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Abstract—Overlay network topologies provide different net-
working applications an abstraction over underlying network
architecture. Therefore, their construction and the resulting
topological characteristics play a crucial role in the performance
of operations running in these applications. Thanks to their small
diameters, scale-free (power-law) overlay network topologies are
one of the structures that offer high performance for these
networks. However, a key problem for such networks is the high
connectivity (i.e., load) in only a small portion (i.e., hubs) of
nodes. In fact, the nodes in such scale-free overlay networks
may not want or be able to accomplish such high connectivity
due to technical restrictions. Therefore, some hard cutoffs are
often imposed on the number of edges that each node can
have, making them limited scale-free networks. In this paper,
we discuss and analyze the growth of such limited scale-free
networks and propose an algorithm aiming to achieve perfect
scale-free overlay network topologies with low communication
overhead and without global information usage during its con-
struction phase. Through extensive simulations, we also evaluate
the proposed approach and show its superiority over the existing
solutions.

I. INTRODUCTION

Overlay networks have recently gained popularity since

they offer enhanced functionality to end-users by forming

an independent virtual network over the underlying native

(i.e. physical) layer. Today many applications (e.g. peer-to-

peer networks) use overlay networks for abstraction from the

underlying layers.

The topological characteristics of the formed overlay net-

works have profound impact on the efficiency of operations in

the corresponding applications (e.g. searching in peer-to-peer

networks). Clearly, if it is applicable in real deployment, one

of the best performances can be achieved when the overlay

topology is scale-free or has power-law degree distribution

thanks to small network diameter of such topologies. However,

constructing such scale-free overlay topologies is challenging.

Also, in these networks, a very few percent of nodes (i.e. hubs)

are required to have high connectivity (i.e. load). However, the
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nodes/peers may not want or be able to accomplish such high

connectivity due to technical restrictions. Therefore, some hard

cutoffs are often imposed on the number of edges that each

node can have, making them limited scale-free networks [16].

Obviously, as the value of hard cutoff decreases, the diameter

of the network increases, thus the worst case performance of

the operations of applications may decrease.

In this paper, we focus on the construction of scale-free

overlay network topologies which combine the benefits of

networks with scale-free property and overlay network abstrac-

tion. Such networks have been utilized in several applications

including peer-to-peer networks [1], wireless ad hoc and

sensor networks [2] and even database networks [3] thanks

to various performance improvements that they offer. Having

the aforementioned challenges and limitations, we propose

a growth model that constructs a scale-free overlay network

topology having the following properties: (i) high adhered to

scale-freeness: as the more the overlay networks adhere to

scale-free property, the more benefit the applications get from

scale-free features, (ii) limited: so the practical limits on node

connectivity can be imposed, (iii) cost-efficient: as it reduces

the communication overhead incurred during construction and

does not use any global topology information, and (iv) param-

eterized: as the desired post-construction parameters (i.e. γ)

of the scale-free network can be predetermined.

The rest of the paper is organized as follows. In Section II,

we give a background on scale-free overlay networks and talk

about previous work on growth models for scale-free networks.

In Section III, we present our analysis on the growth of limited

scale-free networks and in Section IV, we continue with the

details of the proposed growth model. Section V presents the

simulation results in which we evaluate the performance of

the proposed model and compare it with existing work in

terms of several metrics. Finally, we end up with conclusion

in Section VI.

II. BACKGROUND

A. Scale-free overlay networks

Scale-free networks have attracted a great deal of research

interest since the discovery of scale-free property in many

natural and artificial systems such as the Internet [4] and

scientific collaboration network [5]. In these networks, nodes

are connected according to the power-law degree distribution.

That is, the degree distribution of nodes does not depend on



the number of nodes in the network. The probability that a

node has degree i is proportional to P (i) ≈ i−γ , where the

exponent is often limited to the range 2 ≤ γ ≤ 3. However, in

limited scale-free networks, only nodes with degrees smaller

than the hard cutoff comply with this rule. We will elaborate

on this later.

Scale-free networks have many interesting properties such

as high tolerance to random failures and attacks [6], high

synchronizability [7], and resistance to congestion [8]. More-

over, scale-free networks also have small-world properties.

Their diameters or the mean hop distance between their nodes

scales with the system size logarithmically, in the range

of [O(ln(ln(n))), O(ln(n))], depending on network parame-

ters [9]1. To benefit from these properties, scale-free overlay

network topologies have been used in several applications.

In peer-to-peer networks [10], they have been used to make

these networks scalable and increase the search efficiency. In

wireless ad hoc and sensor networks [2], high degree overlay

nodes are placed at the physical nodes with more power and

often serve as the network’s routers. Moreover, in database

networks (e.g. GaianDB [3]), they have been used to reduce

the cost of query retrieval from database nodes.

B. Growth of Scale-Free Networks

There have been many growth models proposed for scale-

free networks in network science. Barabasi-Albert (BA)

model [12] is one of the well-known algorithms in the lit-

erature proposed to generate scale-free networks. It applies

‘preferential attachment (PA)2’ of new joining nodes to exist-

ing nodes in the network. Each joining node selects to connect

to existing node j with probability pc(j) that is proportional to

the existing node’s current degree, dj . Thus, with n denoting

the total node count in the network:

pc(j) =
dj

∑n
i=1 di

Each joining node computes p(j) for each existing node in the

network and selects k (predefined growth model parameter) of

them to connect to. The network formed by BA model simply

produces a power-law degree distribution with γ = 3, thus

P (i) ≈ i−3. There are also other models that differ from the

BA model in terms of the function used to compute pc(j).
However, they all adopt the idea of preferential attachment.

Interested readers can review different models in [15].

One of the important characteristics of scale-free networks

is the natural cutoff of the node degrees due to the finite

network size effect. Natural cutoff as defined in [15] is the

value of the degree such that at most one vertex can be found

1The diameters of limited scale-free networks are naturally bigger and scale
differently than the diameters of scale-free networks without hard cutoffs.

2The idea of preferential attachment indeed is equivalent to Yule pro-
cess [14], which is used to model the distribution of sizes of biological taxa.
Its first application to growth of networks (specifically to citation networks)
is by Price [13] under a mechanism called ‘cumulative advantage’. The name
‘preferential attachment’ and its popularity as scale-free network models is
because of Barabasi and Albert’s work [12] which indeed independently
rediscovered the same growth model on the web.

with the higher degree. It is computed as ≈ kn1/(γ−1) [16].

For the scale-free networks generated by the BA model

(γ = 3), the natural cutoff is ≈ k
√
n.

A natural cutoff may not always be achievable due to

technical and topological constraints. In practice, there is often

a limit (hard cutoff [16]) on the number edges that the nodes

can have. Therefore, in this paper we focus on the limited

scale-free networks and study the growth models on such

networks. This is different than most of the previous works

which study the growth of scale-free networks with no hard

cutoff.

Moreover, the degree distribution of nodes in the topologies

generated by previous growth models complies with only a

single exponent γ because the preferential attachment process

is designed independent from γ. In this paper, we propose a

growth model which defines the connection probability of new

joining node to existing nodes according to the desired γ value

that will comply with the degree distribution of nodes in the

final topology.

In the construction of an overlay topology, it is also impor-

tant to do the construction efficiently. Even though the growth

of scale-free topologies has been extensively studied, less

focus is given to the applicability and construction overhead

of growth models. In a real network application (such as

peer-to-peer networks), the growth of such scale-free overlay

topologies may cause high communication overhead between

nodes. Whenever a new node joins to the network, it needs

the current degree information of all nodes (global topology

information) to compute pc(j) for each existing node j and to

select which nodes it will connect. Different than this working

principle, in [3], Bent et al. propose a new growth model which

can reduce the communication cost. When a new node joins

the network, it sends a network-wide broadcast message (using

flooding) to announce its presence. Then, each existing node

receiving this broadcast message sends a response message

after a response time3 that is inversely proportional to the

node’s degree, di, expires. Finally, once the new node starts to

receive the responses from existing nodes, it connects to the

first k responders (since each new node connects only k of

the existing nodes at its joining time). This type of preferential

attachment method is a special case of computing by time [19]

that has an extra benefit of reducing the messaging traffic

during new node connection process. Each existing node

that has already sent or forwarded k different responses (of

other nodes or its own) to the newly joining node can stop

forwarding any other responses, since they will not have any

chance to be selected for connection.

Another type of algorithms which aim to reduce the con-

struction overhead adopt the idea of locality. In LLR algo-

rithm [18], authors propose to use the BA growth model with

the following modification. Only first x% of all nodes when

ordered according to their hop distances are used to compute

the connection probability (pc(j)) of each node. Therefore,

3The response time, td, is uniformly distributed between 0 and an upper

value, tu =
t0

di
, where t0 is a constant.



only the nodes in the vicinity of new node try to connect to it.

Even though this algorithm helps in decreasing the construc-

tion overhead, it causes divergence from scale-free network

topology. This is because some high degree nodes, which

indeed need to have high connection probability to new joining

nodes according to preferential attachment idea, may not be

close to the new node, thus they might be out of that predefined

x%. Similarly in [16], Guclu et al. propose algorithms for

building scale-free overlay structures for peer-to-peer networks

considering the locality in the preferential edge assignment.

For example, in the Hop-and-Attempt preferential attachment

(HAPA) algorithm they propose, each new joining node first

selects a random node and attempts to connect it. If it can

not achieve connection (due to hard cutoff and preferential

selection probability) or it needs more nodes to connect (to

fill all its k stubs), it jumps to a random neighbor of previous

node and attempts to connect to it. This continues until the

new node fills all its stubs. Even tough this algorithm works

locally, it still assumes that the nodes know the total node

count (n) in the network. The new node selects a random

number between 0 and 1 and it decides to connect to a visited

node j if that random number is less than pc(j) =
dj∑
n
i=1

di
,

where the denominator is indeed equal to 2nk (as a new node

joins the network, 2k edges are added to the total edge (degree)

count of the network). Moreover, since pc(j)s gets smaller as n
increases, as we will show in simulation section, this algorithm

may cause a new node’s connection attempt message to visit

other nodes in the network several times until it fills all its

stubs. As a result, it may sometimes incur higher cost than

the cost of a network-wide broadcast message.

Unlike in the previous work, in our approach, the new node

first decides the node degrees that each of its k edges should

connect to and then selects the nodes among those that have

the desired degrees. Here, note that among all nodes with a

specific candidate degree, selecting the one with closest hop

distance (which will be the most probable case considering

the arrival and reply of such connection message) from the

new joining node provides extra benefit of alignment with

underlying physical layer but does not disturb the scale-free

property of the topology.

III. ANALYSIS

In this section, we analyze the growth of limited scale-free

networks with n nodes, minimum degree of each node k and

exponent of power law γ. By definition, in such networks, the

nodes with maximum degree (hard cutoff is denoted by m)

form a separate group from other nodes in terms of degree

distribution:

P (i) = ci−γ for nodes with degree k ≤ i < m

P (i) = 1−
m−1
∑

j=k

P (j) for i = m

where c is a constant. Note that, in this definition, only the

nodes that have not yet reached degree m are guaranteed to

comply with the power-law degree distribution.

Our goal is to construct a topology that shows perfect

adherence to scale-free property. Moreover, we want to achieve

this without using any global information. We characterize

such a graph by its parameters: n, m, k and γ, defined above.

It is easy to show that the following inequalities must hold:

m > 2k (we excluded here the trivial case of m = 2k in which

all nodes of the graph are of degree m, trivially satisfying the

definition of power law distribution of node degrees), γ > 0,

and n > k. We are interested in generated graphs with the

number of nodes in the range k < n ≤ nmax and we assume

that nmax >> k.

In this paper, we assume a constant integer k for the number

of edges added by each joining node. However, it is a matter

of simple extension to have instead a vector [ki] of expected

frequencies with which i edges are added with the newly added

node such that k =
∑m

i=1 iki.
The three constants, k, m, γ are independent of each other

except that for certain values of m, and k, there is a lower

bound for γ’s.

Let ni denote the number of nodes with degree i in the

network with n nodes. By enumeration of all nodes:

n =
m
∑

i=k

ni (1)

By enumeration of all edges (each edge belongs to two nodes):

2kn =

m
∑

i=k

ini (2)

Substituting n in Eq. 2 with Eq. 1, and taking nm out, we

get:

nm =
1

m− 2k

m−1
∑

i=k

(2k − i)ni (3)

The power law degree distribution also yields the equation:

ni =
cn

iγ
for i < m (4)

Using Eq. 4 to substitute ni in Eq. 3, we get:

nm =
cn

m− 2k

m−1
∑

i=k

2k − i

iγ
(5)

Using enumeration of nodes (nm +
∑m−1

i=k ni = n) with

different node degrees, we can compute the constant c as:

c =
m− 2k

∑m−1
i=k

m−i
iγ

(6)

Note that in limited scale-free networks we cannot enforce

the power-law distribution for the nodes with maximum degree

m because their frequency is defined by Eq. 5. However, for

a given m and k, nodes with maximum degree will also have

frequency defined by the power-law (nm = cn/mγ) if γ
satisfies:

m− 2k

mγ
=

m−1
∑

i=k

2k − i

iγ
(7)



Since m > 2k, the left hand side of Eq. 7 is always positive,

its derivative for γ is − ln(m)(m−2k)/mγ while its value ap-

proaches (1−2k/m)m−γ+1 when γ tends to infinity. The right

hand side of this inequality can be initially negative, but for

large γ it must be positive. Its value approaches k−γ+1 when γ
tends to infinity and it has the derivative −∑m−1

i=k ln(i) 2k−i
iγ .

It is easy to show that the right hand side decreases slower

than the left hand side and therefore at most one unique value

of γ can satisfy Eq. 7. The unique solution exists if and only

if for γ=0, the right hand side is smaller than the left hand

side, m − 2k ≥ 2k(m − k) − (m − 1)m/2 + k(k − 1)/2
which reduces to (m− 2k+ 1/2)2 ≥ k2 + k− 1/2 and since

k2 < k2 + k − 1/4 < (k + 1/2)2 then we get m ≥ 3k.

Thus, only for m greater or equal to 3k, there exists a unique

value of γ for which the constructed graph will have power-

law distribution of all node degrees (including the nodes with

maximum degree m).

Now, we will work on the general case where the frequency

of nodes with maximum degree does not need to comply the

power-law distribution. To be independent of the graph size

n, we will use frequency fi = ni/n of nodes with degree i.
Then, substituting c in ni definition with Eq. 6, we get:

fi =
m− 2k

iγ
∑m−1

j=k
m−j
jγ

for i < m (8)

and

fm = 1−
m−1
∑

i=k

fi (9)

Eq. 8 and Eq. 9 express frequencies, fi’s, as simple func-

tions of m, k and γ.

Let’s consider now a growth of the graph from its size of n
nodes to the size of n+1 nodes. The added node has k edges

originating from it which are then connected to the existing

nodes, so on average it increases by 1 the number of nodes

with degree k, i.e. n′

k=nk + 1.

Let ai denote the average number of nodes that increase

their degree from i to i + 1 in one step of growth (so the

number of nodes of degree i decreases by ai while the number

of nodes with degree i+ 1 increases by ai) by connecting to

a newly added node. Of course, each existing node can add at

most one connection to a newly added node. Hence, we have

fk(n+ 1)=fkn+ 1− ak, so fk = 1− ak.

Similarly, fi = ai−1−ai for k < i < m−1, so by induction:

ai = 1−
i

∑

j=k

fj for k ≤ i < m− 1 (10)

Finally, am−1 = fm.

All frequencies must be positive. For that to hold4, it is

necessary and sufficient that
∑m−1

i=k
2k−i
iγ ≥ 0, which can be

rewritten as:

2k

m−1
∑

i=k

i−γ ≥
m−1
∑

i=k

i−γ+1 (11)

4Extended details and proofs are presented in our technical report [17].

1.8 2 2.2 2.4 2.6
0

50

100

150

200

250

300

γ

M
a

x
im

u
m

 c
u

to
ff

 (
m

)

k=1

k=2

k=3

Fig. 1. Maximum cut off (m) values for different k’s in perfectly growing
scale-free graph.

If this condition is not satisfied, it is always sufficient either

to appropriately increase γ or k or to sufficiently decrease m.

Other changes to these parameters may or may not, depending

on the particular values of the parameters, also cause the

inequality of Eq. 11 to be satisfied. It is easy to notice that

for γ ≥ 3 this inequality is satisfied for arbitrary m and k.

Figure 1 plots the maximum values of m for given γ and

k values. It confirms that the maximum value of m goes to

infinity for γ ≥ 3.

IV. PROPOSED GROWTH ALGORITHM

Following the analysis in previous section, here we present

our Candidate-Degree-Selection (CDS) based growth algo-

rithm for constructing overlay topologies with power-law

degree distribution of desired γ. The algorithm is distributed

and uses randomness. It starts with an initial configuration of

a fully connected graph of k + 1 nodes. When a new joins

the network, it randomly decides the degrees of nodes that it

will connect. To this extend, it generates k random numbers,

r1 . . . rk, each in range [0,1] and finds the degree that each

random number corresponds to. We define vi’s as:

vk−1 = 0

vi =
(

vi−1 +
ai
k

)

∀ k ≤ i ≤ m− 1

where ai’s are computed in previous section. The random

number ri corresponds to the degree l such that vl−1 ≤ ri < vl
is satisfied. Having computed all k node degrees that it wants

to connect, the new node then broadcasts a message with these

degree values in the message. Once the existing nodes in the

network receive such a message, the nodes of the desired

degrees respond to the new node to make a connection with the

new node. Then the new node selects the first k of the nodes

with desired degrees and connects them. Here, note that, there

may not exist nodes with the desired degrees, which is likely

only at the earlier stages of the network growth, until the first

node reaches the degree m. In such cases, new node broadcasts

a special request for the lower degree nodes5, after the period

of response for the original broadcast passes.

5Such a broadcast will be run only a limited number of times over the
initially small network, so its impact on the communication overhead is
negligible.
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Fig. 2. Degree distributions in different growth models (n = 5x104).

V. SIMULATIONS

To compare the proposed growth model with existing al-

gorithms, we generated different topologies (consisting of n
nodes) using different k, m and γ values. We start with a fully

connected network of k+1 nodes and add a new node to the

network following the connection mechanisms of each growth

model. The new node selects k of the existing nodes (which

have not reached its maximum edge limit) according to the

algorithm in use and connects to them.

The algorithms we compare in the simulations are listed

in Table I. As the table shows, BA model needs the global

topology information (degrees of all nodes). Even though

HAPA model does not need degrees of each node, it still

needs the global knowledge of total node or edge count in

the network. On the other hand, Gaian and CDS models do

not use any global knowledge. While other models can only

generate a network of fixed degree distribution exponent (γ),

CDS model can create topologies with desired exponent (so

with desired network properties such as diameter).

Model Global knowledge used Flexible exponent (γ)

BA [12] Degrees of all nodes No

HAPA [16] Total node count No

Gaian [3] None No

CDS None Yes

TABLE I
COMPARISON OF GROWTH MODELS

In Figure 2, we show the degree distribution in topologies

constructed by the compared algorithms. Since our algorithm

can produce a scale-free network with a desired γ exponent,

we generated several network topologies with different γ
values. However, the other algorithms can yield a network

only with a single γ value. The figure clearly shows that the

topologies created by our algorithm perfectly match with the

desired degree distribution of used γ values in the construction.

On the other hand, the other algorithms can not achieve a good

scale-free distribution even though some use global topology

information during construction. There is a curve rather than

a line in their results.

In Figure 3(a), we present the communication overhead (e.g.

number of messages) during the construction of a scale-free

network by each algorithm. In all algorithms except HAPA,

when a node wants to join the network, it sends a broadcast

message to announce its presence. Then, in BA algorithm

every node sends its current degree count back to the new

joining node. In Gaian algorithm, as we mentioned before,

each node only sends (or forwards) at most k messages

(containing degree of the corresponding node) towards the

new joining node. This is also true in our algorithm but in

our algorithm only the nodes with desired degree respond,

so the communication overhead is lower than in the Gaian

model. In HAPA algorithm, the new joining node first selects

a random node and attempts to connect. Then it randomly

walks in the network through neighbors until all its stubs are

filled (i.e. k eligible nodes are found to connect). Even though

HAPA algorithm is a localized algorithm, since each connec-

tion attempt by new node becomes successful by preferential

attachment rule (i.e. with probability pc(j)) and only if the

attempted node has edge count lower than the hard cutoff

value, the new node’s connection attempt message needs to

travel a lot (sometimes a node is visited several times). Thus

it results in a large messaging overhead6. Figure 3(a) shows

that among all algorithms, the overhead in our algorithm is the

6The overhead of HAPA algorithm in Figure 3(a) does not include the over-
head that will be generated for maintenance of total node count information
at each node of the network. Its overhead will be much higher if that would
also be included.
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Fig. 3. Comparison of all algorithms according to different metrics.

smallest. When we consider this result with the perfect degree

distribution our algorithm achieves with a given exponent

and without any global information, we can clearly state its

superiority over other algorithms.

Finally, we compare the algorithms in terms of search

efficiency in unstructured peer-to-peer networks. We utilized

flooding (FL) and normalized flooding (NF) type searching

to find average hit ratios on the networks constructed by the

compared algorithms. In FL search the source node sends a

message to all its neighbors. If the neighbors do not have

the requested item, they send the message to their neighbors,

excluding the source node. This process is repeated a certain

number of times (TTL). However, in NF search [20], when

a node receives the message, it forwards the message only to

randomly chosen k neighbors, except the one that forwarded

the message. Thanks to this limited forwarding, the messaging

redundancy caused by FL search is reduced while remarkably

good hit ratios are achieved. When we compare the FL and

NF based search efficiency in the topologies (with n = 10k
nodes) constructed by the compared algorithms, we observe

the following results. While in FL based search (Figure 3(b)),

our algorithm with γ = 3.5 (HAPA algorithm is closest to it)

achieves the best hit ratios, in NF based search (Figure 3(c)),

our algorithm with γ = 2.5 together with BA and Gaian

algorithms achieves the best hit ratios. Since our algorithm

can create a perfect scale-free network with a desired γ value,

the γ value that gives the best search efficiency for the given

search algorithm can be used to create the scale-free overlay

topology and the performance of searching can be increased.

VI. CONCLUSION

In this paper, we introduced a new algorithm for growing

limited scale-free overlay network topologies. Unlike previous

growth algorithms, it can create a topology with a given

γ value and the topology created shows perfect adherence

to scale-free degree distribution. It does not use any global

information and its messaging overhead is lower than previous

algorithms. It can also provide better search efficiency once its

γ value is adjusted according to the search algorithm. In future

work, we plan to look at the network characteristics when node

joins and leaves occur at the same time. Moreover, we will also

show the benefit of our algorithm’s flexible-γ-based topology

creation ability on other applications.
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