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ABSTRACT
By using personal mobile devices, participatory sensing pro-
vides an alternative to deploying dedicated mobile nodes to
perform data acquisition tasks in areas where human car-
riers are already present. However, this application comes
with some unique challenges. In this paper, we study the
challenges resulting from social concerns of participants in
a participatory sensing application and propose a socially
aware auction mechanism to address them. Through simu-
lations, we compare the proposed mechanism to several ex-
isting mechanisms. The results demonstrate that, with the
right configuration, our proposed mechanism can decrease
the cost for the data sinks and decrease the privacy loss and
battery usage of participants while preserving their partici-
pation.

Categories and Subject Descriptors
C.2.4 [Computer Communication Networks]: Distributed
Systems

General Terms
Design

Keywords
participatory sensing, privacy, market mechanism

1. INTRODUCTION
Participatory sensing relies on participants contributing

observed data to build a data collection [1] [2]. It can also be
considered as a potentially commercializable or voluntary-
based type of a distributed sensor or mobile network.
There are many examples of participatory sensing applica-

tions in real-world [3] [4] [5]. We specifically focus on the set
of applications where there is a sensing campaign with the
objective of maintaining a set of sufficiently recent sensor
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readings (such as vehicle emissions) from adequately cov-
ered area. Since mobility is an energy-intensive activity, we
rely on human mobility to move the sensors. Smartphones
with sensing capabilities are examples of devices that are
routinely carried by people. Thus, in this paper we consider
the sensor platform to be personal phones and mobility to
be restricted to human mobility.

Human-centric sensing invokes several challenges includ-
ing the mitigation of social concerns. One such challenge
is balancing power usage between normal activities such as
phone calls, and sensor readings. Another one is how to over-
come recruitment constraints such as budget restrictions or
human constraints such as motivation, availability, and pri-
vacy. Since applications that we consider in this paper re-
quire data about spatio-temporal coordinates of collection,
privacy is particularly important.

In this paper, we propose to use a reverse auction mecha-
nism to address both the retention of participants and their
social concerns arising from participation (e.g. Figure 1) at
the same time. Participation rewards requires that the fre-
quency of sensing for a participant is not too low while social
concerns require the frequency of sensing is not too high.

The rest of the paper is organized as follows. In Section 2,
we discuss design considerations in market mechanisms, and
describe some existing auction mechanisms. In Section 3, we
give the details of the system. Next, in Section 4, we describe
the proposed auction mechanism that aims to address social
challenges of participatory sensing. We perform extensive
simulations in Section 5 and evaluate the performance of
the proposed mechanism. Finally, we close the paper with
conclusions in Section 6.

2. BACKGROUND

2.1 Design Considerations
In a reverse auction mechanism, participants configure

their devices to make bids whenever a data sink notifies
the device that an auction has started. The data sink then
uses an auction mechanism to choose which participants will
take sensor readings and send data, as well as deciding the
amount of incentive to award each participant chosen to pro-
vide data. Participants have the objective of maximizing
their incentive over the course of their participation, while
each data sink has the goal of minimizing the incentive paid
while satisfying constraints on data age and coverage.

When using a reverse auction, the type of the auction
mechanism used is vital as it will decide which participants

Bolek
Typewritten Text

Bolek
Typewritten Text
Proc. ACM Workshop MiSeNet at Mobicom'12, Istanbul, Turkey, August 26, 2012  

Bolek
Typewritten Text

Bolek
Typewritten Text

Bolek
Typewritten Text

Bolek
Typewritten Text

Bolek
Typewritten Text

Bolek
Typewritten Text

Bolek
Typewritten Text



Figure 1: A participatory sensing system

win each round and what their payouts are. A mechanism
that is poorly designed may be difficult for users to use effec-
tively, may cause significant excess payout, and may lead to
decreased participation. The participants should be able to
make informed decisions about their bids, so the mechanism
should be transparent (i.e., the mechanism details should be
made public), and easy to understand. The number of pa-
rameters should be kept small to make it easier for users to
pick a price point and strategy. Moreover, the mechanism
should be incentive compatible to simplify bidding. With
incentive compatible mechanisms, all parameters relating to
user opinion can be encapsulated into a single parameter
(which we will refer to as the base price or pbase).
The auction mechanism can also be used to regulate fair-

ness and winner frequency. A mechanism selecting winners
from a small subset of participants may cause other partic-
ipants to leave the campaign or the local market. This can
be desirable if only participants with unrealistic expectations
are leaving, but is harmful if participants that would other-
wise remain and have reasonable budget requirements leave.
Thus, a mechanism should become less selective if partici-
pation is rapidly declining due to participants winning too
infrequently. If participants win too frequently, they may
raise prices either as a bidding strategy, or due to increased
loss of privacy (i.e., the privacy loss from providing data (in-
cluding location) two months apart is much smaller than in
case of providing data two minutes apart). This may lead
to participants leaving campaign or the budget of the sens-
ing campaign being exhausted much faster than necessary.
Thus, the mechanism should regulate both participation and
incentive.

2.2 Previous Mechanisms
Next, we will give the details of some auction mechanisms

previously proposed in literature.
First Price Auctions: A classic auction is the first price

sealed bid auction. All participants that are competing for
incentive in a given auction submit bids simultaneously to
provide one of the N required sensor readings. The auc-
tioneer (data sink), which in our example problem is a cell
tower, waits until all bids are received and then select the
N cheapest bids received as winners. This mechanism is

very easy for the auctioneer to run. However, from a par-
ticipant’s standpoint this type of reverse auction is difficult
to understand. Since winners pay what they bid, the bid
cannot reflect their true valuation so the first price reverse
auction is not incentive compatible. The bidding strategy
in a first price auction is dependent on a given participant’s
perception of all other participants’ strategies. Making a
decision about what amount to bid is non-trivial and may
deter accurate bidding and participation.

Reverse Auction based Dynamic Price incentive
mechanism with Virtual Participation Credit (RADP-
VPC): RADP-VPC is a modification of the first price auc-
tion that is designed with reverse auctions in mind [8]. For
every consecutive round in which participant loses, the cor-
responding bid is decreased by a constant α. The auctioneer
ignores this virtual participation credit when awarding in-
centive, so the participant’s odds of winning are improved
without decreasing payout. The auction is run in all other
aspects like a first price auction. To promote rejoining the
auction by dropped out bidder, the mechanism notifies them
of the highest winning bid in the current round.

Participation Incentive Generalized Vickrey Auc-
tion (PI-GVA): An alternative to the first price auction is
the Generalized Vickrey Auction, which is incentive compat-
ible. The Participation Incentive GVA mechanism computes
for each participant a score that encapsulates the expected
and actual number of times a participant has won, as well as
the corresponding bids [9]. PI-GVA has a parameter µ which
determines the weight of the average bidding term. The auc-
tioneer uses the scores in computing prices for selecting win-
ners. PI-GVA as originally described is a forward auction,
to make it a reverse auction bids are negated and the small-
est scores are used. Despite the complexity compared to the
previous two mechanisms, PI-GVA is easy for participants
to understand if they realize it is incentive-compatible. PI-
GVA also has the desirable property of being effective even
in recurring auctions. This means that the mechanism re-
tains sufficiently many participants to maintain competition
even as participants learn information as the recurrent auc-
tion progresses.

3. SYSTEM DESCRIPTION

3.1 Spatial and Temporal Details
We consider a system in which there exist one or more

data sinks which operate independently of each other. The
coverage areas of data sinks are not guaranteed to be mutu-
ally exclusive. A data source may be in transmission range
of several data sinks at any given time. In such a case, no
sink has information about to how many other data sinks a
data source is attempting to report, or how many auctions
run by other sinks it has won. In simulating this system, a
clock is kept and times assigned to data source movements.
Data sinks require data whenever they have insufficient data
about the area they cover. Data recorded has an aging time
which indicates how long the data can be used. Once the
aging time has elapsed for a given data point, the data sink
will act as though that data point does not exist when de-
termining if additional polling is necessary. Currently, we
assume that the data sink does not use any spatial infor-
mation about data source locations to select the winning
sources of a round. Instead the data sink looks at its area
of coverage which is defined on a discrete grid as ncover and



requires fcoverage × ncover data sources to report. fcoverage
is a coverage factor which can be adjusted based on the level
of overprovisioning in the system1.
Since battery levels and subsequently power consumption

are important time-varying details, we incorporate them into
the system. Power consumption caused by sensing and theo-
retical protocol overhead are far greater than baseline power
consumption for just staying connected to a tower. As a re-
sult, we model power cost for each sensing event to be a
constant application specific value. Moreover, since we fo-
cus on participatory sensing, we do not consider the decrease
in battery for baseline operations, phone calls, or other em-
bedded applications. We also do not account for recharging
batteries. Each experiment is run over such a span that no
battery is depleted.

3.2 Participation
Each participant is assigned a true value, denoted as pbase,

randomly chosen from a uniform distribution. When a par-
ticipant wins an auction (a data sink soliciting measure-
ments chooses to use that participant’s data source), there
is a probability Pinc that the participant’s bid will raise in
future auctions. When a participant loses an auction, there
is a probability Pdec that the participant’s bid will decrease
in future auctions, but not below pbase.
Each participant i is also assigned a tolerance level to

losses, controlled by parameter βi, chosen from a shifted
exponential distribution as βi = βmin + e−x, where x is
uniformly randomly chosen from [0, 1]. Like in [8], it is used
in a Return on Investment (ROI) calculation that decides if
the participants drops out of auction or not. However, ROI
computation is delayed until a participant tries to decrease
the bid below pbase. We refer to this event as the ‘minimum
state’. We do not count rounds prior to minimum state in
the ROI calculation. This gives participants time to stabilize
in the early stages of the auction, so even participants with
a low tolerance to losses participate for several rounds to
assess the market competition.
Whenever the ROI value for a participant falls below 0.5

(which means that the participant received less than half
expected wins), that participant and the associated data
sources are no longer considered in any auctions for the du-
ration of the simulation. We also assume that the partici-
pants will never rejoin an auction after quitting2.

4. PROPOSED MECHANISM
In this section, we propose a new reverse auction mech-

anism which aims to address the social concerns of par-
ticipants. We call it, ‘Privacy, Power, and Participation
aware Auction Mechanism (P3AM)’. It is based on a first
price auction but varies both in terms of the modification
of participants’ bids and selection of winners. The mecha-
nism has a parameter Pcheapest that determines how many
of the winners are chosen based on having the cheapest bids.
Pcheapest% of the N winners are determined in this manner.
The other winners are selected from the participants that

1In the presented solution the data collected by a cell tower
are averaged to represent the measurement over the entire
area or tower coverage, in future work, we will collect data
from each grid cell separately.
2In our future work, we will examine the impact of par-
ticipants rejoining auctions and variable ROI thresholds for
leaving the auction.

have the lowest current RoI with ties resolved by selecting
the lowest pbase. This provides encouragement to partici-
pants who are most in danger of dropping out recently while
still discouraging users with exceptionally high prices. By
doing so, participation is encouraged which means that the
level of competition stays high in a recurring auction.

The bid that the auctioneer sees is

b = pbase × fpower × fprivacy.

In our current experiments, fpower is a hyperbolic function
based on the current power level λpow which is between [0,1]:

fpower =
1

λpow
.

fprivacy is an exponential function based on tlast which
is the time elapsed since a given participant last won an
auction for the data sink running the current auction. In our
system tlast is expressed in the number of auction rounds.

fprivacy =

{

2(1/tlast) tlast > 0
1 tlast = 0

Here note that with the introduction of fpower and fprivacy,
our goal is to address the social concerns of users. If the
power of a participant’s device is decreasing, then the par-
ticipant should have a higher bid since power is more scarce
for them. We chose a hyperbolic scheme for fpower because
depending on the current power level for a participant, the
value of 1 unit of power may differ. For example, when a
power level is near 100%, a loss of 1% is not a threat to
continued operation of the participant’s device. However, if
only 10% of the participant’s battery is left, then the same
1% is much more valuable. Note that, even though battery
level is a hardware concern, the valuation of battery level
based on the behaviors and perceptions of participants and
the current state of their devices is a social concern.

If a device belonging to a participant is sensing frequently,
the participant should be awarded higher incentive. This
recognizes loss of privacy associated with sending data with
location of device to the sink. Since different participants
may have differing valuations of privacy we did not use the
solution from the previous work by Danezis et. al. which
uses a fixed incentive to compensate participants for such
costs [10]. Instead, we have an exponentially increasing term
in fprivacy so the mechanism inherently will not choose a par-
ticipant many times unless the participant has a low valua-
tion of privacy and low bids. Although participants cannot
explicitly change their privacy valuation, they can incorpo-
rate their privacy valuation into the value they select for
pbase.

5. SIMULATIONS
To evaluate the performance of proposed mechanism, we

did simulations with different configurations over 950 auc-
tion rounds with 100 runs. The inter-auction round time
was set empirically as 1/950 of the time needed by at least
one participant to exhaust its battery below 10% level. In
each experiment, a 11x11 grid (as shown in Figure 2) was
used with 4 detectors (i.e., cell towers) positioned approxi-
mately in the center of each quadrant. Each detector covers
59 vertices (49% of the grid), meaning there are vertices
covered by multiple detectors. 255 participants were used
with each participant having one data source. Each par-
ticipant moves according to a random mobility model. 15



Figure 2: Experiment Schematic

vertices lie in ‘points of interest’ where measurements are
taken. There are 3 non-adjacent rectangular points of inter-
est. The rest of the vertices register a reading of 0 whenever
a data source attempts to sense that location. Participants
do not try to abuse the system through collusion or in the
case of P3AM via extremely high bidding. In our experi-
ments we set fcoverage to 0.1.
We chose several values for bounds on true valuation and

β and used each possible parameter value in conjunction
with each mechanism-specific parameter. This led to 405
configurations for P3AM, 81 for RADP-VPC, 135 for PI-
GVA, and 27 for first price for a total of 648 configurations.
True valuations are in incentive units, not a particular

currency. Each participant will increase its bid by 10% with
probability Pinc = 0.5 if it wins an auction round. Similarly,
each participant will decrease its bid by 20% with probability
Pdec = 1.0 after losing an auction round.

Table 1: Mechanism-specific Parameters
Mechanism Parameter Values
P3AM Pcheapest (%) 0,25,50,75,100
RADP-VPC α 0.1,0.5,0.9
PI-GVA µ 20,50,100,500

We ran two sets of experiments (each set consisting of the
648 configurations described above). In Dataset I, βmin was
set to 500000 which ensured that nobody stopped partici-
pating. In Dataset II, βmin was selected between 50 and
100. Table 1 shows the values we used for other parameters
of each mechanism.
In Figure 3, we examine the evolution of measurements

sent to a detector (regardless of if they are a PoI or not)
by looking at the average number of measurements accu-
mulated over time. While initially all four mechanisms per-
form the same, first price quickly diverges from the other
three mechanisms. This demonstrates the myopic nature of
first price auctions and shows that the addressing of social
concerns in P3AM does not negatively affect the number of
measurements taken when compared to participation-centric
mechanisms.
Next, in Figure 4, we show the the relationship between

Pcheapest and the average number of participants for P3AM
in Dataset II. When Pcheapest is raised from 0% to 25% there
is not much change observed in participation. As Pcheapest

Figure 3: Average Cumulative Measurements
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continues to increase, the number of experiments with 225
or more participants steadily declines. This indicates that
there is a tradeoff between incentive paid out (budget) and
participation. By utilizing the fairness aspect of P3AM to
retain participants that are not optimally priced during a
given round, overall participation can be maintained. This
is important since participation is necessary to keep com-
petition and to avoid explosion of prices or compromising
privacy.

Figure 4: Average Participation by Pcheapest (Dataset
II)
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We examined how mechanism-specific parameters affected
the average detector payout (θ) in Dataset I. The results
are shown in Figures 6, 8, and 10. Pcheapest has a visible
effect on the range of θ with lower Pcheapest giving a higher
minimum and maximum θ. Neither α in RADP-VPC nor µ
in PI-GVA significantly affect the values of θ. Recalling the
analysis of Pcheapest on active participation, we can see that
indeed budget and participation are tradeoffs parameterized
by Pcheapest.

To examine privacy, we looked at the average inter-win
bid time in P3AM, RADP-VPC, and PI-GVA. This was de-



Figure 5: P3AM Average Intewin
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Figure 6: P3AM Detector Payout
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Figure 7: PI-GVA Average Intewin
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fined as the average number of ticks that elapsed between
two wins for a given node. The averages across all experi-
ments in Dataset II and all participants in each experiment
for a given mechanism are shown in Figures 5, 7, and 9.
From these results we can see that, as in the case of θ, only
Pcheapest has an effect. As Pcheapest increases and P3AM
becomes more similar to a first price auction, the maximum
interwin bid time increases. This demonstrates the expected
tradeoff between privacy and fairness. When fairness is em-
ployed, participants with very low tolerance to loss will be
selected frequently despite their bid b. This results in very
low interwin times. When Pcheapest is very high, the mech-

Figure 8: PI-GVA Detector Payout
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Figure 9: RADP-VPC Average Intewin
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Figure 10: RADP-VPC Detector Payout
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anism becomes like a first price auction and interwin times
are low since participants with low prices and low privacy
concern are selected frequently. These results also illustrate
that RADP-VPC and PI-GVA cannot be calibrated to meet
different privacy requirements.

Since another concern was preservation of battery level
we compared the average battery levels of winners for each
mechanism in Dataset II. The comparison is shown in Figure
11 with each data point being the average across all exper-
iments of the battery levels of all nodes winning an auc-
tion during that tick. While PI-GVA manages to perform
similarly to P3AM initially, after about 300 ticks PI-GVA’s



Figure 11: Average Contributor Battery Level
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ability to preserve battery deteriorates. First price results
in some nodes being exhausted very quickly which causes
the curve to be non-monotonic. Only P3AM consistently
provides high average battery levels which is accomplished
through the fprivacy and fpower terms in the mechanism.
Finally we compared the average price per measurement

for all mechanisms in Dataset II, shown in Figure 12. While
first price does not show an explosion of prices as described
in [9], near the end of the simulation the price curve starts to
increase superlinearly. In other experiments where a higher
percentage of participants were selected in each round, we
have observed similar behavior for P3AM, PI-GVA, and
RADP-VPC but a large explosion of price in first price
that happens around tick 600. These experiments have been
omitted due to space concerns. We can see that RADP-VPC
does not utilize budget efficiently and maintains participa-
tion at the expense of continually larger incentives. PI-GVA
starts with initially high prices but by the end of simula-
tion converges to approximately the same prices at P3AM.
P3AM has an initially high price but quickly stabilizes and
maintains low average prices with only a slight increase over
time. This shows that P3AM is both efficient with budget
and unlike first price is viable option for long-term auctions
or deployments where overprovisioning is less pronounced.
As a result, we can see that P3AM’s socially aware na-

ture not only allows preservation of battery levels, privacy,
and participation pool but also provides more efficient use
of budget than PI-GVA, RADP-VPC or first price mecha-
nisms.

6. CONCLUSION
In this paper, we studied the impact of social concerns in

a participatory sensing application. We proposed a socially-
aware market mechanism which considers the privacy of par-
ticipants and the power level of their devices in its design.
This was done to encourage participants to remain in the
auction while making effective use of a potentially limited
budget. Unlike the parameters in other participation-aware
mechanisms, the Pcheapest parameter of our proposed mech-
anism can alter the average participation while maintaining

lower payouts of detectors per measurements compared to
a known incentive compatible mechanism. From the results
shown, our mechanism simultaneously demonstrates better
performance in privacy and battery preservation.

Figure 12: Average Price per Measurement
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In our future work, we will work on the analysis of sev-
eral parameters that affect the system performance. These
include the selection of winners in areas of interest only, dis-
tribution of remaining battery levels among nodes and the
evolution of incentive amount given by the data sink. We
will also apply our model with real human mobility traces.
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