVALUATIONS

To compare the performance of the proposed algorithm and
the existing algorithms via simulations, we have built a
Java-based custom DTN simulator. It uses either the traces

5. This is equivalent to checking whether either of direct or indirect
weights between nodes j and d is larger than threshold 7. Considering this
usage of friendship in the design of the forwarding algorithm, each node
indeed does not need to keep and maintain an explicit list of its friends.
Friendship concept here is used to define possible good carriers of a
message with sufficiently high link weights.

2261

of real objects from real DTN environments or the synthetic
traces. The network parameters (number of nodes, etc.) are
defined by the traces used.

4.1 Data Sets

4.1.1 Real DTN Traces
We used the following two real DTN traces from the
crawdad archive [38]:

e MIT reality data set [29] consists of the traces of 97
Nokia 6600 smart phones which were carried by
students and staff at MIT over nine months. In our
simulations, we used the contacts logged during a
three month period from the beginning of February
to the end of April. This is the time of the second
academic semester where human relations are
relatively stable and participants are active on
campus [25].

e Haggle project data set [39] consists of many traces
from different experiments. We selected the Blue-
tooth sightings recorded between the iMotes carried
by 41 attendants of Infocom 2005 Conference held in
Miami. Devices were distributed on 7 March, 2005
between lunch time and 5 p.m. and collected on
10 March, 2005 in the afternoon.

4.1.2 Synthetic Mobility Traces

Using a community-based mobility model similar to the
models in [7], [31], [32], and [33], we also generated synthetic
mobility traces. In a 1,000 m by 1,000 m square region (i.e.,
small town, campus), we generated N, randomly located
nonoverlapping community regions (home, work, buildings,
etc.) of size 100 m by 100 m and we allocated N, nodes (i.e.,
people) to these community regions as their home ranges.
Then, for each node, we randomly assigned V' different
communities to visit regularly (i.e., the places visited
regularly by a person in a day). Each node first selects a
random point within the next community region in its list,
assigns a random speed in range [Vinin, Vinez] and moves
toward the target point with that speed. When it reaches that
point, it randomly assigns a visit duration in range [1},n,
T'naz] and randomly walks within the community region for
that visit duration. Once its visit ends, it moves to the next
community in its list in a similar way. Each node visits all the
communities in its list as indicated and comes back to its
home community. Then, at the start of next day, all nodes
follow again the same process and visit the communities in
their list. To make the movements of nodes more realistic, we
also considered irregular movements of nodes. When a node
finishes its visit in one of the communities in its list, it may
decide to visit a random community (other than the ones on
its list) with probability p,. After this irregular visit, the node
then continues its community visits by moving to the next
one on its list. All nodes have a transmission range of R.
While nodes are moving, the meetings between them are
recorded. The default values for the parameters are N, = 15,
Np =100,V =5, [V;ni’m V'vmal‘} = [207 120] m/min, [T"mim Tmaw] =
30, 120] min, p, = 0.1, R = 30 m.

4.2 Algorithms in Comparison and Performance

Metrics

Using simulations, we compare the proposed routing
algorithm with three other benchmark algorithms: Prophet

2262

Delivery ratio (%)

80

60

40

20

Delivery Ratio

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.23, NO. 12, DECEMBER 2012

/] — - — Epidemic
/ Fresh

/ ——QOur

—+— Prophet
—&— SimBet

5 10 15
Time (days)

(a) Delivery ratio vs. time

20

Average cost per message

Average Cost

Fresh

—>—Our

—+— Prophet
—&— SimBet

5 10 15 20
Time (days)

(b) Average cost vs. time

Delivery ratio/Average cost

60

50

4

30

20

Routing Efficiency

— - — Epidemic
Fresh
——QOur
—+— Prophet
—6— SimBet

_o—6———0

5 10
Time (days)

15 20

(c) Routing Efficiency vs. time

Fig. 7. Comparison of algorithms using MIT traces.

[7], SimBet [16], and Fresh [30]. Each algorithm (including
ours) uses only the contact history of nodes and deals with
the forwarding of a single copy of the message to make the
comparison fair. In Prophet, each node calculates its delivery
predictability using its contact history along with transitivity
and aging features and each node passes the carried packet
if it meets a node with the higher predicted delivery
probability. In SimBet, each node calculates a simbet metric
using two social measures (social similarity and ego-centric
betweenness) and during the meetings, the messages are
forwarded to the encountered nodes with higher simbet
value. Finally, in Fresh [30], a node forwards a message to
the encountered node only if it had earlier meeting with the
destination node than the encountered node. For Prophet
and SimBet, we use the same parameters suggested in
original studies [7], [16]. To show the optimal delivery ratio
that could be achieved with the current setting in the
network, we also present the results of epidemic routing [3].

In evaluations, we use the following three metrics: the
message delivery ratio, the average cost, and the routing
efficiency. The delivery ratio represents the proportion of all
generated messages that are delivered to their destinations.
The average cost is measured by the average number of
forwards per message executed during the simulation.
Finally, the routing efficiency [26] is defined as the ratio of
the delivery ratio to the average cost.

4.3 Simulation Results

In the simulations, we used 1/5 of each data as warm up
period during which nodes build their initial contact history.
After the warm up period, we generated 5,000 messages,
each from a random source node to a random destination
node® every ¢ s. To account for duration of experiments, we
set t =300 s for MIT data, but for Haggle and synthetic
traces, we set t = 15 s. All messages are assigned a Time-To-
Live (TTL) value representing the maximum delay require-
ment. To form friendship communities, we used three hour
periods” and set 7 = 1/80 min~' and #, = 15 min.

6. In MIT traces, nodes that do not have any contacts with others in the
selected three month period were not assigned as either source or
destination to prevent meaningless messages.

7. We selected the period length empirically considering the possible
change of people’s behavior in daily life and the regularity of their behavior
between the boundary time points (6 to 9 am. and 3 to 6 p.m. may be
considered as commuting times, etc.). Moreover, by finding dense regions
of contacts between each pair of nodes and looking at the goodness of their
fitting to the periods they are in, we also confirmed that three hour range is
a good selection. In our future work, we will look at the effect of different
number of periods with variable lengths on the performance of the
proposed algorithm.

For main simulations, we assume that the nodes have
sufficiently large buffer space to store every message they
receive and the bandwidth is high enough to allow the
exchange of all messages between nodes at encounter
times.® These assumptions are reasonable in view of
capabilities of today’s technology and are also commonly
used in previous studies [37]. Any change in the current
assumptions is expected to affect the performance of the
compared algorithms in the same way, since they all use
one copy of the message. Moreover, following [5], we used
a simplified slotted CSMA MAC model. We ran each
simulation 10 times with different seeds and in each run, we
collected statistics by running each algorithm on the same
set of messages. All plots in figures show the averages of
results obtained in such repeated runs.

In Fig. 7, we show comparison of all algorithms in
terms of the three aforementioned metrics using MIT
traces. Disregarding Epidemic routing, because of its
unacceptable cost, our algorithm achieves the highest
delivery ratio (78 percent, similar to Fresh) but it also
has the minimum cost (similar to SimBet). Consequently,
its efficiency is the best among all algorithms with a 16, 80,
and 125 percent improvement over Simbet, Fresh, and
Prophet, respectively.

In simulations with Haggle traces (Fig. 8), our algorithm
delivers 82 percent of all messages with the cost similar to
SimBet again. As a result, it provides 35, 210, and 450
percent improvement in the routing efficiency over
SimBet, Fresh, and Prophet, respectively. From Fig. 9, we
also observe the superiority of our algorithm in the results
with synthetic traces. While our algorithm’s delivery ratio
is nearly 80 percent, Fresh’s is only 60 percent while
SimBet and Prophet deliver just 48 percent of all messages.
Still, the average cost induced by our algorithm is only
slightly higher than the cost of SimBet. Therefore, our
algorithm achieves the best routing efficiency which is 33,
47, and 650 percent higher than the routing efficiencies of
SimBet, Fresh, and Prophet, respectively.

We also look at the effects of some parameters on the
results. Since the effects are turned out to be similar on each
data set, we only show the results with Haggle data set.

First, we look at the scenarios where the buffer space at
each node is limited and FIFO buffer management scheme is
used. With these assumptions, we computed the routing

8. We also performed simulations with limited resources and different
values of parameters. We present these results at the end of the section.

BULUT AND SZYMANSKI: EXPLOITING FRIENDSHIP RELATIONS FOR EFFICIENT ROUTING IN MOBILE SOCIAL NETWORKS

2263

Delivery Ratio Average Cost Routing Efficiency
100 T T T 15 T T T T T T T T T
R Fresh 60| — — Epidemic
- —*—Our Fresh
80 - S —+— Prophet 3 ——Qur
_ - i § |l —o—simset 8 80| —4— Prophet
2 e e g10 2 || —o—simBet
.% 60 ’ 5o 5 g 40
c / = Q
e / a3 E 30 o—=0 —e—]
R g g o6—6—o—
3 i — - — Epidemic 25 § 20
I Fresh § %
207; ——Our < [a)
| —+— Prophet e — S 10
©— SimBet ke |
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
Time (hours) Time (hours) Time (days)

(a) Delivery ratio vs. time

Fig. 8. Comparison of algorithms using Haggle Project traces.

(b) Average cost vs. time

(c) Routing Efficiency vs. time

Delivery Ratio Average Cost Routing Efficiency
100 F——— , —_— 12 : ; ; ® ; ; ; ;
— - — Epidemic - Fresh — - — Epidemic
Fresh ’ b 7 Our Fresh
80| ——Our / S —+— Prophet @ 25¢ —%— Qur
_ —+— Prophet / g —o— SimBet ¢ —— Prophet 6
£ || o smBet 7 g % ool| —o— SimBet o
2o 60 , = I
g , g <
3 / —— 38 o5
S w . é 3
2 P >
8 e g4 g
f 7 A7 H 8 5—
, / g 2 P %9,,,75——76**6‘* —5—6—0— 5 — 5 _ I
L _ L L L L L L L L L L L e <\- — 4\ L L L L
5 10 15 20 25 30 5 10 15 20 25 30 5 10 15 20 25 30
Time (hours) Time (hours) Time (hours)

(a) Delivery ratio vs. time

Fig. 9. Comparison of algorithms using Synthetic traces.

efficiency achieved in all algorithms with different buffer
sizes in the range of [10-50] messages. Fig. 10 shows the
results. For these simulations, we set the message generation
interval t = 12sand TTL = 16.6 hours. The results show that
routing efficiency of all algorithms increases as buffer space
increases because messages are not dropped. Moreover, the
routing efficiency of each algorithm converges to some
constant value after sufficiently large buffer space is
allocated. In Fig. 11, we show the routing efficiency of all
algorithms with different message generation intervals

Message generation interval = 12 sec
60

o
S

[| —— Prophet
—6— SimBet

~
S

@
S

Routing Efficiency

20 25 30 35

Buffer space (messages)

40 45

Fig. 10. Routing efficiency versus buffer space.

Buffer space = 50 messages
60

50 —+— Prophet

o—4

n @ N
=] S S

Routing Efficiency

=)

=

6 7 8 9 10
Message generation interval (sec)

IS

1 12

Fig. 11. Routing efficiency versus message generation interval.

(b) Average cost vs. time

(c) Routing Efficiency vs. time

(when the buffer size is 50 messages and TTL = 16.6 hours).
The results are similar to Fig. 10, because as fewer messages
are generated, fewer messages are dropped due to buffer
overflows, thus more messages could be delivered, increas-
ing the routing efficiency.

The simulation results with different traces having
different number of nodes, contact frequencies, and dura-
tions, and also the results with different values of
simulation parameters (buffer, message generation interval)
show that our algorithm performs better than the other
algorithms over wide range of environments.

5 DiscussioNs AND FUTURE WORK

5.1 Complexity of the Algorithm

In the introduced algorithm, each node determines its
friendship community in each period using mainly its own
encounter history without much control message over-
head. The only information that a node needs from its
contacts is their RSPM (or w; ;1) values with its noncontact
nodes (needed to find indirect close friends). However,
this information is requested only from the close friends’
of nodes and performed with messages of small size
compared to data messages. In contrast, the compared
algorithms impose a significant control message overhead
caused by exchange of the summary vectors during
contact times.

9. We confirmed by inspecting real traces that not all nodes meet with
each other over the entire data sets. Moreover, the average number of direct
friends (nodes with sufficiently high link weights) is usually much smaller
than the total number of nodes in the network. By the condition defining
indirect friendship (1/RSPM;y; > 7), each indirect friend (k) is associated
with a direct friend (so, j is also a friend)). Hence, the overhead is O(AC),
where A is the average friend count and C' is the period count.

2264

5.2 The Effects of Number of Periods and
Thresholds

Increasing the number of periods into which a day is
divided (thus, the number of local friendship communities
that each node has) may enable nodes to have more
accurate information about the quality of their friendship
relations with other nodes. Thus, when two nodes
encounter, the forwarding decision could be made using
the nodes” more local and accurate friendship quality with
destination. On the other hand, this might degrade the
delivery performance. This is because the friendship quality
(i.e., delivery metric) of the node, to whom the message is
forwarded, might be very local at the time of message
exchange and it might become obsolete in the next period
which may arrive very quickly (due to high number of
periods with short periods). Moreover, the cost of comput-
ing the friendship communities (or link weights) in each
period and also the space required to hold different
communities will increase as well. However, as long as
this cost could be handled and there is enough space at the
nodes to hold the relevant data, better results could be
achieved with a reasonable number of periods with proper
lengths. Clearly, the threshold used is another parameter
that might affect the performance of the proposed algo-
rithm. As 7 increases (decreases), friend lists of nodes get
smaller (bigger), and as t, changes, the forwarding algo-
rithm may become more sensitive to period boundaries. In
future work, we will look at these issues and try to find
optimum values of 7 and ¢, as well as the optimal placement
of period boundaries.

5.3 Extension of the Algorithm

We believe that the performance of the proposed algorithm
can be improved by using the transitive friendship behavior
of different nodes in the consecutive periods of the day. For
example, assume that node ¢ has a close friend j in period 12
p-m.-3 p.m., and node j has a close friend % in 3 p.m.-6 p.m.
period. Then, when node s meets node ¢ and has a message
destined to node k in period 12 p.m.-3 p.m., it can forward
this message to node i (even though node i has no direct or
indirect close friendship with node % in the current period).
This is because with high probability the message will be
forwarded from i to j and then from j to k. However, such a
solution will increase the algorithm’s maintenance cost. We
will study this issue in our future work and analyze the
cost-benefit tradeoff.

6 CONCLUSION

In this paper, we study the routing problem in mobile social
networks, which are a type of DTNs. First, we introduce a
new metric to detect friendship-based node relations
accurately. Then, we present a new routing algorithm in
which a node forwards its messages to those nodes that
contain the destination node in their friendship commu-
nities. To reflect the periodic changes on node relations, our
friendship communities depend on the period of day in
which forwarding is done. We also treat indirect relations
between nodes in a novel way making them amenable to
routing. We evaluate the proposed algorithm through
simulations using two real DTN traces and a synthetic
data. The results show that our algorithm performs better
than three benchmark algorithms proposed previously.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.23, NO. 12, DECEMBER 2012

ACKNOWLEDGMENTS

Research was sponsored by US Army Research Laboratory
and the UK Ministry of Defence and was accomplished
under Agreement Number W911NF-06-3-0001. Research
was also sponsored by the Army Research Laboratory and
was accomplished under Cooperative Agreement Number
WO911NF-09-2-0053. The views and conclusions contained in
this document are those of the authors and should not be
interpreted as representing the official policies, either
expressed or implied, of the US Army Research Laboratory,
the US Government, the UK Ministry of Defence, or the UK
Government. The US and UK Governments are authorized
to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation hereon.

REFERENCES

[1] P. Juang, H. Oki, Y. Wang, M. Martonosi, L.S. Peh, and D.
Rubenstein, “Energy-Efficient Computing for Wildlife Tracking:
Design Tradeoffs and Early Experiences with Zebranet,” Proc.
ACM 10th Int'l Conf. Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2002.

[2] J. Ott and D. Kutscher, “A Disconnection-Tolerant Transport for
Drive-Thru Internet Environments,” Proc. IEEE INFOCOM, 2005.

[3] A. Vahdat and D. Becker, “Epidemic Routing for Partially
Connected Ad Hoc Networks,” Technical Report CS-200006, Duke
Univ., 2000.

[4] K. Harras, K. Almeroth, and E. Belding-Royer, “Delay Tolerant
Mobile Networks (DTMNs): Controlled Flooding Schemes in
Sparse Mobile Networks,” Proc. Fourth IFIP-TC6 Int’l Conf.
Networking Technologies, Services, and Protocols; Performance of
Computer and Comm. Networks; Mobile and Wireless Comm. Systems,
May 2005.

[5] T. Spyropoulos, K. Psounis, and C.S. Raghavendra, “Efficient
Routing in Intermittently Connected Mobile Networks: The
Multiple-Copy Case,” IEEE/ACM Trans. Networking, vol. 16,
no. 1, pp. 77-90, Feb. 2008.

[6] E.Bulut, Z. Wang, and B. Szymanski, “Cost Effective Multi-Period
Spraying for Routing in Delay Tolerant Networks,” IEEE/ACM
Trans. Networking, vol. 18, no. 5, pp. 1530-1543, Oct. 2010.

[71 A. Lindgren, A. Doria, and O. Schelen, “Probabilistic Routing in
Intermittently Connected Networks,” ACM SIGMOBILE Mobile
Computing and Comm. Rev., vol. 7, no. 3, pp. 19-20, 2003.

[8] E.P.C.Jones, L. Li, and P.A.S. Ward, “Practical Routing in Delay
Tolerant Networks,” Proc. ACM SIGCOMM Workshop Delay
Tolerant Networking (WDTN), 2005.

[9] T. Spyropoulos, K. Psounis, and C.S. Raghavendra, “Efficient
Routing in Intermittently Connected Mobile Networks: The
Single-Copy Case,” IEEE/ACM Trans. Networking, vol. 16, no. 1,
pp- 63-76, Feb. 2008.

[10] J. Burgess, B. Gallagher, D. Jensen, and B.N. Levine, “MaxProp:
Routing for Vehicle-Based Disruption-Tolerant Networks,” Proc.
IEEE INFOCOM, Apr. 2006.

[11] Y. Wang, S. Jain, M. Martonosi, and K. Fall, “Erasure-Coding Based
Routing for Opportunistic Networks,” Proc. ACM SIGCOMM
Workshop Delay-Tolerant Networking, 2005.

[12] S.Jain, M. Demmer, R. Patra, and K. Fall, “Using Redundancy to
Cope with Failures in a Delay Tolerant Network,” Proc. ACM
SIGCOMM, 2005.

[13] E. Bulut, Z. Wang, and B. Szymanski, “Cost Efficient Erasure
Coding Based Routing in Delay Tolerant Networks,” Proc. IEEE
Int’l Conf. Comm. (ICC), 2010.

[14] Y. Liao, K. Tan, Z. Zhang, and L. Gao, “Estimation Based Erasure
Coding Routing in Delay Tolerant Networks,” Proc. Int’l Conf.
Wireless Comm. and Mobile Computing, July 2006.

[15] L. Chen, C. Yu, T. Sun, Y. Chen, and H. Chu, “A Hybrid Routing
Approach for Opportunistic Networks,” Proc. ACM SIGCOMM,
pp- 213-220, Sept. 2006.

[16] E. Daly and M. Haahr, “Social Network Analysis for Routing in
Disconnected Delay-Tolerant Manets,” Proc. ACM MobiHoc, 2007.

[17] P. Hui, J. Crowcroft, and E. Yoneki, “BUBBLE Rap: Social Based
Forwarding in Delay Tolerant Networks,” Proc. ACM MobiHoc,
2008.

BULUT AND SZYMANSKI: EXPLOITING FRIENDSHIP RELATIONS FOR EFFICIENT ROUTING IN MOBILE SOCIAL NETWORKS 2265

(18]

[19]

(20]

(21]

(22]

(23]

(24]

(23]

[20]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(33]

[30]
(371

[38]
[39]

E. Bulut, Z. Wang, and B.K. Szymanski, “Impact of Social
Networks in Delay Tolerant Routing,” Proc. IEEE GLOBECOM,
2009.

F. Li and J. Wu, “LocalCom: A Community-Based Epidemic
Forwarding Scheme in Disruption-Tolerant Networks,” Proc. IEEE
Comm. Soc. Sixth Ann. Conf. Sensor, Mesh, and Ad Hoc Comm. and
Networks (SECON), pp. 574-582, 2009.

T. Zhou, RR. Choudhury, and K. Chakrabarty, “Diverse Routing:
Exploiting Social Behavior for Routing in Delay-Tolerant Net-
works,” Proc. Conf. Computational Science and Eng., 2009.

Q. Li, S. Zhu, and G. Cao, “Routing in Selfish Delay Tolerant
Networks,” Proc. IEEE INFOCOM, 2010.

P. Hui and E. Yoneki, “Distributed Community Detection in Delay
Tolerant Networks,” Proc. Second ACM/IEEE Int’l Workshop
Mobility in the Evolving Internet Architecture (MobiArch), p. 18, 2007.
M.E]J. Newman, “The Structure and Function of Complex
Networks,” SIAM Rev., vol. 45, pp. 167-256, Mar. 2003.

T. Hossmann, T. Spyropoulos, and F. Legendre, “Putting Contacts
into Context: Mobility Modeling Beyond Inter-Contact Times,”
Proc. ACM MobiHoc, 2011.

P. Hui and]. Crowcroft, “Predictability of Human Mobility and Its
Impact on Forwarding,” Proc. Third Int’l Conf. Comm. and
Networking in China, 2008.

J.M. Pujol, A.L. Toledo, and P. Rodriguez, “Fair Routing in Delay
Tolerant Networks,” Proc. IEEE INFOCOM, 2009.

J. Link, N. Viol, A. Goliath, and K. Wehrle, “SimBetAge: Utilizing
Temporal Changes in Social Networks for Pocket Switched
Networks,” Proc. ACM Workshop User-Provided Networking, 2009.
T. Hossmann, T. Spyropoulos, and F. Legendre, “Know Thy
Neighbor: Towards Optimal Mapping of Contacts to Social
Graphs for DTN Routing,” Proc. IEEE INFOCOM, 2010.

N. Eagle, A. Pentland, and D. Lazer, “Inferring Social Network
Structure Using Mobile Phone Data,” Proc. Nat’l Academy of
Sciences of USA, vol. 106, no. 36, pp. 15274-15278, 2009.

H. Dubois-Ferriere, M. Grossglauser, and M. Vetterli, “Age
Matters: Efficient Route Discovery in Mobile Ad Hoc Networks
Using Encounter Ages,” Proc. ACM MobiHoc, 2003.

C. Chen and Z. Chen, “Exploiting Contact Spatial Dependency for
Opportunistic Message Forwarding,” IEEE Trans. Mobile Comput-
ing, vol. 8, no. 10, pp. 1397-1411, Oct. 2009.

T. Spyropoulos, K. Psounis, and C.S. Raghavendra, “Performance
Analysis of Mobility-Assisted Routing,” Proc. MobiHoc, 2006.

M. Musolesi and C. Mascolo, “A Community Based Mobility
Model for Ad Hoc Network Research,” Proc. Second Int’l Workshop
Multi-Hop Ad Hoc Networks: From Theory To Reality (ACM
REALMAN), 2006.

S. Srinivasa and S. Krishnamurthy, “CREST: An Opportunistic
Forwarding Protocol Based on Conditional Residual Time,” Proc.
IEEE Comm. Soc. Sixth Ann. Conf. Sensor, Mesh, and Ad Hoc Comm.
and Networks (SECON), 2009.

P.U. Tournoux, J. Leguay, F. Benbadis, V. Conan, M. Amorim, and
J. Whitbeck, “The Accordion Phenomenon: Analysis, Character-
ization, and Impact on DTN Routing,” Proc. IEEE INFOCOM,
2009.

C. Liu and J. Wu, “Routing in a Cyclic Mobispace,” Proc. ACM
MobiHoc, 2008.

C. Liu and J. Wu, “An Optimal Probabilistically Forwarding
Protocol in Delay Tolerant Networks,” Proc. MobiHoc, 2009.
CRAWDAD Data Set, http://crawdad.cs.dartmouth.edu, 2012.
A European Union Funded Project in Situated and Autonomic
Comm., www haggleproject.org, 2012.

Eyuphan Bulut (M'08) received the BS, MS
degrees in computer engineering from Bilkent
University, Ankara, Turkey, and the PhD degree
in the Computer Science Department of Rensse-
laer Polytechnic Institute (RPI), Troy, NY, in
2005, 2007, and May 2011, respectively. Cur-
rently, he is with Mobile Internet Technology
Group (MITG) of Cisco Systems in Richardson,
TX. His interests include design of protocols for
: wireless sensor and ad hoc networks such as
routing protocols for delay-tolerant networks. He is a member of the IEEE.

Boleslaw K. Szymanski (M'82 F’'99) received
the PhD degree in computer science from
National Academy of Sciences in Warsaw,
Poland, in 1976. He is the claire and the Roland
Schmitt distinguished professor of computer
science and the director of the Social Cognitive
Academic Research Center led by RPI. He is an
author and coauthor of more than 300 publica-
tions and an editor of five books. He is also an
editor-in-chief of scientific programming. His
interests mclude parallel and distributed computing and networking.
He is a fellow of the IEEE and a member of the ACM for which he was a
national lecturer.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

