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ABSTRACT

Locating missing or lost objects has always been a challenging task.

RFID technology and participatory sensing based approaches have

offered solutions but often their adoption was limited due to the

high hardware costs or low active participation problem. With

the introduction of iBeacon technology and smartphones having

BLE capability, tracking such objects has become easier and cost-

effective. Objects of care are labeled by attaching to them affordable

iBeacon tags, and smartphones in the proximity of these tags sense

their presence opportunistically through the applications running

in the background. In this paper, we study the tracking of lost

objects through the collaboration among users. We analyze the

visit patterns of users at the same locations and develop a metric

that quantifies for each user the potential benefit of others in terms

of their capability of finding that user’s lost objects. Depending

on the predicted benefits, each user’s preference list of other users

is formed and then utilized to identify the space buddies who can

best track her lost items. The identification is based on the adaption

of the solution to the roommate matching problem. We apply the

proposed system to two different location based social network

datasets and show its effectiveness in different settings.
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1 INTRODUCTION

The statistics reported by different reports [24, 31] show that an

average person spends 15-20 minutes per day (i.e., around a year

in his life) to search for his misplaced or lost items. On average

nine items per week are misplaced and the most frequent ones are

mobile phones, car/house keys and sunglasses. Several books [26]

have been written on this topic and suggestions made to mitigate

the impact of such forgetfulness in our lives. Moreover, when we

lose things outside, it is much harder and takes longer to locate

them as the search area is much larger. With the advancing Internet

of Things (IoT) era and widespread proliferation of smartphones,

several solutions have been provided to take the advantage of en-

hancing technology. Smartphones that are capable of Bluetooth

Low Energy (BLE) have been recently used to locate items to which

iBeacon tags are attached. Several commercial products have been

recently released [12, 30] to ease the process of locating the missing

items.

These iBecaon tags are wirelessly connected to the smartphones

through BLE and they communicate with the device and maintain

the information about the presence of the items with tags attached

in vicinity. However, the benefit of such tags is lost when they are

out of the range of smartphones (e.g., lost). In order to enhance the

benefit, a social network of users with similar application running

on their device can be formed to enable collaborative localization

of lost items. When an item is lost, any nearby smartphone in this

group of users can sense the iBeacon tag attached to that item in a

transparent way and communicate to the server and eventually to

the user who owns it. The geographical coordinates of the smart-

phone detecting the iBeacon is then utilized to locate the lost item.

There could be some concerns about privacy management and bat-

tery utilization due to the sensing and providing the user location to

the server, but this is a collaborative effort and users can potentially

mutually benefit from it. Moreover, commercial producers of such

systems do not release the list of such users in contrast to other

applications with different purposes (e.g., FireChat [1]).

Such a collaborative sensing system could be utilized for multi-

ple purposes including public safety and emergency preparedness

(e.g., child protection and tracking [29]), a national priority issue.

Clearly, the benefit of such systems will be enhanced as the number

of users participating in the system increases (e.g., campus). For

social efforts like finding missing children, there could be enough

motivation for users to voluntarily participate in the system and

ignore the violation of privacy to some extend. However, when

there is no clear incentives and privacy protection methods (e.g.,

hiding the location information of users), and the user input is not

automatically received by the system (i.e., users need to manually
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provide the data), it could be hard and risky to practically deploy

such systems. Thus, adaptive systems that can perform with mini-

mal user interaction and incentive requirements could avoid the

potential privacy violation risks and direct user participation.

In this paper, we study the sensing of lost objects (with iBeacon

tags) through the best space buddies of users rather than all users in

the network having a smartphone with BLE capability. Our contri-

butions are (i) analysing user location visit patterns and developing

a metric that can quantify the potential benefits of users in terms

of their enhanced ability to find their belongings, (ii) identifying

for each user the best space buddy that can track its lost items by

adapting the roommate matching algorithm based on the proposed

metric, and (iii) performing simulations on two different location

based social network dataset to show the algorithm effectiveness

with different set of parameters.

The rest of the paper is organized as follows. We discuss the

related work in Section 2. In Section 3, we first define a metric

to analyze the relation between the visit patterns of nodes at the

same location, then we discuss the proposed matching algorithm to

find the best space buddy of each user to find their lost belongings.

In Section 4, we describe the simulation setting and evaluation of

proposed system using real location based social network traces.

Finally, we offer conclusions in Section 5.

2 RELATEDWORK

Sensing through the mobile devices possessed by people has at-

tracted a lot of interest recently. It has been studied under different

names including people centric-sensing [10], participatory sensing

and mobile crowd sensing [15]. Smartphones which are equipped

with multiple sensors have offered tremendous opportunity for

sensing the surrounding without the need for the dedicated devices

or supporting their mobility.

Bluetooth Low Energy (BLE) or Bluetooth 4.0 is designed to

operate at low data rates with low power consumption and low

manufacturing costs. Such a design offered high (i.e., 60-80%) power

savings for devices, and let them operate using a coin cell battery for

several months to years without replacement [3]. BLE has become

more popular after Apple devised the iBeacon standard protocol in

2013 [5]. This also paved the way for other device manufacturers

to support BLE.

Beacons are BLE devices with a main purpose of advertising itself

to be discovered by other BLE capable devices (so providing location

based services to BLE devices). As the format of advertisement

packets allows, sometimes additional data available on the device

is shared so that nearby devices can collect that data (e.g., sensed

information) without making a connection. The advertisements are

repeated after constant intervals (e.g., Apple’s iBeacon standard

calls for an optimal broadcast interval of 100 ms) to let the nearby

devices easily detect the beacon.

Recently, the popularity of beacons have been increasing and

several applications exploiting iBeacon and BLE functionalities

in different contexts have been developed. These include indoor

location positioning [22, 28] and navigation [11, 33]), proximity

marketing [4], ticketing [14] and possession tracking or localizing

missing items. In indoor positioning, as BLE allows direct signal

�������

������

	
 		�

��	



�
 �� ��

��	����


	�

��	���



��	����


���

 ����


��	�
 ��	�


����


Figure 1: Sample visit patterns of two users

strength measurement, an RSSI (Received Signal Strength Indica-

tion) value can further be utilized to find the distance of the sensed

objects and to improve accuracy of item’s predicted location. For

example, in [25], authors propose a search capability for physi-

cal objects inside furniture at home or office. Tags are used to

make objects searchable while all other localization components

are integrated into furniture.

Beacons can offer more convenient solutions compared to the

other technologies like QR codes and NFC, as they require the least

interactions with users. Compared to RFID based localization [18,

27], beacons also offer advantage of being easily detected by the

most of the smartphones.

In an iBeacon based possession or lost item tracking system

with a collaborative approach, the smartphone application creates

a social network of users and let them identify the coordinates

of the beacons (attached to lost item) from the smartphone that

detects it. By this way, even though the users are not in the range

of their possessions, they could be sensed in a transparent fashion

(without active involvement of other users in the network). In [23],

a prototype is implemented to let the users identify and localize their

personal objects using beacons. There are also commercial devices

developed for specific purposes such as child and pet tracking [12].

3 PROPOSED SYSTEM AND SOLUTION

In this section, we present the details of the proposed system. First,

we introduce a metric to quantify the relation between the visits

of two different users at a region. Then, we study the assignment

of users to each other through a stable matching algorithm using

their preference lists.

3.1 Metric definition

We define a visit of a location by a user with a visit event a =
(ts , te , locid ) as a 3-tuple in which ts and te denote the start and
end times of the visit and locid denotes the id of the location visited.
The historical visits of a user at a specific location could be defined

as the set of visit events, where the previous event’s end time is

always smaller than the start of the next event.

Va = {a1,a2,a3, . . . ,an }where
ai .te < a(i+1) .ts ,∀i ∈ {1..n}

A mobile device can detect the iBeacon attached item within

certain proximity. In order to take this into account, we use a

probability factor p, which denotes the probability that a user’s
mobile device can detect the lost item in the same location at the

current time unit.

To quantify the benefit of a user B to another user A in terms of

finding his/her lost items, we propose a metric called Social Tracking
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Distance (STD), inspired by the metrics [7, 8] used in analyzing

contact patterns in DTNs. Consider the sample visit history of

two nodes A and B in a location shown in Fig. 1. The upper part

of the figure shows the visits of user A and the lower one shows

the visits of node B. The ith visit of user A and B is labeled as ai
and bi , respectively. The durations of visits are denoted with δ (.)
and the time passed since the last visit of user A to the user B’s

ith visit is denoted as Δ(a,bi ). Assume that there are n visits of
node A and node B in a specific area. Moreover, without loss of

generality, assume that b1.ts > a1.te and bn .te < an .ts . We define
the STD (A,B ) metric as the probabilistic delay that user B’s device
will sense the lost item of user A and denote by:

STD (A,B ) =

n∑
x=1

d(as ,bx )

p (δ (bx ))β (bx )
(1)

For each visit of user B, we find the last visit of node A before B’s

that visit and calculate the time difference for each possibility of

losing and finding times. More specifically, here, d(as ,bx ) is the
average delay of finding an item that might have been lost anytime

during A’s last visit (before B’s xth visit) and found anytime during

B’s xth visit. Here, s is found using:

s = argmax
i
{ai .te < bx .ts }

In the formula, p (δ (bx ))β (bx ) denotes the probability of finding an

item during B’s xth visit. For a visit of duration d , the probability
that the item will be found by the end of duration is:

p (d ) = 1 − (1 − p)d

However, if there are multiple visits from user B to the area before

user A visits the area, the probability that the items will be sensed

in subsequent visits depends on the probability that the item will

not be detected in previous visits (denoted by β (bx )):

β (bx ) =
∏
∀k<x

(1 − p)δ (bk ) = (1 − p)
∑
∀k<x δ (bk )

Then,

d(as ,bx ) = β (bx )

δ (as )∑
i=1

δ (bx )∑
j=1

(Δ(a,bx ) + i + j )px (j )

where, px (j ) = p (1 − p) j−1

= β (bx )

(
Δ(a,bx ) +

δ (as )

2
+ 1/p −

δ (bx )

p (δ (bx ))
+ δ (bx )

)

We assume that when user A loses something during a visit, she

will not find it in the same visit but will definitely be able to find

it in her next meeting. Thus, we exclude the possibility of item’s

detection by the same user A in the same time frame it is lost and

consider the distance of node B’s visits with only last visit of userA.
UserA can lose the item at any time point during her visit (in range

(0, δ (ai )]) and user B’s device can sense the lost item at any time

during her visit (in range (0, δ (bi )]). Thus, the delay for sensing and

finding the lost item could be in range (Δ(a,bi ), Δ(a,bi ) + δ (ai ) +
δ (bi )]. However, the probability of each will be different, and can
be calculated based on the duration of B’s visit (j) in the location
using px (j ) = p (1 − p) j−1.

If user A visits the location multiple times before user B visits,
there will be no benefit of user B in sensing the lost items between

two consecutive user A visits without having a user B visit (as user

A will definitely find the lost item before B per our assumption).
Note that upper part of the fraction in Eq. 1 is the average delay

in the specific case of losing an item at visit as and finding it in visit
bx . The lower part is the probability that the item will be found in

this specific case. We are dividing the delay by probability to get

STD metric so that expected probabilistic delay in such visits could

be retrieved (which indeed shows the real benefit of user B to A in

that case).

Once the probabilistic delays are calculated, we define a weighted

satisfaction value for the efforts of user B in finding user A’s lost
items in any of the locations A visits. Note that not only the fre-

quency of location visits of a user is significant but also the duration

of the visit, and the distribution of all visits within a time frame

has impact. Also, there may not be a visit by user B between two
consecutive visits by A or visits of B may not continue even if A
continues visiting the location. Moreover, at different locations, the

STD value may be different for the same pair of nodes. To take into

account such differences, the satisfaction value is averaged over all

regions (r ).

γ(A,B ) =
∑
∀r

(
w (r )

(
Cov (A,B)r
STD (A,B )

))

where,w (r ) is the weight of region r (i.e., total visit duration within
all visits in all regions) and

Cov (A,B)r =

∑n
x=1 δ (ak )I [x]∑n
x=1 δ (ak )

where,

I [x] =
⎧⎪⎨
⎪
⎩

1, if x = argmaxi {ai .te < bj .ts }∃j
0, otherwise

3.2 Matching to the Best Spatial Buddies

In order to find out the lost items in an iBeacon based tracker

system, we study the matching of people in a community that can

help each other the most. Assume that there are N nodes in a

network and R possible locations they visit. While these locations

could be considered as all the possible locations with well-defined

boundaries that users visit, they can simply be considered as the

mostly visited locations or the places with some likelihood that

users lose their items there. Each node visits all or some of these

locations with different frequencies and visit durations.

Once each node (e.g., A) calculates total satisfaction (γ(A,B ) )
from every other node (e.g., B) using the visit history, it forms a
preference list of other users in terms of their support to track

and locate his lost items. After the preference list of each node

is determined, in order to maximize the total benefit in the entire

network of people, they need to be assigned to the trackers as much

as possible from the top of their lists. In order to solve such a

matching, we formulate the problem as stable roommate matching

problem (SRP) in which the matching is stable if there are no two

nodes which are not roommates and which both prefer each other

to their assigned roommate under the current matching. Note that

this problem is distinct from the stable-marriage problem as the

stable-roommates problem allows matches between any two nodes,
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not just between two disjoint classes such as men and women [2].

Note that since the matchings can be asymmetric, N does not need

to be even. To solve the problem and guarantee a stable matching,

if any, we adapt the Irving’s algorithm [20] to our problem.

Algorithm 1 Find-the-Phase1-Reduced-List

Input: N , preferenceList [ ][ ] pL
Output: Reduced list of preferences

1: for each node i in N do

2: proposalAccepted[i]← 0

3: nextToAsk[i] = 1

4: end for

5: while there exists a user whose proposal not accepted do

6: i← smallest i whose proposal not accepted

7: c = pL[i][nextToAsk[i]]

8: if accepted[c] == nil then

9: accepted[c] = i

10: proposalAccepted[i] = 1

11: else if order(pL[c], i) < order(pL[c],accepted[c]) then

12: proposalAccepted[accepted[c]] = 0

13: rejected[c][accepted[c]] = 1

14: nextToAsk[accepted[c]]++

15: accepted[c] = i

16: proposalAccepted[i] = 1

17: else

18: rejected[c][i] = 1

19: nextToAsk[i]++

20: end if

21: end while

22: for each node i in N do

23: proposer = accepted[i]

24: for each j with order(pL[i], proposer) < order(pL[i], j) do
25: rejected[i][j] = 1

26: rejected[j][i] = 1

27: end for

28: end for

Algorithm 1 shows the steps of the first phase in which a reduced

preference list is obtained. Until there is no user whose proposal

is not accepted by someone, we process the next user (i) with the
smallest index. The user i proposes to next user (c) in its preference
list to which it has not proposed yet (Line 7). If that user has not

been proposed by someone else before, it immediately accepts this

proposal (Lines 8-10). If it accepted a previous proposal by some

other user (i.e., accepted[c]), user c checks if it prefers the new user

i more than the node with which it is currently matched. If that is
the case, it rejects the previous proposer and accepts this user i’s
proposal. Previous proposer then needs to propose the next user in

its list (Lines 11-16). If the old proposer is preferred over the new

one, user c rejects the proposal of user i , then user i needs to propose
to the next one in its list (Lines 17-20). This process stops when all

users has some user that accepted its proposal. Then, the preference

lists are reduced by deleting the not possible matchings. To this

end, each user rejects the other users whose order come later in its

preference list than the user whose proposal it is holding. Similarly,

those rejected users in turn reject the node that rejected them, so

that no matching will be possible between the nodes involved (Line

22-28). By the end of this phase, the preference lists of users are

reduced. If there is a situation in which each user has only one

remaining user in their preference lists, then the stable matching

is reached. If there are more than one users at least in one of the

user’s preference list, phase 2 algorithm should be run.

Algorithm 2 Find-the-Phase2-Matchings

Input: N , reducedPreferenceList [ ][ ] rpL
Output: Stable single matching or not existing

1: while ∃i |rpL[i]| > 1 & ∀i |rpL[i]| >= 1 do
2: Find a cycle C =<pi ,qi ,pi+1,qi+1, . . .qs−1,ps> s.t.

pi = a user with more than one not rejected user in RPL
qi = second user in rpL[pi ]
pi+l = last user in rpL[qi ]
ps = pi

3: Reduce the cycle

∀i ∈ C rejected[qi ][pi+1]=1
4: end while

5: if ∀i there is only one user remained in rpL[i] then
6: return matchingM

7: else

8: No matching found

9: end if

Algorithm 2 shows the steps of the second phase of the Irving’s

algorithm. In this phase, the preference lists are further reduced

to find a stable matching. All-or-nothing cycles are used to re-

duce the lists. Such cycles are defined as the sequence of users

<pi ,qi ,pi+1,qi+1, . . .qs−1,ps = pi> such that qi is the second user
in the preference list of user pi and pi+1 is the last user in qi ’s
preference list. The cycle ends when the last discovered ps becomes
the same with the starting point, pi . In order to find such a cy-
cle sequence, the algorithm starts with the user who has at least

two users (not rejected) in reduced preference list. Once the cycle

is found, all qi users occurring in the sequence rejects user pi+1.
There could be multiple such cycle removal process. At the end,

the algorithm stops either when list of users includes only one user

(i.e. stable matching) or when the preference list becomes empty

(i.e., there is no matching found).

Note that by assigning each user to another single user with

highest chance of finding his lost items, our goal is to minimize

the user involvement and to avoid the potential privacy violation

risks. As only one best spatial buddy is used for that purpose,

the benefit of a single such user will be limited compared to the

cumulative collaborative benefit of all users in the network. The

matching algorithm could be extended with more than one user

assignment to each other so that a good number of users could

be found to achieve as high likelihood of finding the lost items as

the likelihood that all users can provide. In that case, extensions

of roommate matching problem with room sizes more than two

could be considered. However, even the triple room extension [21]

of the problem is NP-complete. Thus, looking for heuristics based

algorithms will be the subject of our future work.
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Figure 2: Matching goodness with different maximum visit

durations.
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Figure 3: Percentage of mutual matchings with different

maximum visit durations.

4 SIMULATION RESULTS

In this section, we present the results of simulations performed on

the proposed system. We used two different online location-based

social network datasets to capture the user visits to different loca-

tions. Specifically, we used the Gowalla and Brightkite datasets [13]

and considered the check-ins as the start of the location visits. As

there were no check-outs available for the locations, we consid-

ered randomly decided durations from a visit duration range. The

datasets provide location ids in addition to the coordinates of the

locations, thus we determined the visits from different users using

these information.

In order to restrict us to a geographical area, we focused on

the check-ins that are reported in San Francisco area. We first

calculated the relations and probabilistic tracking distance between

all pairs of users. Then, we found the preference lists of nodes, and

the assignment of each node to another node using the Algorithm 1

and Algorithm 2.

Table 1 shows the comparison of two datasets. As there are many

users with smaller number of visits and only distributed to few

number of areas, we used only the top users with more instances

of data. 294 and 140 users are used in these dataset, respectively.

First, we look at the goodness of matchings. We define the good-

ness of a matching assignment as the ratio of obtained benefit (i.e.

satisfaction) with that assignment to the maximum possible benefit

that would be achieved if the users could choose first nodes in their

preference lists. Figure 2 shows the change of matching goodness
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Figure 4: Matching goodness with different probabilities.
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Figure 5: Percentage of mutual matchings with different

probabilities.

Gowalla Brightkite

Total user count 6187 3331

Top user count matched 294 140

Table 1: Comparison of two datasets.

with different visit durations. In x-axis of the graph, we show the

upper limit of the range that we use to decide the visit durations

of each user. Each visit duration is randomly determined in range

[0,M], andM is value shown in x-axis. As the figure shows, match-

ing goodness starts to decrease after some M value in Gowalla,

while it increases in Brightkite. Figure 3 shows the impact of maxi-

mum visit duration on percentage of mutual matchings among all

matchings. In terms of reducing potential privacy violation, high

percentage of mutual matchings are preferred compared to asym-

metric matchings. As the figure shows, the percentage of mutual

matchings is pretty stable within the given range of durations for

the Gowalla dataset. There is some changes for Brightkite dataset

during middleM values. We will investigate the factors that affects

this in detail in our future work.

Next, we look at the impact of probability, p, used for detection
of items. Figure 4 shows the change of goodness with different

p values. As p increases the impact on goodness is different on
two datasets. It slightly decreases in Gowalla, and increases in

Brightkite. Similarly, in Figure 5, we show the change in percentage

of mutual matchings with different p values. In Brightkite results,
we see some increase as p increases, but not a remarkable change
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is seen in Gowalla. In our future work, we will analyze the root

causes of different impacts of probability and duration on different

datasets.

5 CONCLUSION

In this paper, we study the tracking of lost objects through the

collaboration among users. We match each user to others, whom

we termed space buddies, in a way that may not be symmetric but

which maximizes benefits from the matching. Analyzing the visit

patterns of users at the same location, we introduce a metric called

Social Tracker Distance (STD) that quantifies the benefit of potential

space buddies in terms of their capability of finding the user’s lost

objects. Once each user determines the preference list of other users

based on this metric, the roommate matching problem is used to

find the space buddies of each user. In simulations, we applied the

proposed matching to two different location based social network

datasets. Based on the changes on visit duration and probability p,
we look at the goodness of matchings and the percentage of mutual

relationships in all matchings, which are more desired in terms of

reducing privacy violation than asymmetric matchings.

The proposed idea of matching the users with their space buddies

helps minimizing the risks of privacy violations as only two users

interact with each other and moreover share their locations. How-

ever, in order to increase the benefit and get close to the aggregate

benefit from all users multiple space buddies could be selected. In

our future work, we will look at this and the impact of other pa-

rameters in the simulation setting. We will also integrate mobility

pattern prediction algorithms [6, 16, 17] to detect the space buddies

based on nodes’ future movements. Moreover, we will consider

the network community structure [9, 32] and different frequency

of demands from users [19] to find their lost items to optimize the

network level performance of finding lost items.
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