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Abstract—WiFi offloading has been exploited as a quick and
viable solution to decrease the burden on cellular networks.
In this paper, we study the problem of deploying new WiFi
access points (AP) in a city-wide area for offloading purposes.
Different than previous work which look at the problem only from
operator’s perspective and targets the maximization of offloaded
traffic volume, we approach the problem by integrating the user
perspective as well. We propose a new AP deployment scheme
that aims to increase average individual user satisfaction while still
achieving high offloaded total data traffic volume from all users.
As the simulation results demonstrate, the proposed approach can
achieve more user level satisfaction compared to other algorithms
that only target offloaded traffic maximization while keeping
operator’s benefit from offloading close to others.

I. INTRODUCTION

WiFi offloading has attracted a great deal of attention from
academia and industry as it is considered an immediate remedy
for taming the mobile data explosion. Several sub-problems
emerged with this solution have been studied including the
deployment of new WiFi access points [1], [2], [3], [4],
managing the seamless control of WiFi and LTE handovers [14]
and recruitment of third-party WiFi access points [19], [20],
[16].

In this paper, we study the problem of selecting WiFi access
point locations in the context of mobile data offloading. Recent
work has mainly proposed solutions considering the sole goal
of achieving the highest volume of data offloaded from cellular
space. However, these solutions look at the problem only from
operator’s point of view.

Our objective in this paper is to approach the problem
from users’ perspective as well and find the offloading setting
in which user satisfaction is prioritized while also trying to
maximize the total volume of traffic offloaded. To this end,
we propose a new WiFi access point deployment scheme in
which offloading of each individual user’s traffic is treated with
equal significance. Moreover, as many studies [8], [9], [10] on
the energy consumption of network interfaces (WiFi, 3G) have
shown in different platforms and devices, cellular access is
more costly than WiFi access in terms of the energy spent
per byte. For example, it is measured in [9] that the cost of
downloading with cellular is twice and uploading is four times
expensive than it is with WiFi. Consequently, in the proposed

scheme, we also consider the status of users’ batteries in the
selection process.

The rest of the paper is organized as follows. We first
discuss our motivation with some statistics from real network
datasets in Section II. In Section III, we define the problem
and provide the details of proposed approach. In Section IV,
we provide the simulation setting and discuss the evaluation of
proposed system using real network traces. Finally, we close
by discussing the related work in Section V and conclusion in
Section VI.

II. MOTIVATION

Our study is motivated by two observations:
Top region difference: For a mobile operator, the benefit

of offloading will be maximized if the WiFi access points
are deployed in the regions with maximum aggregate mobile
traffic density. However, the regions showing high aggregate
mobile data traffic could be different than the highest data
usage regions of each individual. This can result in less satisfied
users since they are not provided the opportunity of offloading
their traffic through WiFi access points (AP).

Battery level diversity: As the per byte cost of data down-
loading and uploading through cellular connection is more
expensive than the cost of the same through WiFi access
points, the users with lower battery charge level could be more
satisfied if they are provided with WiFi offloading opportunity.

Figure 1 shows some related statistics from real mobile
network traces. In Figure 1.a, we compare the most popular
regions of all users and individual users in a location-based
social network dataset (Gowalla [17]). To get the plot, we first
calculated the 300 most dense regions (i.e. grid cell that can
hold an AP’s coverage area) in terms of total user traffic in San
Francisco downtown area. Then, for the users active in these
top regions, we found their individual top regions and checked
how many of them are included already in the top regions of
the total user traffic. If each user is included in more than
one of the total traffic top regions, then we checked that many
top regions of each individual user. We also considered only
users with more than ten data points to eliminate users with
some random/irregular behavior. Figure 1.b shows the same
data as Figure 1.a but with the number of users per region
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Fig. 1. (a) Top region comparison in aggregate and user based data density, (b) Number of different users per region (c) Average battery level and battery
charging status during a day.

information in y-axis. Figure 1.b shows that top regions are
mainly dominated by a few users. It starts with 8-9 users then
goes down to 2 as the selected top regions increases. Moreover,
for a remarkable number of users (starting around 40-45%
and stabilizing around 20%) active in these top regions, the
individual top regions are different than the top aggregated
traffic regions. This is indeed expected because some of the
places will be points of interests and will be visited by more
people, yielding more aggregated user traffic. However, in case
of deploying a WiFi AP in such a region, contribution to
average user satisfaction will be limited to average percentage
of each user’s offloaded traffic amount in that region with
respect to their total traffic.

Next, in Figure 1.c, we show the average battery level
statistics from a smartphone dataset (Device Analyzer [18])
during a day. Depending on the hour of the day, the average
battery charge levels show some significant differences ranging
to [60-85]%. Considering that the regions that users visit will
be affected by the hour of the day, average battery level of a
user visiting different regions will differ. To these differences,
we found the average hour of all visits from all users for each
region, then compared these means (together with the instances
giving the mean) using ANOVA test and observed a significant
portion of pairs passing the test. This shows that the average
battery levels of users visiting each region can show a different
characteristic compared to the averages in other regions.

III. PROBLEM STATEMENT AND PROPOSED SOLUTION

The performance of mobile data offloading through WiFi
access points depends on several factors. This includes but not
limited to the available wireless technology used (e.g., 802.11
a/b/g), the characteristics of the access points (e.g., range,
capacity), the density of the users in the service area of the
access point, and the simultaneous data sending/transmitting
requests from its users. Some of these come with hardware
and could not be changed. Moreover, some would have high
significance over others. For example, selecting locations with
more daily user visits could be primary criteria to maximize
offloaded volume. However, if the simultaneous data access
requests from the users of a single access point exceeds the
capacity of the access point, the bandwidth allocated to each
user could be determined proportionally, which only prolongs

the duration of downloading/uploading.
Today, as a good strategy, mobile network operators (MNO)

have been deploying their carrier-grade access points in the
high dense indoor user locations like malls, markets or cafes to
increase the traffic volume offloaded. Deployment to outdoor
locations with more user visits and/or transits could yield a
large scale offloading strategy and increase the benefit gained
from offloading. In this paper, we study the deployment of
outdoor access points in a city-wide scenario, in which the
locations of mobile data access requests change frequently as
the users are mobile .

Assume that there are n different users and m different
locations at which WiFi access points (AP), with range R, can
be deployed. Let Di = {d1i , d2i , . . .} is the set of data access
requests of user i in a day. Then, we define dij as the daily1

volume of traffic by user 1 ≤ i ≤ n in the coverage region of
a potential access point 1 ≤ j ≤ m. More formally,

dij =

{∑
∀x

dix | dist(loc(dxi ), loc(APj)) ≤ R

}
where loc(...) returns the location of the user request or the
access point and dist(l1, l2) returns the distance between two
locations l1 and l2.

We want to maximize the user satisfaction from the offload-
ing process. To this end, we define a utility function for each
region based on two factors: (i) the volume of each user’s data
that will be offloaded with respect to its total volume of data
used in all regions, (ii) the change in the battery level based
satisfaction function:

Uj =

n∑
i=0

(
udataij ubatij

)
∀j ∈ {1 . . .m} (1)

where
udataij =

dij∑m
s=0 dis

and

ubatij =
f(βijavg − βwifi(dij))
f(βijavg − βcell(dij))

1For a more precise data access request information, a day could be divided
into small time frames (i.e., 5-10 min) and dij could be defined as a vector
of data requests at each time interval.



Fig. 2. Example scenario with 17 data points from five users. User requests in each AP region are shown with circles of different colors. (Left) An optimal
solution that maximizes the total offloaded traffic from the entire area with 4 APs. (Middle) Optimal locations of APs considering the individual offloading
ratios of users. (Right) Greedy heuristic based solution with individual offloading ratios of users.

In the last equation, βijavg denotes the average2 battery level
of user i in region j and f(...) represents the battery level
based satisfaction function that is used to account for the user
response to the changes in the battery level between offloading
to WiFi and using cellular access.

The goal is to maximize the aggregated user satisfaction
based on the utility function defined above, after selecting k
locations for AP deployment. Assume K = {0, 1, 2, . . . k −
1} denote the subset of m locations that are selected for AP
deployment. Then the objective is:

Max
∑
j∈K

Uj

A. The complexity of the problem

The nature of the problem differs depending on the relation
between the coverage areas of potential m AP locations. If
these locations are pre-determined depending on several factors
including accessibility, availability, and interference-freeness
(which could be the most likely case in practice) and there
is none or minimal coverage area overlap between them, the
problem will reduce to the problem of selecting top k regions
in descending order of their Uj values.

On the other hand, if coverage areas could overlap, then the
problem can be mapped to a well-known Maximal Covering
Location Problem (MCLP) [5] that deals with locating k
facilities to an area with demand locations (with different
weights) such that the total demand under the coverage area
(which is decided by time or travel distance) of all facilities is
maximized. The locations of facilities may or may not overlap
with the demand locations. The main focus of MCLP problem
is to guarantee a worst case performance (by satisfying all
demands within distance x or travel time t.).

2We used average battery level for the sake of simplicity but a more precise
but complex model with battery usage patterns could be utilized by variation
and distribution analysis.

Considering the data access request demands coming from
users as the demands in MCLP problem and the facilities as
WiFi APs that will be deployed, our problem of deploying
the APs with the range of R (i.e., maximum distance of a
demand from a facility at which that facility is able to satisfy
this demand) maps to MCLP problem. The MCLP problem is
known to be NP-hard as proved by Megiddo et al. in [6].

There are many variants of MCLP problem with application
specific additional constraints. In our problem of WiFi AP
deployment with maximum demand satisfied using a given
number of APs, some additional constraints can be considered.
For example, there is usually a capacity (i.e., bandwidth) limit
of APs. This simply maps to MCLP instance with capacitated
facilities [7].

B. Greedy Adding with Substitution (GAS) heuristic
Since the problem is NP-hard, we use a greedy heuristic to

solve it. To this end, we adopt greedy adding with substitution
(GAS) heuristic recommended by Church and ReVelle in [5],
which is used to solve MCLP problem. The steps of the
algorithm for our specific problem is illustrated in Algorithm 1.
The algorithm first finds the AP location which gives the
highest utility value, and adds to the selected AP list. Then the
utility function of the APs having overlapping area with the
selected AP are updated excluding the users data in selected
AP area. APs are selected one by one following this manner
until desired number of AP count. To improve the performance
of the selection process, a substituion mechanism is applied
at every new AP selection. Everytime a new AP is added to
the list, we first find the total utility loss due to the possible
removal of every AP in the selected list. Then, if there is an
AP among the not selected APs that can contribute more than
the potential loss in offloading by a currently selected AP, high
utility contributing AP is added to the list after de-selecting the
AP offering less contribution to the total utility of the system
within current set.
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Fig. 3. (a) User satisfaction based on battery level (b) Initiation of battery charging and discharging durations (c) CDF of charging and discharging durations.

Algorithm 1 Greedy Adding with Substitution (n, m, K)
1: for each possible AP location 1 ≤ j ≤ m do
2: Uj ← Calculate utility using Eq.1
3: end for
4: S = {} set of selected APs
5: U = {1 . . .m} set of unselected APs
6: c=0
7: while c < K do
8: j∗= argmax{Uj} ∀ j ∈ U
9: S← S ∪ {j∗} and U← U− {j∗}

10: update Uj of other APs by removing coverage of Uj∗
11: c=c+1
12: for each selected AP s ∈ S do
13: Ls =

∑
a∈S Us -

∑
a∈S−{s} Us

14: end for
15: s∗= argmin{Ls} ∀ s ∈ S
16: j∗∗= argmax{Uj} ∀ j ∈ U
17: if Uj∗∗ > Ls∗ then
18: S← S ∪ {j∗∗} − {s∗} and U← U ∪ {s∗} − {j∗∗}
19: end if
20: end while

C. Numerical Example

Here, we give a numerical example to show how the results
could be different when user satisfaction is also targeted.
Figure 2.a illustrates a sample problem with 17 data points
from 5 different users. Each data point is tagged with a number
representing the weight of mobile data access requests from
the user. For simplicity, in this example, we assumed the
battery levels of users are the same. The goal is to locate 4
WiFi access points (AP), each having a circular range with
20 meter radius to maximize the offloading benefit. The graph
on the left shows an optimal solution that maximizes the total
offloaded traffic from the entire area with given number of APs.
100 units out of total 131 data access requests are covered,
yielding O =

∑
dij = 76% total offloading ratio. However,

this solution gives the optimal solution from operator’s point
of view and can only achieve U =

∑
Uj=59% average user

satisfaction in terms of individual data offloading of users:∑
Uj =

(
n=5∑
i=1

si

)
/5 where s1 =

10 + 11 + 23 + 9

53

s2 =
2 + 1

18
, s3 =

6

10
, s4 =

10 + 12 + 13

35
and s5 =

3

15

The difference is caused by the distribution of data access
requests from users in these selected areas. Moreover, total
size of data requests from users is highly divergent. Therefore,
selecting high weight data points without considering overall
size of user’s data requests does not work well in terms of
user’s average individual satisfaction from offloading.

Figure 2.b shows the optimal locations of APs considering
the individual offloading ratios of users. Even though the loca-
tions of two APs is same as in previous solution (Figure 2.a),
the remaining two APs are located around data requests which
will overall increase the value of U . This results in O =75.5%
(close to previous case) and a much higher U=79% with the
same s4 as in previous case but with other si values updated
to:

s1 =
10 + 11 + 9

53
, s2 =

10 + 5 + 2

18
,

s3 =
6 + 3 + 1

10
, and s5 =

3 + 4

15

Finally, Figure 2.c shows the greedy-heuristic based solution
with individual offloading ratios of users. Greedy approach
can achieve very close user satisfaction results (U=78%) to
optimal results in Figure 2.b for this specific example, while
total offloading ratio achieved decreases to O =68%.

A sample satisfaction function for users depending on their
battery levels (with same data request) could be similar to
the graph in Figure 3.a. The graph is simply showing that
at the very high and low battery charge levels, the change in
battery level will not change user’s satisfaction much. However,
in between these end points, the user’s satisfaction will be
affected.

IV. SIMULATIONS

In this section, we present the results of simulations per-
formed on a real user data set. To this end, we used an online
location-based social network dataset to capture the user data
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Fig. 4. (a) Total offloaded aggregated data ratio and (b) average offloaded user data ratios in aggregated greedy and user-based greedy algorithms.(c) The
CDF of distribution of user offloading ratios and (d) improvement in battery-level satisfaction ratio.

access requests. Specifically, we used the Gowalla dataset and
considered the check-ins as the representative weight of data
requests in each location. For these simulations, we analyzed
the check-ins coming from users in San Francisco area.

For the simulation of battery usage characteristics accurately,
we did use the patterns that we extracted from Device Analyzer
dataset [18]. These are shown in Figure 3.b-c and Figure 1.c. In
other words, we generated a charging pattern for each device by
setting a starting time of charging with probabilities observed
in Figure 3.b. Then, we assigned a charging duration with
distribution given in Figure 3.c. Given these conditions, we
also verified the expected device charging status shown in
Figure 1.c.

The total data usage distribution among all users and the
distribution of each request weight of every user within its
total usage are the two significant parameters that will affect the
results. As the analysis in many studies [21], [22], [23], [24] on
characterization of mobile data traffic shows, these distributions
mostly fit to power-law distribution (Cx−α). We also observed
such distribution within location based social network data set.
Finally, the distribution of user data requests to the potential
AP locations (or grids representing the coverage area) is
also significant. This distribution depends on the geographic
location analyzed. For some city-wide regions such as San
Francisco downtown on which we perform our simulations,
power-law distribution also fits well.

The maximum volume of traffic through the access points
highly depends on the distance of user devices from the access
points. The empirical measurements in [26] show that the WiFi
range in outdoor environment can vary significantly (e.g., [5-
75]). Following the trends in [26], we assigned a bandwidth
(with maximum of 18 Mbps) to each user according to their

distance from the AP it is using. However, if the total bandwith
of users connected to an access point at a time is more than
the maximum bandwidth an AP can achieve, individual user
bandwidths are prorated accordingly.

In Figure 4, we show the results that compare the proposed
user-based greedy based approach with the aggregated greedy
based one in our previous work [4]. We first measured the
total offloaded user data ratios from all users. As Figure 4.a
shows, user-based approach can achieve closer offloading ratio
to aggregated greedy approach for different number of APs
deployed. On the other hand, as Figure 4.b shows, user-based
approach can show better average offloading ratio per user
(changes in range of 15-20% for different AP counts). This is
simply due to selection process of users in user-based approach
which gives preference to users with data points which may
not have large volume within all user data points but could
be covering a large portion of the user’s total data points. In
Figure 4.c, we show the CDF of the distribution of offloading
ratios per user in the network (with 400 AP deployment). As
it is expected, user-based approach can achieve a balanced
distribution among all users, thus, the CDF is very linear.
Finally, Figure 4.d shows the improvement achieved (in range
of 30-40%) in battery based satisfaction ratio in users with
user-based approach compared to aggregated approach. As
the former gives preference to regions with lower average
battery level (from the users in that region) compared to others,
the selection process result in deploying APs to such regions
when data request weights are similar. As a result, users given
offloading opportunity with low level batteries become more
satisfied compared to the case where this difference is not
considered in selection process (aggregated approach).



V. RELATED WORK

Deployment of WiFi APs has been studied for different goals
in the literature [11], [12], [13]. Liao et al. [1] propose an algo-
rithm to deploy minimum number of APs that simultaneously
provides full communication coverage and can locate a mobile
device with a given accuracy parameter. There are also a few
studies that propose WiFi AP deployment algorithms with the
goal of maximizing cellular offloaded data. In [2], AP locations
are decided in a sequential manner without considering the
efficiency of deployment. Similarly, in the HotZones algorithm
proposed in [3], APs are deployed to cover the areas of most
used cell towers. However, the user traffic distribution inside
each macrocell coverage area has not been considered. Thus,
APs are not efficiently deployed. A more granular deployment
algorithm in a city-wide scenario is studied in [4]. There are
also some works that study the recruitment of third-party WiFi
access points via incentives and auctions [16], [19], [20].

All of these works mainly approach the problem from
operator’s point of view without considering the user satisfac-
tion in WiFi offloading domain. There have been some work
which considered user satisfaction in the context of delayed
offloading [16]. But these studies still consider overall user
satisfaction not individual user satisfaction. In contrast, we
do consider user satisfaction based on average individual data
offloading ratios and battery level changes. The proposed idea
could be extended to application of offloading (not just to
deployment of APs) and could be utilized in giving priority to
users which otherwise would not be benefiting from offloading
opportunity.

VI. CONCLUSION

In this paper, we study the WiFi AP deployment within the
context of offloading cellular networks. Our objective is to
increase average user satisfaction and give the opportunity of
offloading to each user equally while still trying to maximize
the overall offloading ratio as much as possible. Simulation
results on real user data set show that the proposed approach
can help increasing average user satisfaction (in terms of aver-
age user offloading ratios and battery level based satisfaction)
while keeping the aggregate offloading ratio close to maximum
possible values. In our future work, to see the impact of
several factors on results (such as the coefficients of data usage
distribution among all users and among each user’s different
data requests), we will evaluate the proposed approach in
different real and generated datasets. Moreover, we will work
on analytical derivation of these gains and loses depending on
the parameters defined and try to find their theoretical bounds.

REFERENCES

[1] L. Liao, W. Chen, C. Zhang, L. Zhang, D. Xuan, and W. Jia, Two Birds
With One Stone: Wireless Access Point Deployment for Both Coverage
and Localization, IEEE Transactions on Vehicular Technology, Vol. 60,
No. 5, June 2011.

[2] S. Dimatteo, P. Hui, B. Han and V. O. K. Li, Cellular Traffic Offloading
through WiFi Networks, in Proc. of IEEE MASS, 2011.

[3] N. Ristanovic, J.-Y. L. Boudec, A. Chaintreau, V. Erramilli, Energy
Efficient Offloading of 3G Networks, in Proc. of IEEE MASS, 2011.

[4] E. Bulut, and B. Szymanski, WiFi Access Point Deployment for Efficient
Mobile Data Offloading, in Proceedings of ACM International Workshop
on Practical Issues and Applications in Next Generation Wireless Net-
works (PINGEN 2012) at Mobicom 2012., Istanbul, Turkey, August 26,
2012, pp. 45-50.

[5] R. L. Church, C. S. ReVelle, The maximal covering location problem,
Papers of the Regional Science Association, 32 (1974), pp. 101-118.

[6] N. Megiddo, E. Zemel, ans S. L. Hakimi, The maximum coverage
location problem, SIAM J. Alg. Disc. Meth., Vol. 4, No.2, June 1983.

[7] H. Pirkul, and D. Schilling, The maximal covering location problem with
capacities on total workload, Management Science, Vol. 37, No. 2, pp
233-248, 1991.

[8] N. Balasubramanian , A. Balasubramanian , A. Venkataramani, Energy
consumption in mobile phones: a measurement study and implications
for network applications, Proceedings of the 9th ACM SIGCOMM
conference on Internet measurement conference, November 04-06, 2009,
Chicago, Illinois, USA.

[9] G. Kalic, I. Bojic, and M. Kusek, Energy consumption in android phones
when using wireless communication technologies, in Proc. of 35th Int.
Convention on Information and Communication Technology, Electronics
and Microelectronics, 2012.

[10] A. Carroll, and G. Heiser, An analysis of power consumption in a
smartphone, In USENIX, Boston, MA, USA, June 2010.

[11] K. Lee, I. Rhee, J. Lee, S. Chong, and Y. Yi, Mobile data offloading:
how much can wifi deliver? in Proc. of Co-NEXT 10, pp. 26:1-26:12,
2010.

[12] S. Dimatteo, P. Hui, B. Han and V. O. K. Li, Cellular Traffic Offloading
through WiFi Networks, in Proceedings of 8th IEEE Int. Conf. Mobile
Ad Hoc and Sensor Systems (IEEE MASS 11), 2011.

[13] B. Han, P. Hui, and A. Srinivasan, Mobile data offloading in metropolitan
area networks, SIGMOBILE Mob. Comput. Commun. Rev., vol. 14, pp.
28-30, November 2010.

[14] A. Balasubramanian, R. Mahajan, and A. Venkataramani, Augmenting
Mobile 3G Using WiFi, in ACM MobiSys’10, Jun. 2010, pp. 209-222,
2010.

[15] Balasubramanian, N., Balasubramanian A. and Venkataramani, A. Energy
Consumption in Mobile Phones: A Measurement Study and Implications
for Network Applications, in Proceedings of the 9th Internet measurement
conference, November 2009, pp. 280-293.

[16] X. Zhuo, W. Gao, G. Cao, and Y. Dai, WinCoupon: An Incentive
Framework for 3G Traffic Offloading, in Proc. of IEEE ICNP, 2011.

[17] E. Cho, S. A. Myers, J. Leskovec, Friendship and Mobility: Friendship
and Mobility: User Movement in Location-Based Social Networks, ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD), 2011.

[18] D. Wagner, A. Rice and A. Beresford, Device Analyzer: Understanding
smartphone usage, 10th International Conference on Mobile and Ubiq-
uitous Systems: Computing, Networking and Services, Tokyo, Japan,
December 2013

[19] G. Iosifidis, L. Gao, J. Huang, and L. Tassiulas, A double auction
mechanism for mobile data offloading markets, IEEE/ACM Transactions
on Networking (Sept. 2014).

[20] W. Dong, S. Rallapalli, L. Jana, R.and Qiu, K. Ramakrishnan, L.
Razoumov, Y. Zhang, and T. W. Cho, Ideal: Incentivized dynamic cellular
offloading via auctions, in Proc. IEEE INFOCOM, 2013.

[21] X. Zhou, Z. Zhao, R. Li, Y. Zhou, J. Palicot, and H. Zhang, Human
mobility patterns in cellular networks, IEEE Communication Letters, vol.
17, no. 10, pp. 1877-1880, Oct. 2013.

[22] U. Paul, A. P. Subramanian, M. M. Buddhikot, and S. R. Das, Un-
derstanding traffic dynamics in cellular data networks, in Proc. IEEE
INFOCOM, Apr. 2011, pp. 882-890.

[23] M. Z. Shaq, L. Ji, A. X. Liu, J. Pang, and J. Wang, Characterizing
geospatial dynamics of application usage in a 3G cellular data network,
in Proc. IEEE INFOCOM, Mar. 2012, pp. 1341-1349.

[24] E. Hazan, P. Pont, and K. Roche, Averages lie: Using smart segmentation
to find growth, McKinsey iConsumer Research, April, 2014.

[25] G.P. Perrucci, F.H.P Fitzek, Q. Sasso, W. Kellerer, J. Widmer ,On the
impact of 2G and 3G network usage for mobile phones’ battery life,
European Wireless Conference, pp. 255-259, May. 2009.

[26] M. Solarski, P. Vidales, O. Schneider, P. Zerfos, and J. P. Singh,
An experimental evaluation of urban networking using IEEE 802.11
technology, in IEEE OpComm’06, September 2006.


