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Abstract—In this paper, we address the problem of path
planning for multiple unmanned aerial vehicles (UAVs), to gather
data from a number of roadside units (RSUs). The problem
involves finding time-optimal paths for multiple UAVs so that they
collectively visit all the RSUs, while also exchanging information
at their own point when they fly from a starting point to the final
location. We solve the problem by applying modified evolutionary
methods based on genetic algorithm (GA) and harmony search
(HS). The modified search methods seek to determine the overall
shortest path utilizing various evolutionary operators regarding
each UAV which has identical properties at the start location.
Numerical results are introduced under different scenarios and
the performances of the proposed algorithms are evaluated.

Index Terms—Drone, evolutionary computation, genetic algo-
rithm, harmony search, intelligent transportation system (ITS),
path planning, RSUs, Unmanned aerial vehicles.

I. INTRODUCTION

Use of unmanned aerial vehicles (UAVs) for intelligent
transportation system (ITS) applications can improve effi-
ciency of ITS services and reduce deployment costs [1], [2].
In particular, one of the applications of UAVs in ITS domain
involves intelligent traffic management exploiting them as
flying roadside units (RSUs). Such kind of operation demands
multiple UAVs to fly in coordination to accomplish a specific
mission. For example they can gather data from ground vehi-
cles, or periodically from other ground RSUs that gather/store
data from vehicles passing by. In rural areas, connecting such
RSUs to a network may be challenging, and hence UAVs can
be an effective way of collecting data from them.

Deployment and trajectory optimization of single/multiple
UAVs have been considered in various different contexts in
the recent literature. In [3], trajectory planning has been
studied for multiple drones to minimize delay in search and
reconnaissance applications, while [4] explores trajectory plan-
ning within a smart city surveillance framework. An energy-
efficient trajectory optimization technique for a single drone,
where the drone identifies the ideal locations to stop and
collect data from a cluster of sensors, is proposed in [5]. The
proposed method clusters the sensors in the first step, and
subsequently applies the traveling salesman solution into the
cluster centers, to find the optimum drone trajectory.

In [6], penalized weighted k-means and particle swarm op-
timization techniques are used to find optimum fixed locations
of docking stations, so that UAVs can reach them at a reason-
able time in case of need. In [7], [8], dynamic programming
has been used to find optimum trajectory of a UAV to maintain
good connectivity with a cellular network, while [9] uses deep
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Fig. 1: Three dimensional view of a sample scenario with three
RSUs and two UAVs that require to travel from a starting
location (LS) to a final point (LF).

reinforcement learning to address a similar problem. Genetic
algorithm is utilized in [10], [11] to jointly find optimum
deployment locations and interference coordination parameters
for LTE-Advanced UAVs while serving mobile users.

To our best knowledge, multi-UAV trajectory optimization
problem for gathering data from a number of RSUs has not
been addressed in the literature. In this paper, as summarized
in Fig. 1, we tackle the problem of finding time-optimal
paths for multiple UAVs so that they collectively visit the
coverage areas (not necessarily the exact RSU locations) of
all the RSUs, when they fly from a starting point to the final
location. In order to solve this problem, we utilize modified
evolutionary methods based on genetic algorithm (GA) and
harmony search (HS), which seek to determine the overall
shortest path utilizing various evolutionary operators regarding
each UAV. In particular, UAVs have identical properties at the
start location, and at the end of the trip we consider that:
1) each UAV should have a similar path length, or 2) the
total trajectory distance of all UAVs should be as short as
possible. Numerical results show that our proposed multi-UAV
trajectory planning approach can effectively span multiple
RSUs to collect data in a time-efficient manner.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Problem Description
The classic path planning problem requires solving for a

route between a source and a destination, to visit a given set
of points while avoiding forbidden area(s). In our scenario,
the critical constraint is to visit wireless coverage areas of
RSUs, in order to periodically gather information from them.
Fig. 1 demonstrates an example scenario with three RSUs and
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Fig. 2: A sample chromosome structure for assignment and
ordering problems of path planning.

two UAVs. The aim of this paper is to design an algorithm
that finds an optimal route between a given starting and a
final location within a certain mission time for each UAV. The
hypotheses handled to illustrate the problem are as follows:

• There is no overlap between the coverage areas of RSUs.
• The starting and final positions are the same for each

UAV, and neither is in the range of any RSU.
• Each RSU should be visited by a single UAV for infor-

mation exchange. It is not mandatory for a UAV to reach
the exact RSU location if data exchange is finalized at a
point within the coverage area of an RSU. We consider
the coverage range of an RSU to be 100 meters.

• UAVs involved in the problem have identical physical
characteristics, e.g., battery capacity. Accordingly, the
mission time should be as close as possible for each UAV
(as will be captured by (2)), or the total mission time
should be minimized (as will be captured by (8)).

Under these assumptions, the proposed solution includes
two main steps. The problem is considered to be the multiple
single-UAV path-planning problems in the first step. The first
step is actually an assignment problem to identify “which RSU
will be visited by which UAV” and determine the visiting order
of RSUs for each UAV. The basic of this step is to solve
fixed-terminal open multiple Traveling Salesmen Problem (M-
TSP) [12] which is a variant of the popular traveling salesman
problem (TSP) [13]. The second step, on the other hand,
controls the provision of the data exchange constraint. After
the point at which the necessary data exchange is done, this
step will lead to the next determined RSU.
B. Problem Formulation

This subsection formally describes the problem addressed
in this paper. We consider a network of N RSUs by the
three dimensional (3D) geographical position model denoted
as (xn, yn, hn), where n = 1, ..., N . There are K UAVs to
be traveled with a constant speed to collect the data of the
RSUs. We denote the time-dependent location of kth UAV
as (xk(t), yk(t), hk(t)). The UAV motion distance d from a
location to nth RSU thus can be expressed as follows:

dkn =
√

(xk(t)− xn)2 + (yk(t)− yn)2 + (hk(t)− hn)2 .

For simplicity and without loss of generality, we assume that
the altitude of the N RSUs and K UAVs are identical (hn =
hk). Each UAV has one data transmission interface which is
adopted to download the ITS data while flying from a start
location LS, to a final location LF. The two fixed terminal
points are same for each UAV and can be considered that
they represent the locations of docking stations where a UAV
can charge its battery.

The trajectory distance of kth UAV is Tk, with 0 < Tk <
Tmax
k , where Tmax

k denotes the maximum travel capacity
of the kth UAV without battery replenishment. To provide
collaborative and time-efficient path planning, we consider the
average UAV flying time cost factor, defined as:

T̄ =
1

K

K∑
i=1

Ti . (1)

UAV1 2 1 UAV2 3 5 4 6 UAV3 8 7 10 9

UAV1 2 1 3 UAV2 5 4 6 8 7 UAV3 10 9

Fig. 3: An illustration of the operator of altering RSU alloca-
tions between UAVs.

The objective of our trajectory optimization and RSU as-
signment task is to minimize the variance of the population
including the mission distances of all UAVs:

min
1

K

K∑
i=1

(
Ti − T̄

)2
(2)

s.t.
∑
k

cnk ≥ 1,∀n (3)∑
n

cnk = 1,∀k (4)(
xk(0), yk(0)

)
= (LS.x, LS.y) (5)(

xk(T ), yk(T )
)

= (LF.x, LF.y) (6)

where,

cnk =

{
1, if kth UAV visit nth RSU,
0, otherwise. (7)

The main constraint for a UAV based on (3) is that it should
visit the coverage area of at least one RSU. Moreover, we
require each UAV to travel a minimum amount of predeter-
mined distance within an RSU’s coverage area (not shown in
the constraints above), during which we assume that the RSU
data will be downloaded at the UAV.

As an alternative to (2), we also define another cost function
considering the problem of minimizing the total path length
by all UAVs as follows:

CPL = min

K∑
i=1

Ti, (8)

where still the constraints given by (3)−(6) are considered.

C. Evolutionary Operators
To determine the visiting order of RSUs, a chromosome

design is presented. Each RSU has a unique label that is
randomly assigned to a UAV at initial solution. The example
chromosome is depicted in Fig. 2. According to the given
chromosome structure, the mission of the ith UAV is to
visit six RSUs in total and reach the destination. In this
scenario, after the launch, the UAV will fly to the RSU
labeled 2, then respectively communicate with RSUs of labels
(1− 3− 5− 4− 6).

The proposed evolutionary path optimizer employs three
crossover operators and one mutation operator. The crossover
operators manipulate the chromosome of a UAV and muta-
tion operator alters the RSU allocations between UAVs. The
features of these operators are summarized as follows.
Flip the bits: This operator flips the order of selected bits in a
chromosome representation of path. The illustration in Fig. 4
demonstrates a possible effect of this evolutionary operator
on a sample path planning. The input chromosome (upper
left one) represents the visiting sequence of RSUs for UAVi,
which is (2− 1− 3− 5− 4− 6). A sub-segment of the input
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Fig. 4: Evolutionary operators: Flip, Swap, and Shift. Drawing demonstrates possible effects of the evolutionary operators on
a candidate path. The original (input) path of a UAV is given at the left. Randomly-selected segment of input chromosome to
utilize the operators is highlighted in black color.

chromosome, starts from the 2nd bit and ends at the 5th in this
case, is randomly chosen before application of any operator.
Then the output chromosome is produced by flipping the order
of RSU labels contained in the sub-segment.
Swap the bits: Changes the orders of two randomly picked
points in path (See Fig. 4).
Shift the bits: Moves the first gene in a selected sub-
chromosome to the end of this random selection (See Fig. 4).
Changing the break points: Mutates the whole planning by
shifting the RSU assignments. In an example given by Fig. 3,
the input chromosome (upper one) of the UAV2 gives the first
RSU (labeled as 3) to UAV1 and takes the RSUs 8 and 7 from
UAV3. This operator increases the probability of finding the
optimum solution. At initial step of search process, K − 1
break points are randomly chosen among the (2, ..., N − 1),
inclusive. Hence, K dummy assignments are established for
K UAVs beforehand.

III. MULTI-UAV PATH PLANNING FOR VISITING RSUS

A. Genetic Algorithm
Genetic Algorithm (GA) as a population-based metaheuris-

tic optimization method that exploits concepts from biology,
genetics, and evolution [14], [15]. The classical GA first
produces an initial population, then it evolves the solutions
through three actions, i.e., selection, crossover, and mutation.
In this paper, we utilize the following operators instead of
classical ones: flip, swap, and shift. The pseudo-code of the
GA that is used in this paper is given in Algorithm 1.

Algorithm 1: GA based Path Planning for UAV
1 create the initial population randomly
2 evaluate the fitness value of each member using (2) or (8)
3 while not stopping condition do
4 split population randomly into sub-groups and select

the best member for each of them;
5 hold the best candidate and manipulate the rest of the

new group exploiting operators in Section II-C;
6 end
7 return the best solution in the population

B. Harmony Search
As a relatively new population-based optimization tech-

nique, the Harmony Search (HS) algorithm has an analogy
with music improvisation process where musicians improvise
the pitches of their instruments to obtain a better state of
harmony [16]. In the HS algorithm, each solution and a set of
these solutions are respectively called a harmony and harmony

memory (HM). The improvisation process is mimicked in
each variable selection of the basic HS algorithm in three
rules: (i) picking any value from the memory; (ii) picking
an adjacent value from the memory; and (iii) picking a
random solution from the possible value range. Using harmony
memory consideration rate (HMCR), and pitch adjusting rate
(PAR), the pseudo-code of the HS that is proposed in our paper
is given in Algorithm 2.

Algorithm 2: HS based Path Planning for UAV
1 create the initial population randomly
2 evaluate the fitness value of each member using (2) or (8)
3 while not stopping condition do
4 split population randomly into sub-groups and select

the best member for each subgroup;
5 if rand() < HMCR then
6 pick the best value from harmony memory
7 if rand() < PAR then
8 apply the flip operator
9 else

10 apply the swap operator
11 end
12 else
13 generate random RSU assignments to all UAVs
14 end
15 end
16 return the best solution in the harmony memory

IV. NUMERICAL RESULTS

In this section we present results for the considered path
planning techniques, using a map that corresponds to Doha,
Qatar. The road network of Doha is obtained by the Open-
StreetMap [17] which is a cooperative project to build free
editable maps. Fig. 5 shows the road network with RSU
deployments utilized in the experiments for major roads in
north-west of Doha. The study area is approximately 8,898
meters in longitude and 8,684 meters in latitude. Our exper-
iments are conducted on a machine with an Intel Core i5-
2410M CPU at 2.30GHz and 8GB DDR-III RAM. Some of the
challenges in simulations include determining the reasonable
parameter values such as HMCR and PAR values in HS, and
population/sub-group size in both HS and GA. We set the key
parameters of HS as HMCR = 0.8 and PAR = 0.4, which are
close to their values used in the recent literature [18].

In this work, the population size and the actual number
of individuals in a sub-group are experimentally selected
as 80 and 8, respectively. Since offsprings are created with
a non-random process in suggested GA, the size of sub-
groups is more important than that of HS. As emphasized
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Fig. 5: Illustration of 28 RSUs deployed at major intersections
of road network at North West of Doha, Qatar. An example
for changing direction of a UAV within an RSU coverage area,
after pulling the data from the RSU, is also illustrated.

(a) GA (2 UAVs and 5 RSUs). (b) HS (2 UAVs and 5 RSUs).

(c) GA (3 UAVs and 28 RSUs). (d) HS (3 UAVs and 28 RSUs).

Fig. 6: Trajectories by GA and HS on two different scenarios.

in Algorithm 1, the first member of each new generation is
the best parent of current sub-group. The subsequent three
children are generated by using flip, swap, and shift operators.
The order of RSUs in the fifth member is the same as the best
member, but RSU assignments between UAVs are randomly
regenerated in this step. And finally, the last three members
are provided with the handling of evolutionary operators and
re-assignment together.

For simplicity, in the first scenario we have adopted 2 UAVs
for the mission over the area where 5 RSUs are deployed. As
depicted in Figs. 6(a)-(b), the same paths are obtained with
GA and HS with same costs calculated by (2); however, HS
reached the solution significantly faster than GA, i.e., needed
iterations to reach convergence are respectively 2 and 137.
An interesting observation is, the found paths seem longer
than can be and have a zigzag style. This is because the
optimization constraint aims to maintain equal mission time
interval for all UAVs. By increasing the number of UAVs to
3 and RSUs to 28 in Figs. 6(c)-(d), different path plans are
generated by GA and HS. We notice that the HS outperforms
the GA in terms of cost-effectiveness and convergence speed.
Specifically, the minimum cost value obtained by HS was
3.2258×10−06 at 1210 iterations, while it was 8.3259×10−06

at 1600 iterations by GA. Note that in all maps, UAVs may
make sharp turns at the stop points, which can be avoided with
more granularity added to the problem environment.

The performance of GA and HS techniques in terms of
mean and standard deviation of execution times are plotted in
Fig. 7(a). We report the runtime for the MATLAB simulations.
The analysis shows that HS is better than GA in the lower-level
complexities of the framework, e.g, for the situation where
10 and 20 deployed RSUs are searched. On the other hand,
GA can establish faster decision making on higher number of
RSUs, particularly around 10% faster for 40 RSUs. Further-
more, in Fig. 7(b), we exhaustively enumerate all possible path
combinations on the Doha map for various number of UAVs
and RSUs and then compare them against our path planning
procedures in terms of cost performance given by (8). We
again record the mean of 50 runs and find that for relatively
lower number of RSUs, our algorithms produce paths that are
very close to the optimal paths. With the increasing number
of UAVs, the total path lengths generated by GA and HS are
much longer than that by the exhaustive search (ES). Further
analysis shows that GA achieves better performance under 30
RSUs, whereas HS noticeably outperforms the GA in case
of 50 RSUs for 5 UAVs, and 40 and 50 RSUs for 8 UAVs.
We believe that HS generates better solutions when the search
space is large, thanks to its random assignment of RSUs to
UAVs that happens with a probability of (1 − HMCR), as
illustrated in Line-13 of Algorithm 2.

Finally, we study the difference of the obtained trajectory
distances produced by applying the two different objective
functions introduced in (2) and (8). Fig. 8 shows the results
for 2 UAVs and 5 RSUs found with an exhaustive search. We
observe that both UAV1 and UAV2 share the same amount
of RSUs for different costs. Nevertheless, UAV1 should fly
24,028 meters for (2), but only 8,1261 meters for (8), while
UAV2 should travel 25,620 meters for (2) but 18,378 meters
for (8) to accomplish the overall mission. Hence, we can say
both system-wide and individual efficiency could be achieved
for servings RSUs when using (8).

V. CONCLUSION

This paper introduces our findings on the path planning
problem for multiple unmanned aerial vehicles (UAVs) for
collecting data from a number of pre-deployed roadside units
(RSUs) considering several scenarios. We assume that the
battery capacity of a UAV and/or mission time are not adequate
to visit all RSUs. We therefore formulated two problems:
one assumes that each UAV has similar travel distance, while
the other aims to optimize total path length. To solve these



(a) Average and standard deviation for runtime of 50 inde-
pendent simulations for 3 UAVs.

(b) Average cost of total path search for 50 independent runs
over various number of UAVs and RSUs.

Fig. 7: Comparisons of runtime and cost performance of GA,
HS, and ES methods for different scenarios.

problems, we propose two modified metaheuristic-based ap-
proximate solutions with different evolutionary operators. Our
results show that the proposed HS algorithm outperforms the
GA in terms of cost-effectiveness when the problem becomes
more complicated, and in convergence time when the search
process is relatively straightforward.
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