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Abstract —Modeling of the mobility patterns arising in computer networks requires a compact and faithful representation of the
mobility data collected from observations and measurements of the relevant network applications. This data can range from the
information on the mobility of the agents that are being monitored by a wireless network to mobility information of nodes in mobile
network applications. In this paper, we examine the use of probabilistic context free grammars as the modeling framework for
such data. We present a fast algorithm for deriving a concise probabilistic context free grammar from the given training data.
The algorithm uses an evaluation metric based on Bayesian formula for maximizing grammar a posteriori probability given the
training data. We describe the application of this algorithm in two mobility modeling domains: (i) recognizing mobility patterns of
monitored agents in different event datasets collected by sensor networks, and (ii) modeling and generating node movements in
mobile networks. We also discuss the model’s performance in simulations utilizing both synthetic and real world mobility traces.

Index Terms —PCFG, Computer Networks, Event Recognition, Mobility Modeling, Data Generation.
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1 INTRODUCTION

We define data modeling as the task of finding a
model of the given data that is compact and includes
enough features to construct samples synthetically
from it with the same statistical properties as the
input. Such a model has the following advantages:

• Saving disk-space or reducing data transmission
cost in constrained systems;

• Supporting recognition of data confirming to the
model, i.e., the ability to detect if a certain se-
quence of data belongs to the model or not;

• Predicting the data that will be produced by an
environment;

• Enabling generation of large amounts of data
that possess properties of the original data and
therefore can be utilized for testing purposes, etc.;

• Facilitating the manual inspection of data prop-
erties, thanks to a concise model description.

This paper focuses on modeling of the mobility data in
network applications by utilizing probabilistic context
free grammars (PCFGs). Informally, PCFGs are regu-
lar context free grammars with probabilities assigned
to nonterminal productions. Our motivation to use
this fairly complicated model is to be able to accu-
rately capture human mobility. Usually, humans move
according to a plan: sometimes simple, when the last
location defines possible next locations, or sometimes
more complex, when the next feasible locations de-
pend on variable depth past, or the times of passages.
Some plans may involve palindromic movements,
or recursive movements repeating with decreasing
probability etc. Some of the most sophisticated models
of the past, based on Markov Models, do not consider
variable length past. A simple example could be a
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parent dropping a child at nursery on the way to
work, and picking the child on the way back home.
Here, visits to a nursery are followed predictably by
a visit to home or work, depending what the two
previous locations were. PCFGs through use of pro-
duction rules encode in them the smallest needed but
still unbounded depth of past necessary to infer the
possible next locations. Even for methods that store
the variable length history from the training data,
the modeling capabilities are theoretically bounded
to mobility patterns which follow a regular language,
while, as presented in this work, this is not the case
for PCFGs. Finally, PCFG inference rules enable for
powerful generalizations, which encode patterns not
present in the data but constituting recursive closure
of them. An example that we discuss in the paper is
the circling over a parking lot in a search for a free
parking spot. All these and more examples motivate
our choice of PCFGs as a sophisticated mobility model
with capabilities far beyond others that is still com-
putationally feasible for meaningful input data.

This paper makes the following contributions:

• A customized inference method for PCFGs which
works directly on training data containing mobil-
ity patterns of interest. This algorithm improves
and simplifies the two previous inference meth-
ods proposed in [33] and [34].

• Two mobility-specific extensions on top of the
basic PCFG methodology. Time tokens are added
for temporal modeling, and the relative tokens
are introduced to facilitate generalization and to
lower the complexity of the grammar creation.

• Demonstration of PCFG-based mobility modeling
in two domains: (i) mobility pattern extraction in
sensor networks, and (ii) synthetic trace genera-
tion in mobile networks.

The rest of the paper is organized as follows. First, we
provide a review of previous work in mobility mod-
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eling. In the following section, we define probabilistic
context free grammars which form the foundation of
our model. Next, in Section 4, we describe our gram-
mar construction algorithm which is an improvement
over our two previous publications [1][2]. Section 5
presents our extensions to the basic PCFG definition
to increase PCFG usability in mobile computing and
networking. Some initial applications of this kind
were discussed in [1] and [2]. We demonstrate the
benefits of PCFG-based mobility modeling compared
to other models in terms of describing entity move-
ments in Section 6. In Section 7, we evaluate the PCFG
framework by demonstrating its use in two different
mobility modeling applications. Section 8 outlines our
conclusions.

2 PREVIOUS WORK

Mobility modeling is at the core of mobile computing
research. It is needed to generate test data (synthetic
trace generation), predict the future locations of nodes
for different applications (e.g. connectivity prediction,
data dissemination, target tracking etc.) and various
other purposes. Initial efforts in modeling mobil-
ity have focused on random movement of nodes:
e.g. random-waypoint [3], Manhattan [4] etc., even
though real domains often contain obstacles or preset
paths. Recent works that address these challenges
include [5], [6], [7], and [8]. In [5], anchor points are
used to describe how a mobile entity can move in
an environment with obstacles. [6] introduces Social
Manhattan Mobility Model where the original Manhat-
tan Mobility Model is supplemented with additional
social attraction points. Heterogeneous Community-
based Random Way-Point (HC-RWP) mobility model
is presented in [7]. It takes into account the locations
visited and the movement preferences of different mo-
bile nodes. A similar work is presented in [8] where
the authors extend the random-waypoint model is
enhanced with an Attractor Matrix that represents the
similarity of social attributes of nodes.

There have also been many attempts at creating
synthetic mobility patterns based on traditional ran-
dom movement mobility models, including methods
based on connectivity graphs [9], action profiles [10],
terrain and vehicle properties [11], group behavior
[12] and events [13].

While the methods based on modeling random-
ized movements are useful due to their mathemati-
cal tractability and simplicity of generating synthetic
traces, they suffer from their inability to closely repre-
sent realistic movements. To address this shortcoming,
a set of efforts have been published that work on real
world traces collected at various settings [14][15]. A
time-variant community mobility model is proposed
in [16]. The model utilizes both skewed location vis-
iting preferences and the periodical reappearance at
the given location to generate mobility traces. Urban
pedestrian flows (UPF) based mobility scenarios are

discussed in [17]. They generate mobility traces based
on pedestrian densities on streets as well as likely
paths that the pedestrians take. Both [16] and [17]
make use of real world traces to build their models
for generating synthetic traces. In [18], a unified re-
lationship matrix is used to describe social strengths
between people within the same community or in
different communities. This in turn determines the
colocation of people. Finally, [19] introduces a graph
based mobility model, in which the vertices of the
graph represent geographical locations and the edges
represent paths between those locations. Certain other
properties of movement, such as speed, are kept as
parameters within the vertices.

The works closest to ours utilize Markov Models. In
[20], transitions between areas are modeled by their
probabilities. Another work is given in [21], which
predicts AP associations of mobile users due to their
up to two previous states (i.e. AP associations), hence
utilizing a first or second order Markov chain. Markov
Model based mobility predictors are compared to LZ-
based [22] mobility predictors in [23] and the results
show that Markov Models perform better. Interest-
ingly, the paper also demonstrates that in practice,
a 2-level Markov Model predictor performs better
than a 3-level or 4-level predictor, hence increasing
the depth does not necessarily increase prediction
accuracy. Markov Models were extended by adding
time information through cumulative time distribu-
tion of transitions in [24]. A similar work by the same
research group presents Model T++ [25], a joint time-
space access point (AP) registration model. In this
work, the authors model distinct sets of APs as clus-
ters, whereas the probabilities of transitions between
APs in the same or different clusters are inferred from
the training data. Furthermore, the association length
of mobile entities to an AP before moving to another
one (transition) is modeled by a Weibull distribution.

3 PROBABILISTIC CONTEXT FREE GRAM-
MARS (PCFG)
A Probabilistic Context Free Grammar consists of a
five-tuple <Snt,St,R,Pr,Start> where:

• Snt is a list of nonterminal symbols (referred to
also as nonterminals);

• St is a list of terminal symbols;
• Start is the sentential nonterminal where each

sentence that the PCFG can produce generates
from;

• R is a list of production rules that define how ter-
minal and nonterminal symbols can be generated
from nonterminal symbols; or, equivalently, how
a string of terminal and nonterminal symbols can
be reduced to a nonterminal symbol;

• Pr is a list of probabilities, each assigned to a rule
to define the probability of using the associated
production rule versus any other rule defining
the same nonterminal.



The following simple PCFG1 outputs strings of the
form a b∗ with an average length of 1.75 symbols:

START → a B (0.6) | a (0.4)

B → b (0.8) | b B (0.2)

The probability of a sentence is defined by the product
of probabilities of productions applied at the branches
of the parsing tree of that sentence. In the above
grammar, the string a b b has the probability of being
produced equal to P(Start → a B) · P(B → b B) · P(B
→ b) = 0.6 · 0.2 · 0.2 · 0.8 = 0.0192.

Probabilistic Context Free Grammars have many
uses in speech recognition [26], natural language
processing [27], computational biology [28], sensor
networks [29] [30] etc.

4 GRAMMAR INFERENCE

There are two different tasks associated with the
PCFG inference problem: (i) setting the probabilities
of the already given rules, and (ii) constructing the
whole grammar from training data. For the first case,
the well known so-called inside-outside algorithm
[31][32] serves as the solution. For the second case,
two previous papers, which also form the basis for
our algorithm, are relevant. The first one, [33], uses
the two operators (merge and chunk) as well as initial
construction method which we used in our algorithm.
Although we utilize a similar Bayesian formulation to
evaluate the grammar, our approach uses a different
and simpler evaluation function and a novel, fast
method for computing the Bayesian metric taking
advantage of properties of merge and chunk oper-
ations. The second work, [34], follows an opposite
approach, and begins with a very general grammar.
Later, this grammar is made specific to the training
data with five operations (concatenation, classing, repe-
tition, smoothing and specialization).

In this section, we explain how our PCFG inference
scheme works step by step. We also define the oper-
ators utilized as well as the scoring scheme for the
goodness of the inferred grammar.

4.1 Operations Used for Grammar Construction

The grammar inference method that we apply to net-
work mobility data modeling uses the same steps that
were introduced by Stolcke [33]. Grammar construc-
tion consists of two phases: sample incorporation, and
application of operators.

Sample Incorporation: This stage constructs an
initial grammar from the training data (D = {d1, d2,
. . . }). Each sentence (dk) in training data is a string
of terminal symbols (symboli), which are introduced
into the grammar as nonterminals by productions of

1. In this paper, we start nonterminal names with an upper-
case and terminal names with a lower-case letter for presentational
purposes.

the form Ni → symboli with frequencies defined by
the training data. The goal is to separate terminal
productions from nonterminal productions.

The sentences are introduced to the initial grammar
by rules of the form START → Ns,1 ... Ns,j where
each nonterminal symbol in such a rule corresponds
to a single terminal from the training data appearing
in the training data sequence. The frequency of each
production is equal to the frequency of the right
sentence represented by the rule in the training data.
Later, the maximum likelihood estimate of any rule’s
probability can be calculated as:

P (rulei) =
frequency(rulei)

n
∑

k=1

frequency(rulek)
, (1)

where n is the number of rules in the definition of the
nonterminal to which that rulei belongs.

Operators: Two operators: merge and chunk [33],
are used to build the grammar step by step. Each
operator has a different effect on the grammar. We
explain how these two operators work and how they
affect the grammar by examples.

N1 t1  N2  t3  t4  N3 (20)
N2 t5 (34)
N3 t6  t7 (26)

N1 t1  N4  t3  t4  N4 (20)
N4 t5 (34)  |  t6  t7 (26)

G G’

Merge N2  and N3

Fig. 1. An Example of Merge Operation

Merge takes two nonterminals and reduces them
into a new nonterminal by combining their rules, as
well as the frequencies. See Figure 1 for an example,
where nonterminals N2 and N3 are first combined into
a new nonterminal N4, and then they are removed
by replacing all of their occurrences in the grammar
with N4. The parentheses in the figure contain the rule
frequencies.

Merge is a generalizing operator as the resulting
grammar accepts sentences that do not exist in the
training data. It can also create recursion if combining
two nonterminals X1 and X2 when the rule X1 →
. . . X2 exists. This is because in such case the new
nonterminal (let’s say Xnew) will contain the rule Xnew

→ . . . Xnew.
Two special cases might occur during merge, first

one when a nonterminal is merged with START
nonterminal. In such case, the new nonterminal is also
called START . The second case happens when one of
the nonterminals include the other one as a rule with a
single symbol. In this case that rule is simply removed
from the transformed grammar, since its replacement
would be meaningless. For example, if X1 includes
the rule X1 → X2 (while merging X1 and X2), then
the new nonterminal (X3) would contain the rule X3
→ X3, which is removed together with its frequency.

Chunk operator creates a new nonterminal with a
single rule which is a string composed of symbols in



A a F M b F M F b M F M (20) |

F f (102)
M m (110)

G

Chunk: " F M "

F M F M (2) |
a (15)

.

.

.

A a C b C F b M C (20) |

F f (102)
M m (110)

G’

C C (2) |
a (15)

.

.

.

C F M (64)

Fig. 2. An Example of Chunk Operation

the current grammar. Each occurrence of this string
is replaced with the new nonterminal. The frequency
of this nonterminal is equal to the total number of
replacements multiplied by the frequency of the rules
in which the replacement takes place. Hence this
frequency can be interpreted as the number of times
the corresponding pattern (that is, the single rule in
the new nonterminal) exists in the training data. In
Figure 2, the pattern F M defines the new nonterminal
C, and the frequency is set according to the number
of replacements of these patterns by C in all the rules.

4.2 Evaluation Metric for the PCFG

It is a crucial task to evaluate the goodness of the
grammar (G) that is constructed from the training
data (D). For this purpose we utilize the Bayesian a
posteriori probability (P (G|D)) [35]:

P (G|D) =
P (G)P (D|G)

P (D)
. (2)

The prior for the training data (P (D)) can be removed
from the above formulation; this way, the evalua-
tion metric becomes P (G)P (D|G). Here, P (G) is the
grammar a priori probability which, based on Occam’s
Razor principle, is inversely related to the grammar
description length (denoted as lG). From information
theory, we have the following equation for P (G) (α is
used as a coefficient to represent the space of possible
grammars, and does not affect grammar inference
process):

P (G) = α · 2−lG . (3)

P (D|G) stands for the likelihood of the training data,
given the grammar G and calculated by multiplying
the probabilities of all the sentences in D:

P (D|G) =

|D|
∏

i=1

p(di|G). (4)

We employ a simple constant bit length (ls for each
symbol) representation of the grammar to calculate lG.
For each nonterminal in the system, lG increases by
this length (corresponding to the nonterminal name).
For each rule in the nonterminal, lG increases by
ls + ((number of symbols in the rule) . ls), which
also accounts for the separation symbol. Different
representation schemes can be employed, but the
advantage of our representation is that, as shown
later, it limits the scope of search for the operands
to the chunk operation.

A x y (2) | y z (3) 
B y z (2) | n m (2)

G

Merge A and B

.

.

M x y (2) |
y z (5) | n m (2)

G’

.

.

P(D|G’) = [(2/9)/(2/5)] . [(5/9)/(3/5)] . [(5/9)/(2/4)] . [(2/9)/(2/4)] . P(D|G)
32 22

"x y" in A "y z" in A "y z" in B "n m" in B

Fig. 3. Calculation of P (D|G) for Merge Operation

Our goal via construction is to find a grammar that
is generalized however also keeping above a certain
a posteriori probability. As we have previously men-
tioned, the initial grammar we consider is created by
the sample incorporation stage. This grammar generates
only the sentences from the training data D, and
is the grammar that has the maximum likelihood for
the training data (P (D|G)). This grammar is however
too specific, and also of largest description length.
What we would like to achieve is to shorten this
grammar (by the chunk operator which will decrease
the size and increase a posteriori probability) and make
it more generalized (by the merge operator which
will decrease the likelihood and hence the a posteriori
probability). Of course the generality of the grammar
should be bounded, e.g. a grammar that accepts all
strings is overgeneralized and is not a good choice
for any application domain. In our work, we tried
to achieve the balance between the generality and
the specificity by keeping the a posteriori probability
always above or equal to the initial grammar’s (via
the sample incorporation stage) a posteriori probability.
The details of how we achieve this is given in Section
4.5. This choice is further justified by good results
from applications presented in Section 7.

4.3 Computation of the Evaluation Metric

In this section, we describe the methods that we use
to calculate the effect of the operators (Section 4.1) on
the a posteriori probability (Eq. 2).

4.3.1 Chunk
For any chunk operation, the change in P (G) is easy
to calculate via the modified grammar, furthermore
P (D|G) does not change. We demonstrate these prop-
erties on the example presented in Figure 2. When F
M is chosen as the chunk nonterminal, each sentence
production that uses a rule that is modified by this
chunk now goes to the new rule (consisting of F
M) in its parsing tree, but its probability does not
change since this new rule has probability of 1.0. As
an example, if a sentence uses A → F M F M (which
has 2/37 probability), it now uses A → C C and twice
C → F M which still has 2/37 probability in total.

4.3.2 Merge
Calculating P (G′) is again easy, given the modified
grammar G′. However, P (D|G′) changes whenever



merge operation takes place during modification of
the grammar from G to G′. A naive and inefficient
approach would be to re-parse the training data to
compute P (D|G′) anew. However, if we consider the
ratio P (D|G′)/P (D|G), probabilities of all unchanged
rules will cancel out, leaving only modified rules,
so we can look just at the change in the estimated
probabilities of the modified rules and how frequently
these rules are used.

As shown on example from Figure 3, the frequency
of a rule is used as a power to the change in the
rule’s probability. This applies to all rules that have
a probability change, in other nonterminals as well,
since a merge of two nonterminals can affect a third
nonterminal (e.g., rules becoming the same due to
replacements).

4.4 Search for the Best Merge and Chunk Argu-
ments

As discussed in Section 4.3.2, since a merge operator
can affect many nonterminals at once, all pairs of
nonterminals should be examined for merge, and the
pair that gives the highest a posteriori probability will
be chosen. Approximations of this method to lower
time complexity are discussed in Section 4.7.

Search for the best chunk argument rapidly be-
comes expensive with the growth of grammar size
if we check strings of all lengths as arguments. By
using the fixed bit length symbol representation, the
length of the strings that need to be considered can be
bounded from above by length of 5. Indeed, chunking
a string which occurs just once cannot shrink the
grammar, and at each replacement of a string of length
k with the chunk nonterminal, the grammar gets k−1
symbols shorter. However, the chunk nonterminal
itself adds k + 2 to the grammar length (k symbols +
nonterminal name + separation symbol). This should
be made up for by frequent replacements, and let’s
say there are n replacements of the chunk string in the
grammar with the chunk nonterminal. Then we must
have n(k−1) > k+2 for a chunk to be advantageous.
For any chunk, n ≥ 2, so in the worst case of a
chunk string occurring twice, the length of the string
must be at least 5 (k > 4). Of course if there are
no strings up to length 5 that occurs at least twice,
then there are no advantageous chunks. If there are
chunks longer than 5 and appears twice or more,
these can be discovered by further chunk argument
searches once the previous chunk operator is applied.
For instance, if the repeating string is longer than 8,
then its subsequent part will still be chunked, so by
using this method we lose only a little in terms of
lost chunk opportunities (potentially strings of length
5k + 1, 5k + 2, 5k + 3, for k = 1, 2, 3 ...).

Size difference between two grammars (G before
and G′ after chunk operation) is expressed by the
following formula:

lG − lG′ = ls[(n− 1)(k − 1)− 3]. (5)

4.5 Inference Algorithm

In most cases, merge operation decreases a posteriori
probability according to definition of P (G|D) given by
Eq. 2. When, during merge, we replace a production
with a small number of alternatives by the one with
a larger number of alternatives, the advantage of the
shorter grammar length usually does not compensate
for the decrease in P (D|G). In contrast, a chunk
operation always decreases the grammar length and
increases its a posteriori probability. Therefore, we ex-
pect that advantageous merge operations will be less
likely to be encountered than advantageous chunk
operations. Consequently, it is beneficial for a posteriori
probability of the grammar to execute as many chunk
operations as possible before applying any merge
operations. Hence, the general form of each of our
inference steps is chunk∗ merge, where we do all
the beneficial chunk operations before performing any
merge operation.

Algorithm 1 PCFG Inference Algorithm

posterior = β
while true do

if best chunk shrinks the grammar then
do chunk, posterior *= gain from chunk

else
if (posterior * gain from best merge) > β then

do merge, posterior *= gain from merge
else

output grammar and quit
end if

end if
end while

The outline for this scheme is given in Algorithm
1. As it can be seen, rather than trying to always find
advantageous merge and chunk operators, we try to
find a chunk∗ merge step that keeps the a posteriori
probability above the one that the initial grammar (via
the sample incorporation stage) had. If the algorithm is
carefully examined, we give the a posteriori probability
of β (a random starting value since we are interested
in relative a posteriori differences between grammars)
to the initial grammar, and we keep the grammar a
posteriori probability always above this value (hence in
some sense at least as good as the initial grammar). Each
chunk operation increases the a posteriori probability,
and even if the most advantageous merge operator
that is found tends to decrease the a posteriori proba-
bility, it is applied if the value is still above β, hence
allowing for generalization. This is thanks to the cush-
ion that is provided by the applied chunk operations.
Also, as presented in the next section, Algorithm 1
terminates due to the fact that each operator shrinks
the grammar, hence the while loop is repeated at most
D times (D being the size of training data). Please note
that different strategies can be applied, which may
allow for further generalization, or keep a posteriori
probability always at higher values. Particularly, in
our work, rather than utilizing only the final gram-
mar (i.e. the grammar when Algorithm 1 terminates),



we have also utilized the grammar which had the
highest a posteriori probability during the construction
process.

In our previous work [1], we prove that any chunk
operation neither eliminates feasible merge operations
(actually may add to them) nor changes their impact
on a posteriori probability of the grammar. We omitted
this proof here due to limited space, but interested
readers can refer to [1]. This proof furthermore jus-
tifies our chunk∗ merge choice, which is a distinct
diversion from [33], where the step can be seen as
chunk merge∗.

4.6 Complexity Analysis

In this section, we examine the complexity of the
inference algorithm. First of all, space complexity is
O(D) (we represent the size of the training data by
D as well). In sample incorporation stage, the initial
grammar size is D, and each operator later decreases
the size of the grammar, hence the space requirement
is always below or equal to D.

Based on our inference step (chunk∗ merge), our
algorithm tries to find best arguments for a chunk or
a merge operator. A straightforward implementation
of chunk argument search basically requires going
through the grammar lmax times, where lmax is the
longest chunk that we search for. If it is taken to be
the longest rule (which finds the optimal chunk), then
a chunk argument search takes O(lG · lmax · log(lG)),
since to count the frequencies of strings, we need
a hash table with a worst-case time complexity of
O(log(lG)) for inserting or finding (to update fre-
quency) a string. This furthermore can be taken as
O(l2G log(lG)) since it is safe to say lmax is in the order
of O(lG). Our improvement over [33] is to look in
rules for repeating strings of length of at most 5,
which finds all advantageous chunk operands, if they
exist. This significantly reduces2 the complexity of
the search for a chunk to O(lG log(lG)). After finding
the chunk string, the modification of the grammar
takes O(lG), hence the chunk operator takes an overall
O(lG log(lG)) time with lG = O(D) decreasing over
time.

Complexity of the merge operation is defined by
the number of steps necessary to find the best pair
of nonterminals to merge. Denoting the number of
nonterminals by nt, we notice that nt is defined by
the operations performed. It increases by one after
each chunk operation and decreases by one after
each merge operation. The total number of chunk
and merge operations cannot exceed D because each
operation decreases the length of the grammar by at

2. Although not used for implementation simplicity, the search
for a chunk that maximizes the benefit function f = [(n − 1)(k −
1)−3] can be done in O(D log(D)) by finding all non-overlapping
repeating chunks in the grammar via building a minimal aug-
mented suffix tree (MAST) [36]. Hence, with the same complexity of
O(D log(D)), we can achieve the largest reduction of the grammar
size with a single chunk operation.

least one from its initial length of at most D. Likewise,
for initial value of nt we have nt ≤ D + 1 so taking
into account that at most D merge operations can
be performed, we have in general that nt is O(D).
Considering all pairs of nonterminals, we match each
nonterminal with at most nt − 1 others, and since
each check takes lG = O(D) (by applying the merge
operator and finding the change in a posteriori prob-
ability), we can conclude that each merge operation
takes O(n2

t lG) = O(D3) and this is also the complexity
of each loop in Alg. 1.

Clearly, the number of loop repetitions in Alg. 1
cannot exceed the size of training data (D) because
every merge or chunk operation decreases grammar
size from its initial size of O(D) at the sample incor-
poration stage. Hence, the worst-case time complexity

can be expressed as TW (D) =
D
∑

i=1

O(D3) = O(D4),

where D denotes the total length of the training data
measured in number of symbols.

4.7 Constrained Search for the Merge Arguments

In this section, we will show our two approximations
on the merge search, which will lower time complex-
ity of the inference algorithm and are improvements
over [33]. First approximation we propose is to only
look at the descriptions of the nonterminals that are
being merged, hence ignoring the merge’s effect on
the rest of the grammar. Let’s examine the complexity
of this approach. Denoting by cj the number of clauses
on the right hand side of the definition of nonterminal
j, we have the obvious inequality

∑nt

j=1 cj < lG.
Considering all pairs of nonterminals for a merge, we
match each nonterminal with at most nt − 1 others.
In this case, since we only look at the right hand
sides of the nonterminals that are being merged (and
not the whole grammar as the previously shown
exact approach), the time complexity of checking all
nonterminal pairs (hence the merge search) takes
∑nt

j=1

(

cj +
∑nt

k=j+1 ck

)

<
∑nt

j=1 lG = ntlG. By follow-

ing this scheme, the merge operation is O(D2) (since
nt = O(D) and lG = O(D); furthermore, applying
the merge takes O(D)), and the inference algorithm
overall takes O(D3), due to at most D loops.

The second approximation builds on the first one
as follows. When checking the right hand sides of
only the merged nonterminals, if we ignore the rules
being deleted (due to being the same or being equal
to the new merge nonterminal), then choosing the
two nonterminals with the smallest total frequency
gives the merge with the highest advantage (or the
least disadvantage) on the a posteriori probability of
the grammar.

Suppose that we have two nonterminals X and Y
with rule frequencies x1→n and y1→m respectively (X
has n rules and Y has m rules). Let’s also denote the
sums of frequencies as

∑n
1 xi = SX and

∑m
1 yi = SY .

Then, the merge of these rules MX,Y has these rules



side by side, making the change in the a posteriori
probability as follows:

P (G|O)new = 2ls · P (G|O)prev ·
(

x1/[SX + SY ]

x1/SX

)x1

· ... ·

(

xn/[SX + SY ]

xn/SX

)xn

·

(

y1/[SX + SY ]

y1/SY

)y1

· ... ·

(

ym/[SX + SY ]

ym/SY

)ym

= 2ls · P (G|O)prev ·

(

SX

SX + SY

)SX

·

(

SY

SX + SY

)SY

.

We will next prove that to maximize
(

SX

SX+SY

)SX

·
(

SY

SX+SY

)SY

(and get the most advantageous a poste-

riori probability change), SX and SY must be chosen
as small as possible.

Theorem 1. Let, F (n,m) =
(

n
n+m

)n (
m

n+m

)m

,

then value of F(n,m) increases if either n or m decreases.

Proof: We prove that if m > 1, then F (n,m) <
F (n,m− 1). Let R(n,m) = F (n,m)/F (n,m− 1) then,

R(n,m) =

(

1−
1

n+m

)n+m−1
m

n+m

(

1 +
1

m− 1

)m−1

=

(

1−
1

n+m

)n
m

n+m

(

1 +
n

(n+m)(m− 1)

)m−1

.

But
(

1 + n
(n+m)(m−1)

)m−1

is equal to

1 +
n

n+m
+

m−1
∑

i=2

(

m− 1

i

)

ni

(n+m)i
1

(m− 1)i

and then,

m−1
∑

i=2

(

m− 1

i

)

ni

(n+m)i
1

(m− 1)i

<

m−1
∑

i=2

(m− 1)i

2i−1

ni

(n+m)i
1

(m− 1)i
<

n2

(n+m)2
.

Finally,

R(n,m) <

(

1−
1

n+m

)n (

1−
n

n+m

)

(

1 +
n

n+m
+

n2

(n+m)2

)

<

(

1−
n

n+m

)(

1 +
n

n+m

)

+
n2

(n+m)2
= 1.

It immediately follows that also F (n,m) < F (n−1,m)
by just repeating the argument above with n instead
of m decreased by 1.

This reduces the merge search problem to finding
two nonterminals with the smallest total rule frequen-
cies, which can be done in O(lG) steps, which is also
the complexity of merge operation.

In the previous section we had proven that a chunk
operation has complexity O(lG log(lG)). As chunk op-
erator is now the most significant step in the loop of
Algorithm 1 complexity-wise, the overall complexity
of the algorithm becomes (we showed in the previous
section that lG is O(D) and it decreases by at least 1

in chunk or merge operation) Tw(D) =
D
∑

i=1

D log(D) =

O(D2 log(D)).

4.8 Summary of Our Contributions over Previous
Grammar Inference Work

As aforementioned, our grammatical inference builds
on previous work [33][34] by adopting the operators
and the evaluation metric used previously. Although
we have presented the grammar inference already,
here we would like to detail our improvements:

• A simple representation of the grammar for
calculating description length. This limits the
search for the chunk operator arguments, reduc-
ing the time complexity of this operation from
O(D2 log(D)) to O(D log(D)).

• A new approach to grammar construction process
(i.e. keep a posteriori above the initial value) where
the basic inference step becomes chunk∗ merge.

• A detailed analysis of the time complexity of the
grammatical inference method.

• Two approximations to searching the merge op-
erator arguments, which decrease the time com-
plexity of the overall algorithm first from O(D4)
to O(D3) and then to O(D2 log(D)) (making now
chunking the more costly operator).

5 EXTENSIONS TO THE PCFG
In this section, we present our extensions to the
PCFGs to make them more efficient in mobility data
modeling. First, we introduce time tokens, which
represent the temporal properties of the application
domain. The second one is the addition of relative
tokens, which change the state of a modeled object
according to its last state.

5.1 Time Tokens

We present a special time terminal symbol, t, to
represent time that passes between occurrence of two
terminals, each of which may represent an action or a
location that the mobile node is in. In our definition,
t represents a preset time length, and the number
of subsequent t’s determines the amounts of time
represented by such a sequence. Suppose that we have
three actions A, B and C happening consecutively
in an application domain. Then ”A 24 B 42 C”
means that 24 time units pass between A and B, and
42 time units pass between B and C. If we take a
time token (t) to be 20 seconds, then this sequence can
be represented approximately by ”A t B t t C”.
Please note that there is a trade-off between accuracy



and complexity, since if we had taken for example
the time token to be 6 seconds, then the amount of
time passed in each case would be perfectly captured,
but this would increase the number of symbols in the
sentence, making inference processing more difficult.
Time tokens help with temporal property represen-
tation in a grammar, and is of vital importance in
mobility modeling.

5.2 Relative Tokens

Another extension we list here provides the state
difference in a sequence (e.g. movement for mobility)
and is called relative tokens. See Fig. 4 for an example.
By introducing U (up), D (down), R (right), and
UR (up-right) terminals, we can get rid of having
every location name as a separate terminal (only the
ones that a movement sequence starts from should
be terminals), which reduces the complexity of the

A

B

C

1 2 3 4 5 6 7 8 9

Movement Sequence: A2 R UR U R R D
Instead of: A2 A3 B4 C4 C5 C6 B6

Fig. 4. Relative Movement Token Example

inference process. Furthermore, we can more easily
detect frequent patterns. Again in Figure 4, it is easy
to define a zig-zag motion as UR DR (up-right and
down-right, i.e. րց). If we represent the exact lo-
cations in sentences, the corresponding motions will
not be frequent; while in the case of relative tokens, a
zig-zag subaction will be found as a chunk nontermi-
nal no matter what the exact locations of zig-zaging
objects are.

6 ADVANTAGE OF UTILIZING PCFGS OVER
PREVIOUS MODELS

In this section, we first describe how traditional mo-
bility models can be described via a PCFG. Then we
present our motivation for using PCFGs, and show its
benefits.

6.1 Expressing Other Mobility Models as PCFGs

There are many previous mobility models that can be
expressed in a PCFG-based description. For demon-
stration purposes, we will show transformations of
the random-waypoint model and a Markovian mobil-
ity model to a PCFG description.

6.1.1 Random-Waypoint to PCFG Transformation
A mobile node adhering to the random-waypoint
mobility model [3] moves in steps. In each step, it
chooses a random point in the mobility area and then
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Fig. 5. A Markovian Mobility Model and Its PCFG
Transformation

gets there with a random speed. For this type of
randomized movement, we are using two randomized
nonterminals: LocA and V[f,c]. LocA basically instructs
the grammar to generate a random location within the
area A, while V[f,c] instructs the grammar to generate
a random speed between the values floor (f ) and
the ceiling (c). The continuous location and speed
generation is performed iteratively. In this setting, the
random-waypoint grammar can be represented by the
following PCFG:

Start → LocA V[f,c] Start (p1) | LocA (p2)

LocA → Random Location with a Preset Distribution

V[f,c] → Random Speed with a Preset Distribution

Thus, at each Start production, the above grammar
decides on a new location and the corresponding
node moves there with the random speed generated
in the previous production. The first production of
the nonterminal determines the initial location of the
mobile node. The length of the mobility period for a
node is defined by the choice of probability p1 (since
p2 = 1 − p1), which determines how many times the
relocation is expected to occur.

6.1.2 Markovian Model to PCFG Transformation

Markov model based mobility models [20][21][23][24]
set a probability for the next location given the pre-
vious location(s) as well as the time that passes be-
tween two visits. We provide a similar mobility model
in Figure 5 which has three locations (presented as
states: locA, locB and locC) and movement (transition)
probabilities between those locations (e.g. pAB is the
probability of moving from location locA to locB)
with the distribution of time that passes for each
transition (e.g. tAB is the distribution of time that a
node takes to move from location locA to locB). In the
same figure, we provide the transformation of such
a Markovian mobility model to the PCFG represen-
tation. In this case, we create a new nonterminal for
each location that produces two terminals. The first
terminal represents the location. The second terminal
represents the time with the given distribution for
transition of the node from this location to the next.
The transition is represented as a triple of: terminal of
the start location, terminal representing the transition



time distribution, and terminal representing the end
location. The Start nonterminal production in this case
lists all possible initial locations for each node with
steady state probabilities (e.g. pA is the probability
of a node being at locA in steady state) assigned
to each alternative. Very similar transformations can
be made for any n-level Markovian mobility model
(in which the next location depends on previous n
locations). These include Sample Pattern Matching
(SPM) [37], Prediction by Partial Matching (PPM) [38],
and LZ-Based [22][39] approaches which in practice
may utilize a variable-length context.

6.2 Benefits of PCFG-based Modeling

We have demonstrated that the PCFGs are sufficient
to represent many previously proposed methods for
mobility modeling. Here we will present the benefits
of using PCFGs both in terms of capturing real world
traces, as well as in terms of expressing certain theo-
retically distinct mobility properties.

The first advantage of PCFGs is their ability to
model time dependencies of variable nature. Let’s
take a Markov model as an example. Depending
on the level it supports, a Markov model can only
capture the movement of a mobile node given the
previous n locations (n being the Markov model’s
level). PCFGs however are able to take as input a
set of variable length movement sequences and infer
the movement patterns (with temporal information)
within these sequences, no matter what the lengths of
the dependence on the previous location are. Efforts
in literature to deal with such shortcomings inher-
ent with Markov models have been Sample Pattern
Matching (SPM) [37], Prediction by Partial Matching
(PPM) [38], and LZ-Based [22][39] approaches which
were mentioned in the previous subsection as replica-
ble with a PCFG description. Although these methods
may work with variable-length history, the PCFG
construction methodology given in Sec. 4 provides
additional advantages. Due to multiple chunk opera-
tions (which find frequent movement patterns, hence
already helping the understanding of the mobility
properties of nodes) followed by merge operations,
the constructed PCFG can introduce generalizations
that provide further information on the mobility prop-
erties which may not even appear explicitly in the
training data (an example of this is given for the
parking lot simulation in Sec. 7.1.1). Furthermore,
these methodologies mainly deal with the task of
prediction, whereas our application of PCFGs in this
paper works with full length movement sequences,
hence it is a highly accurate generative model (our
comparison with a Markov model based synthetic
data generator is given in Sec. 7). For a predictive
model that looks up to k-length (where k is variable)
history, all that needs to be done is to feed movement
subsequences that are seen in the training data as
separate sentences, which we leave for future work.
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Fig. 6. A Palindromic Mobility Example and the PCFG
that Describes It

The last advantage of PCFG-based mobility mod-
eling that we would like to list here is its expres-
sive capabilities due to Automata Theory. PCFGs,
which are extended versions of Context Free Gram-
mars (via assigning probability values to rules) are
equivalent (in terms of describing languages) to Non-
deterministic Push-down Automata [40], which utilize
an unbounded stack. A Markov Model on the other
hand, is equivalent to a Finite Automaton, which can
only decribe Regular Languages. The variable-length
MM (or other similar aforementioned methods) still
build a static structure (the variable-length is due to
seeing those sequences in the training data), hence
they also can only describe mobility behaviors that
adhere to a Regular Language. In Figure 6, we give
a mobility example, which is actually very feasible
in a real-world application3. The nodes in this ex-
ample obey a palindromic movement constraint (i.e.
they come back to the point they started through
the same route). Examples of such movement include
rescue operations (i.e. a fire-fighter getting into a
building, and leaving it), or simply, the daily routines
of most of us (usually the same path is used to go
somewhere, and come back home). Such movement
can only be emulated by a PCFG (or a more ca-
pable Automata, such as a Turing Machine), since
the language that describes a palindrome is a non-
regular one4. Although such non-regular languages
are extremely hard to learn from training data, this
example clearly demonstrates the PCFG as a superior
modeling method due to its capabilities for modeling
mobility properties.

3. In the figure, the terminals starting with g represent grid-
locations, while the probabilities (e.g. p1,1) are application specific,
and depend both on the likelihood of visits to certain grid-locations,
or on the expected length of routes.)

4. Unlike palindrome language, there are non-regular languages
that cannot be described by a CFG, hence a PCFG as well.



7 EVALUATIONS

In this section, we demonstrate the usefulness of our
PCFG-based methodology in two mobility modeling
applications: (i) extracting mobility patterns of moni-
tored agents belonging to specific types of event data
collected by a sensor network, and (ii) synthetic trace
generation in mobile networks.

7.1 Modeling the Mobility Patterns of Monitored
Agents in Wireless Sensor Networks

Wireless sensor networks (WSN) are often deployed
to collect and process useful information about their
surroundings. In this section, we propose the use
of PCFG inference to model the mobility patterns
embedded in sensor network measurements when
these patterns are characteristic of a certain event. The
main purpose of this application is to demonstrate
that the PCFGs are important to recognize long-term
temporal movement patterns that the previous more
simplistic models are not able to infer. Furthermore,
such patterns can be utilized later to recognize move-
ments of a node and detect a potential event, which
can have applications in security, health-care and
domestic applications.

Sensor network applications have previously uti-
lized PCFG methodology in literature. PCFGs are
utilized to parse the actions of a user in order to
infer higher level behaviors in [29]. Furthermore the
authors present an assisted living application in [41].
These works do not present or utilize automated con-
struction of grammars, rather they use manually built
PCFGs. Mitomi et al. [42] provides a system to classify
a temae into types by using a two-level system. In
the first level, the movements of the host is detected
using a camera, and then this string of movements is
assigned to a temae class using a PCFG. [30] presents
a visual system to recognize human gestures and
to detect interactions in a parking lot environment.
Finally, in [43], complex activities are recognized in
a game of Blackjack. Robustness is achieved in this
work by considering insertion, substitution and deletion
errors in parsing.

7.1.1 Real world Scenario and Simulations

Following [1], we give an example of how PCFGs can
be used in a parking lot application where events
of parking at a spot can be detected. A grammar
can be trained by using many examples for different
possible events, taking each sentence to be the set of
movements that a car performs during parking.

A simulation based on such a real world scenario is
given below. The parking lot is a 20x20 grid where any
car can move one square at any time-unit. A car can
go forward and backwards along its current direction,
and it can change its direction by 45 degrees to the
right or to the left of the current one. 90 degree turns
are not allowed for a more realistic motion model.

We assume that one-square movement of any car lasts
one time unit. Parking (that is staying in parked state)
time is exponentially distributed with mean of 5000
of the same time units. The interarrival time of cars is
also exponentially distributed but with mean of 5 time
units. This does not congest the traffic in the parking
lot because a car cannot enter the parking lot before
the others park or leave it, and parking (or leaving)
takes time. Cars that are not allowed to enter, simply
queue up at the parking entrance.
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Fig. 7. Car trajectories for the event Enter and Park

Figure 7 shows the car trajectory associated withthe
parking event. Squares with the letter P in them
represent the parking spots. Due to limited space, we
only present our observation of the event “Entering
the parking lot, finding the closest available parking
spot and then parking there (Enter and Park)” in this
section; however, we direct the interested reader to
[1] for more events that have been examined (namely,
“Entering the parking lot, not being able to find
an empty spot and leaving (Enter and Leave)”, and
“Leaving the parking lot from a parking spot (Leave
Parking)”). Note that a car can circle around the lot
for a few times to find a parking spot before leaving.
In the simulations, we assumed that a car leaves the
parking lot after an unsuccessful circle with probabil-
ity of 60% (now the movement sequence belong to the
event Enter and Leave) and starts another circle around
the parking lot with probability of 40%. We have
run the training data generation program (for feeding
into grammar inference algorithm) with above given
parameters for 100000 time units. Size of training
data acquired for the event Enter and Park was 1468
sentences (25333 symbols).

Figure 8 gives the grammar inferred from the re-
sults of our simulations. Tokens (smallest action unit)
for the grammar are: en (enter), f (one or more forward
actions), tr (turn right 45 degrees), tl (turn left 45 degrees)
and s (stop). Clearly, movement tokens are relative
tokens described in Section 5.2. Furthermore, we
combine multiple forward movements into a single
terminal symbol (f ) to simplify processing, taking



advantage of the fact that a forward movement does
not change direction.
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Fig. 8. PCFG for event Enter and Park

The grammar in Figure 8 fully models the actions of
a car representing parking event shown in Figure 7. In
the listed grammar, the nonterminal M1 was created
by a merge operation, while those whose names begin
with C were created by chunk operations. Moreover,
the grammar for this event automatically discovered
that the activity is recursive, i.e. there may be several
circles around the parking lot before the spot is found.
This is achieved by repeating C3 in nonterminal M1
(see Figure 8). Careful examination reveals that non-
terminal C3 reduces to 4 · (f tl f tl) which completes
a circle around the parking lot (therefore the grammar
has recognized a circle as a sub-event). This illustrates
the fact that a grammar can produce more than the
training data contains (generalization) simply by cap-
turing the recursiveness and is an advantage over
previous mobility models (as also mentioned in Sec.
6.2), including the ones employing variable-length
context. Input to the inference algorithm was a set of
finite length strings while the output grammar pro-
duces strings of infinite length (however, probability
of generating the string gets smaller as it gets longer).
Furthermore, unnecessary generalizations (i.e. over-
generalization) that may harm the mobility capturing
capabilities of the PCFG are prevented through the
use of a posteriori probability.

7.2 Synthetic Trace Generation in Mobile Net-
works

In this section, we present our utilization of PCFG-
based mobility modeling to generate synthetic traces.
Once a PCFG is constructed from a real world trace,
a large set of sentences can be produced from it,
creating a synthetic mobility trace. Following the ini-
tial presentation in [2], we first discuss here how the

PCFG-based mobility model can be utilized to gener-
ate node movements, leading to a realistic synthetic
mobility data. Finally, we provide the evaluation of
how close the generated traces are to the original
trace, and the time spent in building a PCFG for
different aforementioned approximation schemes. We
compared our PCFG based synthetic data generation
to a 2-level Markov Model based generator presented
in [24]. This is not a memoryless approach and it
has been shown to work better than other methods
for mobility prediction. Hence, intuitively, it is also
a good model for capturing properties of the actual
traces. A PCFG may be seen as a Markov Model
with flexible length, since it models varying length
sequences. Furthermore, automated PCFG construc-
tion can achieve generalization, hence capturing more
movement patterns than a Markov Model (see Sec. 6.2
for further discussions).

7.2.1 Trace Generation via the PCFG-based Mobility
Model

As aforementioned, a PCFG is automatically con-
structed to capture spatial patterns of node move-
ments when mobility trace consists of terminal sym-
bols representing the locations at which a mobile node
can reside. The probabilities provided in the PCFG
give us the likelihood for movement patterns. Another
mobility information that can be represented by a
PCFG is the meeting sequences for mobile nodes.
In this case however, the terminal symbols represent
mobile nodes in the network. To model the temporal
properties of the mobile nodes, we utilize time tokens
described in Sec. 5.1. Furthermore, depending on the
complexity of the mobility modeling task (size of the
area, variety of the movements etc.), relative tokens
(see Sec. 5.2) can also be used.

Synthetic trace generation is basically creating a
random sentence from the constructed grammar, ac-
cording to the production probabilities. This sentence
gives both the temporal and spatial information for
the single mobile node, while also encapsulating the
probability of movements, via the production proba-
bilities in the grammar. Furthermore, once the gener-
ated sequence is completed (all the nonterminals in
the sentence are replaced with terminals), a new sen-
tence can be generated for the corresponding mobile
node. An important point to take into account here
is that the last location (symbol) of the movement
sequence (sentence) should be the same as the first
location (symbol) of the new movement sequence
(sentence), for continuity.

7.2.2 Evaluation of the Trace Generation Method

In this section, we are measuring similarity between
real world traces and the synthetic mobility traces
generated by the proposed method. We utilized two
datasets: the first one [44] contains bus-to-bus meeting
data collected in Amherst, MA (DieselNet - Spring



2006), while the second dataset contains the cab mo-
bility data collected in San Francisco, CA [45]. To train
the PCFG for [44], we have taken sentences to be the
set of buses met during one round of a bus on the
route. Each bus type in this dataset has a set route,
therefore we can artificially set a start and end point
(we chose those as the busiest grids in terms of the
number of meetings). Hence we created the synthetic
data as a set of rounds. For [45], we have divided the
area into a 25x25 grid, and taken each sentence to be
the set of locations (with time that passes between)
until a driver gets a customer into the taxi, or the trip
that is taken with the customer inside the taxi.

We used the following metrics in the comparison.
For DieselNet Dataset, we have collected what buses
are met by a bus on a given route right after a
certain sequence of meetings. For example, the error
rate Cons k gives the difference of a given model
from the actual trace in terms of the distributions
of which buses are met after a certain (k-1)-length
sequence of buses are met. Hence it can be taken
as the distribution difference of meeting sequences of
length k. To calculate the difference, we used the Eu-
clidean distance between the sequence distributions.
In other words, given that generated data have gi
percentage of a meeting sequence i to appear, and
the real world data have ri percentage, we calculate
∆Cons =

√

∑s

i=1(ri · (gi − ri))2 (where s is the num-
ber of meeting sequences of length k).

TABLE 1
Description of the Approximation Levels for Grammar

Construction Utilized in Our Evaluations

Chunk Search Merge Search
Appr. Level Appr. Level

Appr. Level 0 0 0
Appr. Level 1 1 0
Appr. Level 2 0 1
Appr. Level 3 1 1
Appr. Level 4 0 2
Appr. Level 5 1 2

Another metric is based on the inter-meeting times,
in which we calculate the time it takes for a bus to
meet another bus given it has met a certain sequence
of buses. Intern k denotes the time it takes for a
bus to meet a kth bus after meeting k-1 buses in a
sequence. We use the weighted Euclidean distance
between the average intermeeting times to calculate
errors. In other words, given that generated data
have an average intermeeting time tgi,s for bus bi
and the real world data have an average intermeet-
ing time tri,s for bus bi after meeting a certain bus
in the k-length sequence s, we calculate ∆Intern =
√

∑p

i=1

∑r

s=1(wi,s · (tgi,s − tri,s))2 (where p is the
number of buses, r is the number of meeting se-
quences that end with bus bi, and wi,s is the weight
of the sequence s ending with bus bi, calculated
according to the frequency of meeting sequences). For
the taxi mobility dataset, we use the same metrics,

however the buses are replaced with the location
grids, hence Cons 3 for the location distributions
means the error on the distribution of three sequences
of locations that a mobile node goes through.

In this section, aside from comparing the PCFG-
based mobility modeling to a Level-2 MM, we also
compare the approximation schemes that were intro-
duced in Section 4. Table 1 provides a description of
what we mean by Appr. Level k. In the table, level-0
in Merge Search means that all pairs of nonterminals
and their effect on all the rest of the grammar are
evaluated for merge operand selection. level-1 means
again the consideration of all nonterminal pairs, how-
ever only their effect on each other is evaluated.
level-2 in Merge Search applies our highest level of
approximation to finding merge nonterminal pairs,
as presented in Section 4.7, which chooses the two
nonterminals with smallest total rule frequencies. In
Chunk Search, the approximation level-0 means the
search for the most advantageous chunk operator,
and considering all lengths. Again, level-1 represents
our highest level of approximation to find the chunk
string, as described in Section 4.4, which looks for
strings of length up to 5.

The results for the DieselNet Dataset [44] are pre-
sented in Table 2. For the synthetic trace generation
purposes, we utilized the best grammar that was
obtained during the grammar construction process.
This means that during the construction, we also back
up the grammar with the highest a posteriori so far.
Best Grammar Construction Time metric in the table
represents the last time when this back up is done
(i.e. after this second, the grammar’s a posteriori has
gone below, but the grammar construction process
continues, as in Algorithm 1). Furthermore, we lim-
ited the number of consequent merge operations that
can be done (between 100 and 500), for reasons of
efficiency, since after a certain number of merges on
the grammar, there are no advantages that are gained
in terms of grammar goodness. As it can be observed
from Table 2, although the grammars take longer5 to
construct and generate synthetic data, they provide
traces that are much closer (up to 93%) to the original
trace (as shown by Intern and Cons metrics) than the
Markov model. The times in the table are consistent
with the O(D2 logD) time complexity for PCFGs, for
Appr. Level 5 (O(D4) for Level 0). The complexity
for building a Markov Model is only O(D), since
it requires a single pass over the training data to
calculate transition probabilities. Furthermore, as ex-
pected, our approximations significantly cut grammar
construction times. An improvement in the goodness
of the data generated is also observed, which is
counter-intuitive. This can be explained by the fact
that low-approximation schemes actually find merge

5. For our experiments, we implemented the algorithms in Perl,
and utilized a PC with 2.8GHz Intel i7 processor and 8GB of RAM,
running Ubuntu.



TABLE 2
Evaluation Results for DieselNet Dataset [44]

Appr. Appr. Appr. Appr. Appr. Appr. Markov Model
Level 0 Level 1 Level 2 Level 3 Level 4 Level 5 Level-2

Construction
Process Length (sec) 147453 11973 2864 3936 1894 154 0.108844

Best Grammar
Construction Time (sec) 9838 397 1604 76.62 1541 79.37 NA

Synthetic Trace
Generation Time (sec) 94.98 99.12 107.07 104.20 100.44 108.81 31.59

Cons/Intern 2 0.002/1.8 0.002/1.45 0.002/1.47 0.002/1.26 0.002/1.26 0.002/1.28 0.018/11.46
Cons/Intern 3 0.003/3.06 0.002/2.56 0.002/1.6 0.002/1.95 0.002/1.88 0.002/1.76 0.016/9.40
Cons/Intern 4 0.004/4.74 0.003/3.23 0.003/1.73 0.002/1.89 0.003/1.87 0.003/2 0.03/40.53
Cons/Intern 5 0.005/5.2 0.004/3.84 0.003/1.91 0.003/1.79 0.003/1.98 0.003/2 0.041/52.62
Cons/Intern 6 0.004/4.88 0.003/3.72 0.003/1.82 0.003/1.67 0.003/1.85 0.003/1.68 0.041/60.03

TABLE 3
Evaluation Results for the First 500 Routes in Taxi Mobility Dataset [45]

Appr. Appr. Appr. Appr. Appr. Appr. Markov Model
Level 0 Level 1 Level 2 Level 3 Level 4 Level 5 Level-2

Construction
Process Length (sec) 26947 7860 281.48 97.93 60.89 20.04 0.014

Best Grammar
Construction Time (sec) 9690 1685 63.73 6.53 48.67 8.34 NA

Synthetic Trace
Generation Time (sec) 3.52 3.85 3.87 5.44 3.71 4.79 0.92

Cons/Intern 2 0.008/46.45 0.019/64.12 0.005/8.81 0.005/8.92 0.005/12.37 0.004/10.39 0.099/58.45
Cons/Intern 3 0.015/82.76 0.033/123.07 0.006/14.95 0.007/11.98 0.007/16.98 0.007/16.55 0.043/74.74
Cons/Intern 4 0.017/121.61 0.024/136.58 0.007/14.5 0.008/13.01 0.008/16.25 0.008/14.51 0.058/220.83
Cons/Intern 5 0.018/151.48 0.021/150.01 0.008/12.04 0.01/10.53 0.009/12.15 0.009/14.14 0.071/269.92
Cons/Intern 6 0.02/128.6 0.022/92.24 0.009/12.17 0.011/10.89 0.011/11.24 0.011/14.54 0.08/290.57

operations that are good for grammar a posteriori,
however not beneficial for data generation, since it
generalizes the grammar. This generalization brings
movement sequences which are not seen in training
data, which is useful in certain cases (as in our parking
lot example), but not so much in others.

For the Taxi Mobility Dataset [45], we utilized
both the whole dataset and the first 500 routes in
it. The processed dataset consists of 460000 routes
(a route is a set of locations and movements, each
separated by a length of time), and it was impossible
for us to evaluate all approximation schemes (due
to construction time) on such a large set. However,
the ability to deal with large datasets comes with the
approximations, hence we compare the Appr. Level-5
of grammar construction to the Markov model using
the whole dataset. However, we utilize the first 500
routes to compare all 6 approximation schemes (Appr.
Level 0-5) and the Markov model. The results for
the first 500 routes in Taxi Mobility Dataset [45] are
shown in Table 3. Again, it can be observed that
our approximations provide a much much faster way
of grammar construction, while improving in terms
of synthetic data closeness (demonstrated by Intern
and Cons metrics). The reasons for this phenomena
are similar to the ones given for the UMASS Bus
Data results. Furthermore, as presented both for the
first 500 routes (Table 3), and for the whole dataset
(Table 4), the PCFG-based mobility modeling provide
mobility generation much closer (up to 95%) to the

TABLE 4
Evaluation Results for the Whole Taxi Mobility Dataset

[45]

Appr. Markov Model
Level 5 Level-2

Construction
Process Length (sec) 361983 11.74

Best Grammar
Construction Time (sec) 331092 NA

Synthetic Trace
Generation Time (sec) 1179 1.58

Cons/Intern 2 0.004/41.68 0.076/67.08
Cons/Intern 3 0.006/69.51 0.035/57.78
Cons/Intern 4 0.007/103.92 0.059/125.91
Cons/Intern 5 0.008/137.8 0.078/166.70
Cons/Intern 6 0.01/159.25 0.091/212.57

actual trace than the Markov model, although it takes
longer to construct the model and generate traces.

8 CONCLUSION

In this paper, we have focused on the usefulness of
PCFG framework for modeling mobility properties
of nodes in data collected by or generated by a
network. While previous publications also applied
the scheme to various domains, our approach differs
from them because we are using training data to
derive a precise grammar automatically. We presented
a fast probabilistic context free grammar inference
method for modeling mobility of nodes. We have also
discussed two application domains to demonstrate



the usefulness of our mobility modeling approach:
(i) extraction of mobility patterns belonging to event
data in sensor networks, and (ii) synthetic trace gen-
eration in mobile networks. We provided evaluations
based on simulations and real world traces for these
two domains. The results allow us to conclude that
PCFG modeling is a compact and efficient way of
representing network mobility data without losing
their properties. The created compact representation
can be used later to generate the data with the same
properties as the original one, as well as to provide
predictions for and insights into the applications from
which the mobility patterns originated.
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