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ABSTRACT
Since the rapid growth of e-commerce, the number of package deliv-
eries to residential doorsteps has significantly increased. However,
the convenience of online shopping has also led to a rise in package
theft, resulting in frustration and financial loss for both consumers
and companies. While various commercial solutions are available
to address package theft, they often have considerable drawbacks,
such as high ongoing costs and privacy concerns. In response to
these issues, we introduceWi-Alert, a budget-friendly WiFi sensing-
based package detection system. Our solution analyzes Channel
State Information (CSI) acquired from ambient WiFi signals and
employs deep learning models trained to identify movements at the
front door. The system accurately distinguishes between various
actions, such as knocking, lingering visitors, package deliveries,
and package theft. These actions trigger real-time alerts, enabling
users to monitor their front door activity and swiftly respond to
security threats. Through real-world experiments, we demonstrate
the versatility and practical application of the system in diverse
residential settings, including houses and apartment buildings. Our
solution offers a convenient and economical approach to enhancing
package security, providing peace of mind to individuals receiving
deliveries.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting systems and tools; • Hardware → Wireless integrated
network sensors; • Computing methodologies → Machine
learning.
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1 INTRODUCTION
In 2022, research revealed that approximately 49 million individ-
uals in the United States had fallen victim to package theft [18].
The convenience of e-commerce has revolutionized how we shop,
allowing us to order a wide range of products and deliver them
right to our doorsteps. With the increasing frequency of package
deliveries, package theft has become a prevalent problem, causing
financial losses, frustration, and security concerns for consumers.
This issue has become even more significant since the onset of
the pandemic, as the reliance on online shopping has surged [1].
Aside from the financial losses incurred due to stolen packages, con-
sumers have also had to deal with the inconvenience and hassle of
filing claims, reordering items, and waiting for replacements. This
has decreased consumer confidence and made some individuals
less likely to order products online, impacting e-commerce and the
overall economy [17].

In response to this ongoing, increasing problem, various commer-
cial package surveillance systems have been developed. Traditional
surveillance video cameras and the Ring doorbell are among the
more well-known options. As an alternative to these existing sys-
tems, we propose a WiFi sensing-based package detection system,
Wi-Alert, for monitoring front door activity. When comparing our
solution with these alternatives, several factors stand out. Firstly,
our approach is highly cost-effective, priced under $100, making it
significantly more affordable than traditional video cameras or the
Ring doorbell, which often come with higher upfront and ongoing
costs. The initial investment for surveillance cameras can range
from hundreds to thousands of dollars, depending on the brand
and features [19]. These cameras may also require professional
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Figure 1: Simplified illustration of our proposed system.WiFi
signals propagate the target area to detect the event and trig-
ger a mobile phone alert.

installation, and some require monthly fees for cloud storage. Simi-
larly, the Ring doorbell also involves an upfront purchase cost of
around $100, and it comes with an additional monthly or yearly
subscription fee for cloud storage and access to certain features,
such as person and package alerts [13, 15]. Over time, these ongoing
fees can accumulate, making the Ring doorbell a more expensive
option in the long run. This cost advantage is crucial for individuals
seeking an efficient security solution without incurring excessive
expenses.

Privacy is another important aspect when designing a front
door alarm system. The continuous recording of activities that
camera-based systems require raises significant concerns about
unauthorized access to personal information [2]. This leaves users
vulnerable to potential breaches from government entities and
malicious hackers. However,Wi-Alert uses advanced WiFi signal
analysis techniques that enable precise alerts without resorting to
constant surveillance. This approach enhances security and miti-
gates potential privacy risks associated with continuous monitoring
and data collection. Furthermore, the Ring doorbell’s reliance on
a stable internet connection for optimal performance introduces
an additional factor to consider [14]. Unstable or limited internet
service can disrupt video feed and audio quality, potentially lead-
ing to gaps in surveillance coverage. This can leave the front door
vulnerable, especially during periods of connectivity issues. In con-
trast, our WiFi sensing system operates seamlessly, unaffected by
Internet connectivity limitations, ensuring reliable functionality.

The subsequent sections of this paper are organized as follows.
Section 2 provides a background on WiFi sensing technology and
discusses relevant research in the field. Section 3 presents the details
of our proposed system, highlighting its features, functionality, and
live prediction process. The system’s performance is evaluated
through real-world experiments in Section 4. Finally, in Section 5,
we provide our concluding remarks.

2 BACKGROUND
2.1 Channel State Information
WiFi sensing technology harnesses ambient WiFi signals to detect
and perceive the physical properties of the surrounding environ-
ment [8, 12]. These radio frequency (RF) signals travel through the
environment along multiple paths, moving from a transmitter (TX)
to a receiver (RX). As these signals interact with various objects in

the background, such as walls, furniture, and people, they undergo
slight variations.

Channel state information (CSI) is a metric used in frequency-
division multiplexing (OFDM). It is employed to characterize the
amplitude and phase variations that wireless signals experience
across different subcarrier frequencies during transmission between
a transmitter and receiver. The following equation models CSI.

𝑦 (𝑖 ) = 𝐻 (𝑖 )𝑥 (𝑖 ) + 𝜂 (𝑖 ) (1)

where 𝑖 is the subcarrier index, 𝑥 is the transmitted signal, 𝑦 is
the received signal, 𝜂 is a noise vector, and 𝐻 is a complex vector
containing the CSI denoting the transformation change required
from the input 𝑥 to the output 𝑦. The CSI value collected for each
subcarrier is a complex number that consists of both a real compo-
nent (𝐻 (𝑖 )

𝑟 ) and an imaginary component (𝐻 (𝑖 )
𝑖𝑚

). In the following
equations, we can transform this raw CSI into amplitude, 𝐴(𝑖 ) , and
phase, 𝜙 (𝑖 ) , for subcarrier i.

𝐴(𝑖 ) =
√︃
(𝐻 (𝑖 )

𝑖𝑚
)2 + (𝐻 (𝑖 )

𝑟 )2 (2)

𝜙 (𝑖 ) = 𝑎𝑡𝑎𝑛2(𝐻 (𝑖 )
𝑖𝑚

, 𝐻
(𝑖 )
𝑟 ) (3)

2.2 Related Work
With the advancement of wireless technology, there has been a
growing interest in utilizing WiFi sensing for intruder detection, as
demonstrated by two recent studies. The first study presented Wi-
Alarm to monitor and identify when an intruder enters a room [20].
Unlike traditional methods that involve complex data preprocessing,
Wi-Alarm directly extracts features from the raw amplitude of CSI.
This approach enables the system to generate live alerts, ensuring
rapid response to potential intrusion.

Similarly, the second study focuses on replicating the moni-
toring functions of conventional alarm systems [23]. By leverag-
ing commodity WiFi devices, the authors develop a WiFi sensing
system capable of detecting human movements and identifying
opened/closed doors and windows in various residential settings.
While both studies concentrate on replicating alarm systems for
intruders entering the home, our system is specifically tailored
to address the issue of package theft at residential doorsteps. By
concentrating on this particular aspect, we can present a system
that requires minimal equipment and installation time while signif-
icantly enhancing security.

Limited research has been conducted on package theft detec-
tion; however, one approach involves utilizing security cameras
to develop a computer vision system for automatic package theft
detection [10]. This approach aims to differentiate between normal
and intruder behavior by extracting patterns within specific periods
of recorded package pickups. The authors propose a novel package
detection framework incorporating weakly labeled training videos,
allowing the system to adapt to different environments without
retraining. While this approach is promising, it relies on visual
input and may face challenges in scenarios with limited camera
coverage.

Wi-Alert’s strength lies in its minimal equipment and its ability
to effectively penetrate through and around the target area. This
feature makes it particularly suitable for scenarios where visual
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Figure 2: Flowchart depicting the live prediction process.

obstructions could hinder traditional systems relying on video input.
By providing a cost-effective and easily deployable solution for
package theft detection, Wi-Alert offers a practical and efficient
alternative for enhancing residential security.

3 OVERVIEW OFWI-ALERT
3.1 CSI Data Collection
During the experiments, we collect CSI data using WiFi-enabled
ESP32 microcontrollers and the ESP32-CSI Toolkit [4]. Unlike other
data collection methods that require a host laptop with an updated
Network Interface Card (NIC), these microcontrollers offer a com-
pact, cost-effective, and independent solution. The portability and
versatility of the ESP32s facilitate easy deployment. In order to run
the proposed solution in resource limited edge devices efficiently,
we integrate solutions like online sampling of collected CSI data [7].
In our system, one ESP32 serves as the receiver (RX), capturing
the data at 100Hz. Depending on the environment, one or multiple
transmitters (TX) may send data frames to the receiver. The stored
CSI data from the ESP32 is retrieved and exported to a data file by
connecting the receiver to a Raspberry Pi 4B.

3.2 Preprocessing and Machine Learning Model
Development

The CSI data undergoes preprocessing steps before being fed into
the machine learning model for training. Initially, we denoise the
collected CSI data by independently applying a moving average

Table 1: Details of the experiment data sets collected for the
front door alarm.

Environment Actions Reps.

Apartment • Package Placed
• Package Taken
• Knocking
• Standing
• Walking By

30

House • Package Placed
• Package Taken
• Knocking
• Standing
• Doorbell

30

to each subcarrier using a window of size𝑤 . Next, we use Princi-
pal Component Analysis (PCA) to further denoise and reduce the
dimensionality of the collected data.

Once the preprocessing steps are finished, we use the data to train
a classifier model, denoted asM. The classifier uses a Dense Neural
Network (DNN) architecture with two dense layers. To prevent
overfitting, a dropout layer is added between each dense layer. We
use a hyperparameter optimization tool designed with the Optuna
framework to determine the most effective model configuration.
The optimization of the loss function is performed using the Adam
optimizer.

3.3 Live Prediction
During the live prediction phase, our system uses the trained clas-
sifier model, M, to make real-time predictions on incoming CSI
data. This process involves five steps (Fig. 2). Firstly, we collect CSI
data using the ESP32 microcontrollers. We then store the incoming
data as a string consisting of 28 data fields. Next, we transmit the
string to InfluxDB, a time series database, where a timestamp is
assigned. InfluxDB enables us to extract specific time windows to
analyze the past 𝑡 seconds of data. Once we group data based on
our sliding window size, we run it through the preprocessing steps.
The data is subsequently tested against our model M in batches of
𝑡 seconds to generate live predictions. In the case ofWi-Alert, our
model predicts activity every 1 second to detect events at the front
door promptly. After completing the live prediction process, the
results are transmitted to users through a mobile app.

4 EXPERIMENTS
4.1 Experiment Data
To evaluate the effectiveness of Wi-Alert, we collected CSI data for
two residential environments. Table 1 presents an overview of the
data sets for each scenario, detailing the types of actions and the
number of repetitions. To simulate real-world scenarios, each action
began with the volunteer walking to the door instead of merely
recording the action in isolation. Moreover, we use packages of
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Figure 3: (a) Apartment setup (b) House setup (c) Packages used

varying sizes to ensure the system’s detection capabilities encom-
pass different types, including parcels and small boxes (Fig. 3c).

4.1.1 Apartment environment. The first data set collected was for
the apartment environment. As depicted in Fig. 3a, one TX/RX pair
was positioned from the door to the hallway to ensure a direct line
of sight (LOS) at the apartment entrance.

The actions performed in this scenario include placing a pack-
age, taking a package, knocking, standing, and walking by. The
volunteer performed each action for a specific duration: 4 seconds
for placing and taking a package, 3 seconds for knocking and stand-
ing, and 2 seconds for walking by. The actions were executed in
a round-robin manner (i.e., after each action was performed once,
the second repetitions were then performed) for thirty repetitions.
A 5-second rest period was introduced between each action while
ensuring the volunteer was out of the line of sight (NLOS). The
round-robin fashion was used to consider the temporal changes in
user behavior and enhance the robustness of the machine learning
model to such variations.

4.1.2 House environment. The next data set focused on the house
environment, specifically setting up a system to cover the front
porch area, a typical setup in suburban properties. As shown in
Fig. 3b, we positioned the receiver inside the front door, with two
transmitters placed outside on the porch posts, diagonally facing
the door. Both transmitters emitted signals to the single receiver
using the same channel.

The actions performed in this environment included placing a
package, taking a package, knocking, standing, and ringing the
doorbell. During the data collection for the house environment, we
deliberately excluded the walking by action. Individuals within the
line of sight of the TX/RX could only be approaching the house.
This is in contrast to the apartment environment, where a neighbor
or someone passing by in the hallway might walk by the front door,
potentially triggering a false alarm. The volunteer performed each
action for a specified duration: 5 seconds for placing and taking
a package, and 4 seconds for knocking, standing, and ringing the

doorbell. We increased the time for each action in this environment
due to the additional time required to walk up the steps to the front
porch. The actions were again executed in a round-robin manner
for thirty repetitions, with a 7 second rest between each.

4.2 Experiment Results
After collecting CSI data for the specified actions in each environ-
ment, we developed corresponding deep learning models using the
steps outlined in Section 3.2. Half of the collected data for each
environment was used as training data, while the other half was
reserved for testing.
4.2.1 Apartment results. Using the optimized deep neural network,
we achieved an overall accuracy of 78.2% in classifying the ac-
tions from our first data set. As illustrated in Fig. 4, the actions of
knocking (97.5%) and walking by (94.6%) demonstrated the high-
est accuracy rates. The accuracy of the walking by action holds
particular significance within the apartment environment, as it
demonstrates the system’s effectiveness in detecting instances of
individuals passing through the TX/RX signal path. By achieving a
high level of detection for walking by, it substantially reduces the
occurrence of false alarms, thereby enhancing the system’s overall
reliability.

Conversely, the action with the highest misclassification rate is
package placed, achieving an accuracy of only 52.76%. The lower
accuracy of the package placed action can be attributed to the
near-identical nature of package placed and package taken actions,
differing only in the presence of an object at the doorstep. The
placement of the TX/RX pair in the middle of the front door may
lead to weakened signals reaching the bottom of the door where
the package is positioned. However, since both actions fall under
the category of package events, the higher misclassification rate of
package placed as package taken does not compromise the system’s
fundamental ability to trigger real-time alerts for package-related
events.

The most critical accuracy is package taken, in which the apart-
ment model correctly classified and triggered real-time alerts 78.4%



Wi-Alert: WiFi Sensing for Real-time Package Theft Alerts at Residential Doorsteps MobiHoc ’23, October 23–26, 2023, Washington, DC, USA

78.4% 9.0% 0.0% 9.1% 3.5%

43.3% 52.8% 0.0% 0.0% 4.2%

0.2% 0.0% 97.5% 4.0% 0.0%

0.0% 2.3% 28.2% 69.5% 0.0%

3.9% 1.2% 0.0% 0.3% 94.6%

Package Taken

Package Placed

Knocking

Standing

Walking By

Predicted Class

Package Taken

Package Placed

Knocking

Standing

Walking By

T
ru

e 
C

la
ss

Figure 4: Confusion matrix for the apartment environment
(Accuracy: 78.2%)
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Figure 5: Confusion matrix for the house environment
(Accuracy: 77.4%)

of the time. Since package theft events are the primary concern, this
level of accuracy significantly contributes to enhancing security by
effectively detecting and notifying homeowners of potential theft
incidents.

4.2.2 House results. The optimized model for the house environ-
ment data set had an overall accuracy of 77.4%. Fig. 5 illustrates
that, out of the five actions, the system displayed high accuracy in
detecting package taken events (85.9%). Conversely, the standing
action demonstrated the lowest accuracy, with a detection rate of
only 56.55%. The standing action was mainly confused with the
knocking and doorbell actions.

In contrast, both the knocking (85.6%) and doorbell (82.3%) ac-
tions exhibited significantly higher accuracies than the standing
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Figure 6: The impact of training data percentage on the
accuracy in both environments.

action and were infrequently mistaken for one another. This could
be attributed to their distinct characteristics. Knocking typically
follows a rhythmic impact pattern, whereas the doorbell action gen-
erates a consistent signal. These unique attributes likely generate
discernible patterns in the gathered CSI data, facilitating accurate
differentiation by the model. The standing action may often be
mistaken for the other two since all three actions involve moments
of stationary posture, particularly during the approach to the door
before initiating the action. This resemblance in the early stages
might lead to similar WiFi signal patterns.

A notable difference in accuracy was observed for the package
placed action between the house and apartment environments. In
the apartment setting, the accuracy was 52.8%, while it increased
to 75.4% in the house environment. The difference in accuracy
could be attributed to the positioning of the TX/RX pairs in the
house environment. Additionally, the presence of walls, corners,
and other obstacles in the apartment hallway could cause reflections
and multi-path effects, making it more challenging for the system
to accurately detect the package placed action.

4.3 Challenges
One of the key challenges we are currently tackling is ensuring our
system’s adaptability across diverse environments. We are explor-
ing many options for achieving this objective, including analyzing
how training data quantity affects accuracy. To this end, we con-
ducted experiments using varying percentages of training data. The
trends observed as training data proportions ranged from 30% to
70% are depicted in Fig. 6. The highest accuracy is consistently
attained at the 50% training data mark, aligning with the testing
size hyperparameter employed by both our optimized models. The
graph reveals a general trend across the models, providing strong
evidence that the model effectively learns and recognizes the under-
lying patterns associated with each action, regardless of the specific
conditions of those environments. This discovery suggests that the
model can generalize, indicating the potential for an environment-
independent model—a concept we intend to investigate during our
future research [11].
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Another approach we are considering to address the system’s
limited adaptability involves conducting further experiments and
data collection across various residential settings.We plan to engage
more volunteers and find TX/RX placement alternatives suitable for
multiple environments. For instance, one idea involves discreetly
positioning the transmitters closer to the ground, integrating them
into structures such as rocks or even beneath the soil. This setup
could apply to various settings while also enhancing the system’s
inconspicuous nature.

Furthermore, we are actively working to improve the model’s
ability to distinguish between closely related actions, such as pack-
age placed and package taken. To enhance our model’s performance,
we are researching various strategies. Firstly, we are exploring po-
tential environmental improvements, such as experimenting with
different TX/RX positions, as research has shown that placement
adjustments can substantially enhance accuracy [21]. Moreover,
we are considering integrating an additional TX/RX pair along the
bottom width of the door, aimed at generating a more direct Line
of Sight (LOS) for package events. Simultaneously, we also want
to explore more advanced techniques for model optimization, such
as federated learning [6] and transfer learning [3] to enhance our
model’s development process.

Note that while WiFi sensing mitigates privacy risks, research
has demonstrated that unauthorized entities can still exploit ambi-
ent WiFi signals to extract certain information [5, 22, 24]. Recent
efforts have introduced potential remedies [9, 16]. We will study
howWi-Alert could benefit from incorporating these solutions to
protect against such privacy breaches.

5 CONCLUSION
In this research, we introduce Wi-Alert, an innovative and cost-
effective WiFi sensing package detection system designed for res-
idential doorsteps. Since the rise of online shopping, package de-
liveries to homes have significantly increased, making front door
security a pressing concern. Compared to existing commercial solu-
tions, our system offers a low-cost, privacy-preserving, and versatile
approach to monitor for potential security threats. As demonstrated
through comprehensive evaluations in various environments, our
system can detect multiple actions using optimized deep neural
networks.

With its real-time alert capabilities, Wi-Alert is an efficient tool
in addressing the growing challenge of package theft, offering a
proactive and practical approach to safeguarding deliveries and
ensuring a sense of security. As we continue refining and expanding
Wi-Alert’s features, its significance in curbing package theft will
likely play an increasingly vital role.
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