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A B S T R A C T

Identifying the positions of mobile devices within indoor environments allows for the development of advanced
context-based applications and general environmental awareness. Classic localization methods require GPS; an
expensive, high power consuming and inaccurate solution for indoor scenarios. Relative positioning instead
allows nodes to recognize location in relation to neighboring nodes without the requirement of GPS. To trian-
gulate their own position however, indoor localization methods either use Received Signal Strength Indication
(RSSI) retrieved from neighboring devices to determine distance or simple binary contact information denoting
whether two nodes are in communication range of one another. RSSI however is plagued by many sources of
noise, thus decreasing distance prediction accuracy as well as being unreliable for networks of heterogeneous
devices. Further, using only binary contacts provides a limited information for localization. In our work, we first
demonstrate the unreliable nature of RSSI in heterogeneous networks. We then demonstrate our intermediate
solution between unreliable RSSI and oversimplified binary classifications by introducing Perceived Direction
Information (PDI) composed of three states: approaching, retreating and invisible. Through real world experi-
ments, we demonstrate that PDI can be predicted using a Dense Neural Network with more than 95% accuracy
even on devices not used during training. We then describe an anchorless Monte Carlo Localization (MCL) algo-
rithm which uses PDI to achieve higher accuracy and a reduction of communication over the state-of-the-art
MCL based methods.

1. Introduction

Indoor localization aims to identify people (Wang et al., 2012),
robots (Santos et al., 2013) or assets (Pease et al., 2017) as they move
through indoor settings where ubiquitous localization solutions such as
GPS are unable to provide accurate results. Primarily, indoor localiza-
tion is achieved by obtaining GPS-like coordinates or by recognizing
the closeness of static targets to specific areas such as at key entrances
or exits to a building which may be identified by unique signatures such
as through radio spectrum fingerprinting (Wang et al., 2012; Alzantot
and Youssef, 2012; Luo et al., 2016). These systems not only require
high setup costs in both materials and human involvement, but also suf-
fer from diminishing returns as models produce less accurate results as
environments change over time. Relative positioning on the other hand
aims to recognize similar features in dynamic environments. Instead of
judging the closeness of a node to some static landmarks, the relative
closeness to the neighboring mobile nodes is considered. Through this
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1 The preliminary version of this study appeared in (Hernandez and Bulut, 2019).

method no additional infrastructure will need to be deployed within the
environment, thus decreasing the costs associated with setup within the
environment. To further reduce the costs of this initial setup, relative
positioning models are typically generalized to work in any new envi-
ronment without requiring time consuming manual setup.

In this work,1 we study relative positioning of the nodes in mobile
ad hoc and opportunistic networks. We aim to locate the positions of
nodes relative to each other while minimizing the required data com-
munication between any pair of neighboring nodes. Many indoor local-
ization and relative positioning solutions (Rajan et al., 2019; Abouzar
et al., 2016; Chen et al., 2017) use Received Signal Strength Indication
(RSSI) levels to judge the physical distance of devices to one another,
however this can result in poor estimations due to the high variance
in RSSI values. We evaluate the effect of these sources of interference
on RSSI collection to show that noise between devices from similar and
different manufacturers precludes our ability to directly translate RSSI
to distance. Additionally, because the rate of change of RSSI is so rapid,
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sharing this dynamic RSSI value to neighbors beyond one communi-
cation hop would cause high message overhead and overwhelm the
network bandwidth.

Other works (Abu znaid et al., 2017; MacLean and Datta, 2013;
Radak et al., 2017; Chen et al., 2013) simplify the problem to using
binary contact information where a device can either communicate
(visible) or cannot communicate (invisible) to another node. However,
by reducing the problem to only two states, these algorithms remove
all possible information available from RSSI. Instead, we look to find
a middle ground between oversimplified contact-based methods and
highly volatile RSSI-based methods by introducing Perceived Direction
Information (PDI) which is made up of three states: approaching, retreat-
ing and invisible. We demonstrate through physical experiments that
PDI can be computed2 effectively with more than 95% accuracy using
a Dense Neural Network even with previously unseen heterogeneous
devices. We develop a Monte Carlo Localization (MCL) algorithm which
considers PDI when performing predictions. We then show how PDI
can reduce the sampling areas compared to contact-based localization
algorithms by upwards of 99%. We evaluate the capabilities of our pro-
posed solution through simulations to show that TrinaryMC can pro-
duce higher accuracy than existing MCL methods. Furthermore, because
existing MCL algorithms require GPS enabled anchor nodes, our anchor-
less algorithm removes the need for high energy consuming GPS hard-
ware while also decreasing the amount of communication overhead
required.

The rest of the paper is formatted as follows. We begin by describing
existing related localization works in Section 2. Then, we demonstrate
through experiments the unreliability of RSSI for heterogeneous net-
works in Section 3. We then describe our method for extracting PDI
from unreliable RSSI through machine learning in Section 4. Recogniz-
ing our ability to reliably collect PDI, we describe a novel MCL algo-
rithm using PDI in Section 5 and evaluate our algorithm in Section 6.
Finally, we conclude our work in Section 7.

2. Related works

Early work in indoor localization employed Radio Frequency Iden-
tification (RFID), successfully applying the technology to fields such as
manufacturing and healthcare (Sanpechuda and Kovavisaruch, 2008;
Zhou and Shi, 2008). However RFID localization requires the use of
static readers placed throughout a building to supply adequate cov-
erage in addition to requiring specialized equipment to tag items for
localization. Bluetooth beaconing takes a similar approach by replac-
ing RFID with Bluetooth Low Energy (BLE) (Chen et al., 2017; Cher-
aghi et al., 1802; Yucel and Bulut, 2018). The primary advantage of
such a system is the ubiquity of BLE enabled smart devices specifically
in applications requiring the tracking of human subjects. Still, static
hardware must be placed throughout a building to provide adequate
coverage. Other works take hybrid approaches such as in (Yuanfeng
et al., 2016) where the authors develop a method for combining Pedes-
trian Dead Reckoning with existing WiFi based localization methods for
cases when WiFi infrastructure is unavailable for localization in areas
within a given building.

Relative positioning recently gathered interest for locating devices
in indoor settings. Studies such as DiscoveryTree (Chabloz et al., 2017)
create a multi-hop mesh tree network which allows devices to sim-
ply recognize whether a given node is within the network and if so,
which other nodes are in range. Bellrock (Zidek et al., 2018) utilizes the
mobile devices as Bluetooth beacons when they are stationary and stops
beaconing when the devices move to prevent tracking of individuals’

2 We use Bluetooth based RSSI measurements between the devices to extract
PDI information. However, similar results can be obtained with WiFi based RSSI
data based on our experiments that are omitted in the paper.

movements for privacy preservation. Many other works (Rajan et al.,
2019; Abouzar et al., 2016) take the approach of determining the dis-
tance of pairs of nodes through RSSI readings and then employing
Multi-Dimensional Scaling (MDS). However, sharing constantly chang-
ing RSSI information between neighbors could very easily overwhelm
the bandwidth of the network. Furthermore, as argued in (Heurtefeux
and Valois, 2012; Konings et al., 2017), without extensive and time-
consuming testing, raw RSSI values are suggested to be unacceptable
for use in mapping to distances between devices. The authors do suggest
that by testing devices, parameters can be set to achieve slightly higher
results, however as shown in (Chen et al., 2017; Lui et al., 2011), radio
hardware between different manufacturers and even those produced in
the same product line can produce very different RSSI values. Thus,
because testing cannot be completed between each pair of devices in
any large network, RSSI cannot be an adequate solution. Some works
(Kumar et al., 2016) consider not the distance but instead the relative
velocity between nodes while others (Wang et al., 2008) remove the use
of unreliable RSSI by only considering binary contacts between nodes.

More recent works have begun looking at Channel State Information
(CSI) from a device’s radio to produce richer insight into the physical
layer aiming to produce better localization than RSSI alone (Wang et
al., 2017; Yang et al., 2013). CSI data, however, is not openly available
on most consumer products (e.g., smartphones).

One method popularized for use in decentralized localization is
Monte Carlo Localization (Znaid et al., 2017a). These techniques inter-
nally simulate multiple possible situations a given mobile node may be
in subject to some constraints such as location or transmission range
of a neighbor node. These simulations are then used to determine the
most probable position for the node. Existing MCL methods expect the
presence of anchor nodes; nodes with access to their exact location
through GPS or some other method. For example, solutions in (Chen
et al., 2013; Alaybeyoglu, 2015) rely exclusively on the presence of
anchor nodes to guide predictions. Other works such as (Abu znaid et
al., 2017; MacLean and Datta, 2013; Khedr, 2015) relax this constraint
by using non-anchor nodes in addition to anchor nodes when making
predictions. However, none of the existing works specifically focus on
the cases when no anchors are present. Our aim is to provide a method
which does not rely on anchor nodes in order to have low hardware
cost per node and less reliance on a small group of nodes within the
network.

3. Motivation

RSSI localization, described as a range-based localization method,
has been a popular form of device localization in many situations. Mod-
els for RSSI localization often ignore the full complexity of environmen-
tal noise by simply using the common log-distance path loss model (Cho
et al., 2015; Subedi and Kwon, 2016) or by attempting to minimize the
negative effects of specific sources of noise explicitly in their models
(Golestanian et al., 2018; Yoon et al., 2019; Trogh et al., 2016). Pin-
pointing sources of noise often requires extensive site survey (Ramani
and Tank, 1405) which however can only produce models that are not
generalized enough for use in new environments without repeating this
same site survey process per environment. Needless to say, the high
noise and interference inherent to indoor environments make it much
harder to translate RSSI directly into physical distances for localization.

3.1. Sources of noise and interference

For indoor situations, interference of radio signals appears from a
number of sources, causing both unexpected drops and rises for RSSI.
As Nguyen et al. explored in high rise building structures (Nguyen et al.,
2017), with more energy efficient building materials used in construc-
tion, more radio penetration-loss occurs. Because of penetration-loss,
devices which are physically nearby to one another but separated by a
wall will be recognized as being much further based on RSSI. Works on
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penetration-loss consider simulating the amount of loss occurring based
on signal propagation through multiple mediums such as floors and
walls (Solahuddin and Mardeni, 2011). Another common source of vari-
ance for indoor environments is fading caused by multipath loss or shad-
owing. In multipath scenarios typical to indoor environments, a signal
sent from a transceiver may bounce off from objects or walls. Therefore,
the signal strength at the receiver is defined by both the line-of-sight
(LOS) and non-LOS (NLOS) multipaths, with unexpected variations in
amplitude. Fading typically occurs when an object in the environment
prevents the signal from travelling through the direct LOS, thus only
multipaths travelling the NLOS arrive successfully to the receiver. These
fading issues have been shown to have less effect when using Channel
State Information (CSI) (Yang et al., 2013), however most WiFi enabled
devices do not give access to CSI and thus application level software is
not able to gain the benefits of CSI.

Multi-radio coexistence is another source of interference to consider
in dense radio networks, causing interference not only in-band (com-
monly handled by the likes of CSMA) but also from out-of-band caused
by heterogeneous radio systems (Zhu et al., 2007). Specifically consid-
ering the existence of both WiFi and Bluetooth (common in a num-
ber of consumer grade products) intermodulation and external noise
become more of an issue because both use 2.4 GHz frequencies. In net-
works composed of heterogeneous devices, differences in hardware at
the transceiver level from different manufacturers result in unexpected
RSSI ranges for similar positions. We explore this issue in this work by
conducting experiments with different models of smartphones. Further,
when considering networks where not all devices are controlled, it is
not always possible to recognize the transmission power (TX-Power)
of given devices to sufficiently assess relative distances. As a result, a
device with high TX-power would appear closer than another device
with lower TX-power even at the same physical distance.

3.2. Empirical RSSI analysis

To evaluate these issues inherent from the use of RSSI, we develop
a system for collecting RSSI from Android and iOS smartphone devices
along with the true distance between devices. The overall system con-
sists of three separate elements as seen in Fig. 1. To collect Bluetooth
RSSI values, we need two smartphones which independently listen and
transmit beacon messages over Bluetooth Low Energy (BLE). Next, to
determine the baseline truth for each experiment, we develop a proto-
type distance measurement device seen in Fig. 2 (right). One phone is
attached to the body of the prototype while the other device is fastened
to a retractable rope to reliably measure the distance in real time.

Fig. 1. Diagram representing the communication for our prototype. Smart-
phones communicate by Bluetooth Low Energy beaconing to allow access to
RSSI data while the prototype distance measuring device transmits real-time
distance measurements through UDP broadcasts to both devices over WiFi.

3.2.1. Distance measurement device
Our prototype distance measurement device uses an ESP8266 WiFi

enabled microcontroller attached to a rotary encoder as shown in Fig. 2
(right). The rotary encoder is then connected to an auto-retracting
wheel mechanism. As the rope is pulled out, the rotary encoder is
rotated in one direction. An auto-retracting mechanism ensures the
rope remains taut when devices approach one another thus allowing
the rotary encoder to rotate back in the opposite direction. Rotations
are defined by encoder clicks which can then be translated to physical
distance, to collect the baseline for each experiment. As the distance
changes between smartphones, the ESP8266 immediately broadcasts
the current distance through a UDP broadcast to the data collecting
app running on each smartphone over WiFi.

3.2.2. Data collecting smartphone apps
For our experiments, we are interested in observing the effects of

heterogeneous transceiver hardware on RSSI. Thus, we develop custom
data collection apps for both iOS and Android smartphones. The apps
themselves collect, record and display the true distance in meters, num-
ber of clicks from the rotary encoder along with the current RSSI value
as shown in Fig. 2 (left). Each experiment is performed on a pair of
smartphones and each device transmits BLE beacon packets for RSSI
collection. We used four different models of smartphones for our exper-
iments: two using the iOS operating system and two using the Android
operating system. Details about each phone model used can be found in
Table 1.

3.2.3. Results
For our first experiment, we make the two devices come together

and apart at a normal human walking speed eight distinct times. The

Fig. 2. (left) Data collection app records BLE beacon RSSI along with the current physical distance. (right) Prototype developed with a ESP8266 microcontroller to
collect real-time physical distance measurements.
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Table 1
Smartphones used in experiments.

Operating System Model Model Number Abbreviation

iOS iPhone 6s MKQY2LL/A iOS6s
iOS iPhone 8 MQ6V2LL/A iOS8
Android Galaxy S6 SM-G920V AndrS6
Android Galaxy Note5 SM-N920C AndrN5

resulting raw RSSI values for this experiment are shown in Fig. 3a. The
eight distinct movement events are not clearly visible when looking
directly at these raw RSSI values. Thus, we filter the raw RSSI with a
rolling average (RSSI(t)avg) defined as:

RSSI(t)avg =
1
w

w∑
i=0

RSSI(t−i) (1)

where w is the number of time steps to be averaged (window size),
RSSI(t) is the raw RSSI value at the current time t and RSSI(t−i) is
the RSSI value from i time instances ago. Using rolling average with
w = 20 allows us to more easily recognize these eight events in Fig. 3b.
From this, we see that raw RSSI itself is too noisy to clearly recognize
useful information. Looking at the true baseline values returned from
our encoder in Fig. 3c, we recognize an additional issue with our col-
lected RSSI values. We see that while the encoder value approaches the
same maximum and minimum encoder values (meaning the same dis-
tance was moved each time), Fig. 3b does not show the same maximum
or minimum RSSI values across each event. This shows that moving
similar distances at similar times in the exact same environment using
the same hardware does not result in the same RSSI output every time.

A further concern we need to identify is the effect of hardware from
different manufacturers on the RSSI. To this end, we performed a set of
experiments by pairing devices from different manufacturers. Here, we
also considered varying speeds, from a slow walk to a faster walking
speed, while moving the devices together and apart in order to see how

Table 2
Average RSSI difference between pairs of devices.

Smartphone A Smartphone B AVG. RSSI Difference

iOS8 iOS6s 2.0297
iOS8 AndrS6 5.2911
iOS8 AndrN5 7.9106
iOS6s AndrS6 5.9074
iOS6s AndrN5 8.6392
AndrS6 AndrN5 3.5790

the results vary for different pairs of radio hardware. In Fig. 4a, we first
show the RSSI resulting from an experiment between an Apple iPhone
8 and an Apple iPhone 6s. We can see immediately that the RSSI val-
ues for these two Apple devices produce almost identical results which
we can attribute to the transceiver hardware across the two different
models being very similar. Out of all experimental pairings, this pair
of devices resulted in the smallest average absolute RSSI difference
between devices at only 2.0298. On the opposite end, Fig. 4b shows
the resulting RSSI values for an experiment on devices from two differ-
ent manufacturers: the Apple iPhone 6s and the Samsung Galaxy Note 5.
In this case, we recognize that the difference between the observed RSSI
for the two devices is much greater than it is in the previous example.
This device pair showcases the highest average absolute RSSI differ-
ence for our experiments at 8.6392. The most important observation
from this figure is that while RSSI values are different in value, RSSI
still exhibits similar changes in slope. This implies that we should still
be able to recognize similar PDI values for approaching and retreating
across these hardware manufacturers. Table 2 shows the average abso-
lute RSSI difference for each of our experiments. It can plainly be seen
that the experiments with the smallest average difference were the two
experiments employing smartphones from the same manufacturer while
the highest absolute differences are between the devices from different
manufactures.

Fig. 3. (a) Raw RSSI from an example experiment where devices move apart then back together eight times. Because of the effect of noise, it is hard to recognize
these eight distinct events. (b) RSSI after applying a rolling average on the time-series data. The eight movement events appear more clearly in this representation.
(c) Actual encoder values show that each of the eight movement events resulted in very similar maximum distance per event.

Fig. 4. Comparison of RSSI for two experiments from the perspective of each of the two devices participating in the experiment. (a) Experiment with the two Apple
devices showing very similar RSSI across the experiment. (b) Experiment with devices iOS6s and AndrN5 showing high variance in the value of RSSI.
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4. Experiments on PDI prediction

Our initial analysis validates our expectations: (i) RSSI is noisy,
(ii) RSSI is unreliable in representing physical distances, and (iii) RSSI
varies between devices from different hardware manufactures. How-
ever, we recognize that while hardware differences affect the ampli-
tude for RSSI, the slope of change between devices matches fairly close.
Thus, in this section, we introduce a method for distinguishing the PDI
states approaching and retreating using machine learning for heteroge-
neous networks even for pairs of devices not used in the training of our
model.

4.1. Raw RSSI

We develop each of our machine learning models by using the
Keras deep neural network library which creates neural network archi-
tectures over a TensorFlow backend. For our first model, we create
a dense neural network (DNN) with inputs of m raw RSSI readings
indicating the most recent RSSI reading and m − 1 previous RSSI
readings. The expected output is either of the states approaching and
retreating as determined by the encoder values. Training is completed
with m ∈ {1,2,3}. For our input, we filter out a window of samples
around transition points from approaching to retreating (or the reverse)
because we are only interested in recognizing instances which can be
fully defined as one distinct action. We use a grid search to determine
the best hyperparameters for each neural network and then most impor-
tantly train on the dataset for only one of the experiments (namely the
experiment between the iPhone 8 and the iPhone 6s). We select this
specific experiment arbitrarily to show that we can recognize patterns
from any single pair of devices and then apply our knowledge to other
pairs thus demonstrating the generalizability of our model for networks
of unseen devices. From the raw data, we do not accomplish particu-
larly high accuracy as can be seen in Fig. 5a with different values of
m. We see that the high noise from the raw RSSI translates over to high
noise in the validation accuracy for the model. For all values of m, accu-
racy ranges from as low as 50% up to 90% showing that using raw RSSI
for our model will not produce generalizable results.

4.2. RSSI with rolling average

Reconsidering the illustrated example in Fig. 3a and b, we recog-
nize that raw RSSI may not be a useful input for our model. We instead
apply (1) to create a rolling average. We train our second DNN with
m ∈ {1,2,3} and using (1) with averaging window size w = 20. As
it is shown in Fig. 5b, accuracy now reaches higher consistent levels
compared to the accuracy in raw RSSI case with m = 2. With m = 1,
we begin to see more consistently worse results than in the raw RSSI
model. This may be accounted for the fact that rolling average can cause
a slight drift in measurements which could throw off the model’s pre-
dictions. Considering m = 2, we see that all experiments achieve more
than 90% accuracy except for one experiment which still achieves close
to 85% accuracy. Surprisingly, we can see that when m = 3, the results
are worse than m = 2. With this additional point of information, the
model does not immediately recognize when to ignore the additional
time instance so as to achieve similar results with m = 2. This implies
that we only need to care about the change in RSSI over the past two
time instances.

4.3. RSSI change

Next, we recognize a final transformation we can take on our RSSI
to create a simplified model by calculating the difference in RSSI from
one time instance to the next:

RSSI(t)diff = RSSI(t)avg − RSSI(t−1)
avg (2)

In Fig. 5c we show the accuracy for our machine learning models again
using m ∈ {1,2,3} and w = 20. Our models now achieve consistent
results for each value of m. As suggested from the results of the previous
model, with m = 1, we achieve the best results with all experiments
achieving an accuracy more than 95% even though we only train on
a single experiment (ios8 → ios6s), thus implying that we only need
to worry about the change in signal strength between the current time
instance and the previous time instance.3

Our final selected DNN model is composed of three layers. The first
layer is the input layer, taking the current instance of RSSI(t)diff as input.
The second layer is a hidden dense layer with 16 hidden nodes. The last
layer is an output layer with two nodes representing our classes with
each output nodes using a sigmoid activation function. Training loss is
calculated using mean squared error. The model was trained using the
Adam optimizer with learning rate of 0.001. Batch size for training was
16 samples.

The results show that our model can distinguish approaching and
retreating for PDI from incoming noisy RSSI even in cases where the
devices used are not known when training the model. Furthermore,
because each of our models are implemented in Keras, we are able
to translate them into code which can be run directly from an app
installed on a smartphone. We develop a simple proof-of-concept appli-
cation showing that we can in fact use our Keras models on an iPhone
using the coremltools4 library. Similar steps can be completed to do
the same on an Android smartphone. Now that we can determine in
a one-dimensional plane whether two devices are approaching versus
retreating with PDI prediction, we next describe how PDI from more
than two devices can be used to predict location in a 2D plane through
our TrinaryMC algorithm.

5. TrinaryMC localization algorithm

Our TrinaryMC algorithm improves upon existing state-of-the-art
Monte Carlo Localization methods by entirely removing reliance on GPS
enabled anchor nodes to produce relative positioning. Our method uses
the novel PDI concept to describe the state of neighboring nodes when
creating predictions. PDI consists of three possible values describing the
state of a pair of nodes within the network: approaching (1), retreating
(2) and invisible (0), where each state value is identified in our system as
the integer shown in parenthesis. Each node transmits beacon packets
at given intervals to announce their presence. Neighboring nodes recog-
nize this packet and record the presence of this neighbor along with the
perceived directional state: approaching or retreating. Each node propa-
gates the list of its one-hop neighbors to its neighbors to allow all nodes
to recognize the network structure up to some number k-hops away.
To collect the current PDI between all neighbors, we create a local PDI
matrix, Mt , and denote the current PDI state between two nodes i and j
at time t by M(i,j)

t .

5.1. Standard Monte Carlo Localization (St-MCL)

We begin by describing the general structure of existing Monte Carlo
Localization algorithms (Alaybeyoglu, 2015). The main idea for MCL
algorithms is to collect a group of samples in each time instance which
can then be used in aggregate to determine the most probable location
for the given node under some constraints. All MCL algorithms; includ-
ing our own, execute the following steps:

• Initialization Step - occurs only at startup or when all samples are
filtered out. Creates an initial set of random samples subject to some
conditions.

3 Our evaluation with different movement speeds, while being trained with
only normal walking speed, consistently show that m = 1 provides the best
results and all m ∈ {1,2,3} values provide more than or around 85% accuracy.

4 https://apple.github.io/coremltools/.
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Fig. 5. (a) Accuracy of Machine Learning Model with raw RSSI input. (b) Accuracy of Machine Learning Model with RSSIavg and w = 20. (c) Accuracy of Machine
Learning Model using RSSI(t)diff .

• Sampling Step (Move Samples) - using samples from the previous time
instance, new samples are created by moving samples randomly
within a radius of vmax (i.e., maximum velocity) around the previous
sample.

• Filtering Step (Resample) - after predicting new locations, any sample
not adhering to a given set of constraints are filtered out as invalid
samples. If the number of samples left after filtering is above some
threshold, then random samples are filtered out to prevent sample
sets from exploding in quantity over multiple rounds.

Algorithm 1 TrinaryMC Algorithm

1: S ← S′

2: if ‖S‖ = 0 then
3: S ← Initialization_Step()
4: S′ ← Sampling_Step(S)
5: if ‖‖S′‖‖ > 𝜏retained then
6: S′ ← Shuffle(S′)
7: S′ ← S′[1… 𝜏retained]
8: S′ ← Filtering_Step(S′)

Algorithm 1 demonstrates this general structure for each of the MCL
algorithms. The Monte Carlo process is completed every time instance
to produce a final predicted set of samples S′. The algorithm begins by
setting S ← S′. The first time the Monte Carlo algorithm is performed,
S′ = {} because no samples have been predicted and thus ‖S‖ = 0
allowing the initialization step to be performed. After the initialization
step, the sampling step takes S either from the previous time instance or
from the initialization step to produce a new set of samples S′. After the
sampling step, a threshold of a maximum number of samples (𝜏retained)
are retained for the filtering step to prevent the number of samples from
growing to an unbounded size. This allows the memory requirements
as well as the computation time of the algorithm to be constrained as
needed. Finally, after 𝜏retained samples are selected, any invalid samples
are filtered out and S′ is retained for the next call to the procedure in
the next time instance.

5.2. Differences of TrinaryMC

Through the use of PDI and our anchorless approach, we introduce
the following changes to MCL steps for our own TrinaryMC approach.

5.2.1. Initialization step
In existing MCL algorithms, each sample (p) contains only one (x, y)

coordinate pair prediction for a given source node s. However, because
of our anchorless approach, a single sample must include an (x, y) coor-
dinate pair p(n) for each neighbor (n) of s. Pseudocode for performing
this initialization step is shown in Algorithm 2. The goal of this proce-
dure is to create some number 𝜏 init samples in S. To begin, the predicted
coordinate pair for s is set to p(s) = (0,0). Then, for each k-hop neigh-
bor n ∈ K, we determine a random p(n) satisfying our PDI state matrix
M(s)

t . One important factor to recognize while collecting initial samples
is that even though our algorithm uses PDI; in the initialization step,
the only states that matter are invisible and visible because no informa-
tion exists from previous time instances to distinguish approaching from
retreating.

Algorithm 2 Initialization_Step

1: S ← {}
2: for all i ∈ {1… 𝜏 init} do
3: p ← {}
4: p(s) ← (0,0)
5: valid ← TRUE
6: for all n ∈ K do
7: p(n) ← Generate_Random_Sample(p, n)
8: if p(n) = ∅ then
9: valid ← FALSE
10: if valid then
11: S ← S

⋃
p

12: return S

Generating random samples is completed by using the boxed Monte
Carlo approach described in (Baggio and Langendoen, 2008). A naïve
approach to generating random samples for Monte Carlo Localization
is to select an x and y coordinate pair anywhere within the environ-
ment. However, such unconstrained placement would create invalid
samples with a higher likelihood. Instead, in the boxed approach, the
randomly selected x and y coordinate pair for node n is constrained
by the location of previously generated samples. The algorithm for this
process is shown in Algorithm 3. The goal of this process is to first iter-
ate through all previously placed nodes (n′). If n′ is a neighbor of n,
then we know that n must be located within the communication range
(r) of n′. To describe this constraint, we update a set of constraints
(minx,miny ,maxx,maxy). These four constraints form a rectangular or
boxed area in Euclidean space where samples should be generated from
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to minimize the likelihood of invalid sample selection. While the con-
straints minx and maxx define the range across the x-axis, constraints
miny and maxy describe the range on the y-axis. Once all previously
placed nodes are considered, we use these constraints to generate the
final selected coordinate pair (̂p) through the use of a uniform random
function 𝕌(·). It is possible that minx > maxx or miny > maxy, in
which case, the constraints suggest that there is no valid position for
node n based on the previously placed nodes. In this case, the sample p
is marked invalid and tossed out.

Algorithm 3 Generate_Random_Sample (Boxed Method).

1: minx,miny = −∞,−∞
2: maxx,maxy = ∞,∞
3: for all n′ ∈ {1… n − 1} s.t. n ≤ ‖K‖ do
4: if M(n,n′)

t ≠ 0 then
5: minx ← max(minx, p

(n′)
x − r)

6: maxx ← min(maxx, p
(n′)
x + r)

7: miny ← max(miny, p
(n′)
y − r)

8: maxy ← min(maxy, p
(n′)
y + r)

9: if minx < maxxandminy < maxy then
10: p̂ ← {𝕌(minx,maxx),𝕌(miny,maxy)}
11: else
12: p̂ ← ∅
13: return p̂

The initialization step attempts to generate 𝜏 init samples, however
as some of the attempts may fail, by the end of the initialization step,
‖S‖ ≤ 𝜏init . After the initialization step is completed, we repeat the sam-
pling and filtering steps for each future time instance.

5.2.2. Sampling step (move samples)

Algorithm 4 Sampling_Step

1: S′ ← {}
2: for all p ∈ S do
3: for all i ∈ {1… 𝜏children} do
4: p′ ← {}
5: valid ← TRUE
6: for all n ∈ p do
7: Δ ← 𝕌(1, vmax)
8: 𝜃 ← 𝕌(0,2𝜋)
9: p′(n)prev ← p(n)

10: p′(n) ← p(n) + {Δcos 𝜃,Δsin 𝜃}
11: for all n ∈ K do
12: if n ∉ p′prev then
13: p′(n) ← Generate_Random_Sample(p′, n)
14: if p′(n) = ∅ then
15: valid ← FALSE
16: if valid then
17: S′ ← S

⋃
p′

18: return S′

In the sampling step, the goal is to take the set of samples S from
t − 1 and move each neighbor n so that Mt continues to be satisfied
at time t. Creating new samples based on samples from previous time
instances is common to other MCL methods, however, because our goal
is unique by using PDI, the method which we accomplish this is novel to
MCL. Similar to existing MCL algorithms, in this step, each neighbor is
moved at most vmax distance from its previous location. The algorithm
for applying this movement to all subsamples is shown in Algorithm 4.
We can see that for each preexisting parent sample in S, the algorithm
attempts to generate some number (𝜏children) of child samples. The ran-
domly predicted movement of the node (Δ) is constrained by vmax while
𝜃 denotes a randomly predicted angle of movement for the node. Each

sample also keeps a memory of the previous position (p′(n)prev) for valida-
tion in the filtering step. If a node n ∈ K did not exist in the previous
time instance (e.g. n ∉ p′prev), then p′(n) is generated as in the initial-
ization step.

5.2.3. Filtering step

Algorithm 5 Filtering_Step

1: Ŝ ← {}
2: for all p ∈ S′ do
3: valid ← TRUE
4: for all n ∈ K do
5: for all n′ ∈ K do
6: d ←

‖‖‖p(n) − p(n′)‖‖‖
7: d ←

‖‖‖p(n)prev − p(n
′)

prev
‖‖‖

8: if M(n,n′ )
t = 0 and d < r then

9: valid ← FALSE
10: if M(n,n′)

t = 1 and d > d then
11: valid ← FALSE
12: if M(n,n′)

t = 2 and d < d then
13: valid ← FALSE
14: if valid then
15: Ŝ ← Ŝ

⋃
p

16: return Ŝ

After moving samples in the sampling step, we check the validity of
each of the newly generated child samples. Four cases exist: first, the
case when a neighbor keeps the same state from t − 1 to t. The second
case is when a neighbor is visible (retreating) at t − 1 and then is
invisible at t. In this case, we must ensure that our sample point exits
the range of the given paired node. The third case is when a neighbor
is invisible at t − 1, but visible at t (approaching). In this case, we do
not have any predictions of where the node was at t − 1, so we do not
consider this previous information. Instead, we simply randomly select
a point which satisfies all conditions in Mt . Finally, we handle the sim-
ple case of transitioning from approaching to retreating or retreating to
approaching. Algorithm 5 shows the mechanism used to validate each
sample set p ∈ S′. For each pair of neighbors (n, n′) in K, the current
prospective distance (d) and the previous distance (d) are used to vali-
date the conditions from M(n,n′)

t . If any single condition fails, the sample
is invalid and ignored. We note that if n or n′ are not present in pprev,
then we set d = ∞ because the predicted distance between the two pairs
was unknown in the previous time instance.

5.2.4. Final predictions
The final predictions for each node relative to its neighbors are

determined based on each computed sample in S′. To this end, for each
pair of nodes (n, n′) ∈ K where K is a list of neighbors and i ≠ j, we
simply take the average of distances between the sample points of these
nodes in all samples:

d(n,n
′ )

pred = 1‖‖S′‖‖
∑
s∈S′

‖‖‖p(n) − p(n′)‖‖‖ (3)

where ‖‖‖p(n) − p(n′)‖‖‖ is the Euclidean distance between sample points p(n)

and p(n′) (i.e., the locations of nodes n and n′, respectively in sample p).

5.2.5. Complexity analysis
With each process in the TrinaryMC algorithm discussed, we now

consider the complexity of the proposed algorithm.
In the first iteration of the Monte Carlo algorithm, the initialization

step will produce at most 𝜏 init samples in S. As such, after the sam-
pling step is performed, ‖‖S′‖‖ ≤ 𝜏init · 𝜏children because each of the 𝜏 init

7
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parent samples can generate at most 𝜏children children candidate sam-
ples. In subsequent calls to the Monte Carlo algorithm, the maximum
number of samples retained is ‖‖S′‖‖ ≤ 𝜏retained based on the threshold
noted in Algorithm 1. In this case, by the end of the sampling step,‖‖S′‖‖ ≤ 𝜏retained · 𝜏children. After the sampling step, both the 𝜏retained thresh-
olding step and the filtering step only decrease the number of samples
stored, thus never increase memory requirements. Knowing this, we see
that the memory requirements of the algorithm are constrained by these
designated thresholds: 𝜏retained, 𝜏 init , 𝜏children. Specifically, given a node
with ‖K‖ neighbors, the memory requirement for storing all samples for
a single call to the TrinaryMC algorithm is then O

(‖K‖ · ‖‖S′‖‖ · 𝜏children
)
,

where ‖‖S′‖‖ = max(𝜏init , 𝜏retained). Each subsequent call to TrinaryMC
only stores samples for the current time instance and the previous time
instance, so performing the algorithm over many time instances does
not itself increase the memory requirements.

Next, we consider the time complexity of each step in the pro-
posed algorithm. The initialization step generates 𝜏 init number of sam-
ples (p) of size ‖K‖. Each subsequently generated sample p(n) ∈ p
considers all previously generated samples in p. As such, generat-
ing a single p takes O

(‖K‖2) and the initialization step in total
takes O

(
𝜏init · ‖K‖2). As noted, the sampling step begins with at

most O
(‖‖S′‖‖) = O (max(𝜏init , 𝜏retained)) samples. Thus, the time complex-

ity of the sampling step is the same as the memory requirements:
O
(
𝜏children · ‖K‖ · ‖‖S′‖‖). After sampling, a random subset of at most

𝜏retained samples from S′ are selected for the filtering step. The filter-
ing step checks the validity of all ‖K‖2 node pairs per sample, thus the
filtering step takes O

(
𝜏retained · ‖K‖2). The final prediction step creates

a distance prediction for all ‖K‖2 pairs of neighboring nodes using all‖‖S′‖‖ generated samples. As such, this prediction step takes the same
time as the filtering step: O

(
𝜏retained · ‖K‖2). Thus, the total time com-

plexity for the algorithm is:

O
⎛⎜⎜⎜⎝

𝜏init · ‖K‖2
⏟⏞⏞⏟⏞⏞⏟

Initialization Step

+ 𝜏children · ‖K‖ · ‖‖S′‖‖
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Sampling Step

+ 𝜏retained · ‖K‖2
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

Filtering and Prediction

⎞⎟⎟⎟⎠
.

With ‖‖S′‖‖ = max(𝜏init , 𝜏retained), the initialization step and the filter-
ing and prediction steps can be combined into a single compo-
nent, O

(‖‖S′‖‖ · ‖K‖2), and as such, the total time complexity for
the algorithm can be reduced to O

(‖‖S′‖‖ · ‖K‖2 + 𝜏children · ‖K‖ · ‖‖S′‖‖)
which can be further reduced to a final time complexity of
O
(‖‖S′‖‖ · ‖K‖ · (‖K‖ + 𝜏children)

)
.

5.3. Generating samples

As the general steps taken by the entire algorithm have been dis-
cussed, we now provide an illustration of our method for generating
samples. Fig. 6 provides an example case which we will use to illustrate
the first iteration of our TrinaryMC algorithm.

We begin by assuming the role of a node A with a neighborhood (K)
of size 3, including itself. In the figure, we see the values of Mt on the

Fig. 6. Process taken to generate a single sample given a state matrix M(A)
t

shown on the left containing 3k-hop (where k = 2) neighbors A,B and C. The
process takes 3 steps, one for each neighbor. In the first step, the current source
node A is placed at position (0,0). The second step places neighbor B within
the communication radius of A because M(A,B)

t = 1 indicates A can see (i.e., is in
range of) B. The third step places C based on the fact that B sees C, but A does
not see C.

left. With Mt , we begin the process of creating a sample by randomly
selecting positions for each neighbor in K. In the first step, we place
A by default at (0,0), the local center. In the second step, we place
B randomly. Because M(A,B)

t = 1, the placement of B must be within
the communication radius of A. In the illustration, this is successful,
but in the event of a failure (at this step or any further steps in this
process), the sample is marked invalid. Now that B has been placed, we
move to the third step by placing C following the conditions specified
in Mt . We can see, because M(A,C)

t = 0, C is not a 1-hop neighbor of A.
However, because M(A,B)

t ≠ 0 and M(B,C)
t ≠ 0 we can recognize that A

and C are instead 2-hop neighbors. Thus, we can successfully complete
this step by placing C in range of only B. After all conditions in Mt are
considered, we have created a single sample for S.

In subsequent steps of the algorithm, we take S from time t to fur-
ther create S′ for time t + 1 adhering to the constraints of Mt+1. To
accomplish this, we simply loop through each neighbor (n) in Kt+1. If
the neighbor was also in Kt , then we use the coordinate value (x, y)
from S to produce n in S′. The new coordinate must be within a radius
of vmax of (x, y) in addition to adhering to the PDI conditions of the pair
between t and t + 1. We can see this case in Fig. 7. Assume we want to
find a new valid position for C given A and B at time t. The shaded area
around C in the illustration represents the maximum distance C could
have traveled from time t − 1 to t. While Mt−1 shows that at time t − 1,
C must be seen by only B, at time t, C must be seen by both A and B.
In standard MCL methods, the new position for C would be anywhere
in the intersection of A and B. However, in our TrinaryMC approach, C
must also be approaching B; thus, the region in which valid samples can
be taken is dictated not only by the intersection of A and B, but also
by the distance between B and C at both time steps. As shown in the
illustration, this reduces the valid sampling area for C greatly.

Existing localization algorithms (Znaid et al., 2017b; Bai, 2017;
Wang et al., 2010) consider only binary contact information when
determining the position of a given node, however each of these algo-
rithms can be augmented to accept PDI. As we showed PDI is recog-
nizable with a high accuracy from noisy RSSI, our next question is
recognizing what improvements PDI can offer on standard contact-
based approaches? To answer this question, we begin by developing
a simulation with four nodes {A,B,C,D} placed at the arbitrary (x, y)-
coordinates: (0,0), (0.70,0), (0.25,0.70), (0.20,0.35). These points rep-
resent the known positions for each node at time t (these can be com-
puted in a previous iteration of the localization algorithm). Assuming
we want to recognize the possible positions of D at time t + 1, we must
recognize the relationship between D and each other node in the net-
work. With communication radius r = 1.0, at time t = 1, D is visible
to all other nodes. We denote the contact relationship zcontact between
two nodes X and Y in the form X(Y) = zcontact where zcontact can be
either visible (1) or invisible (0). For a PDI relationship zPDI , we denote
this relationship similarly in the form of X(Y) = zPDI where zPDI can be
any of invisible (0), approaching (1) or retreating (2).

Given this arrangement, we ask, if D could move to any possi-
ble position at time t + 1, what are the possible states the network
could reach? In Fig. 8 (left), we illustrate the answer to this question
when considering only binary contacts. If we know at time t + 1 that
A(D) = 1,B(D) = 1,C(D) = 1 then D must remain in the center
gray area labeled “1,1,1”. Alternatively, supposing we knew that only
B can see D at time t + 1, then the current relationship state would be
A(D),B(D),C(D) = 0,1,0 and thus D must reside in the bottom-right
yellow area labeled 0,1,0. We note that 7 unique contact-based areas
exist in this structure, however these areas are rather vast, meaning that
there is a large area where D could be for any of these regions. This is
where our PDI approach brings its benefits.

If we consider the single central area denoted 1,1,1 in Fig. 8 (left),
our PDI approach can split this single parent-area into 7 unique sub-
areas as illustrated in Fig. 8 (right) thus reducing the possible area
where D can be positioned at time t + 1. In fact, the largest sub-area
(2,1,2) takes up only 36.75% the area of the full contact-based parent-
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Fig. 7. Possible movement for neighbor C based on vmax is shown in gray, but
not all of these locations are possible given the conditions in Mt+1. Any point
in the area with the dashed perimeter (intersection of circles A, B and the vmax
area) is valid for C’s next location if only the binary contact matrix is considered
as in the case of other MCL methods. Our TrinaryMC method further reduces
the valid areas where C can move thanks to the consideration of three PDI
states; thus, it produces more accurate samples.

area while 2,1,1 takes up an even smaller 3.58%. This means if we
can recognize D is retreating from A (A(D) = 2), D is approaching B
(B(D) = 1) and D is approaching C (C(D) = 1) the valid sampling area
for D when using PDI is reduced by more than 96% compared to the
binary contact method. Through our simulation, we also find an area
1,2,1 which is less than 0.1% the area of the contact-based parent-
area, resulting in a reduction greater than 99%. Table 3 describes the
percentage of area reduction for each sub-area when using PDI. We note
1,1,1 is marked as not possible simply because given the initial position
of D, D cannot simultaneously approach A,B and C by moving in any
direction from its initial position at time t.

One sub-area (2,2,2), is split into three separate segments in this
illustration. Because these areas are disjoint, issues may arise for exist-
ing localization algorithms because each area is so far apart from one
another. Selecting the average position for a node in this case would
result in an invalid final prediction. One way to address this could be
found in an existing contact-based localization algorithm (MacLean and

Table 3
Percentage of area reduction when using PDI (versus
binary contact).

A(D) B(D) C(D) Percentage Reduction

1 1 1 Not possible
1 1 2 87.0%
1 2 1 99.9%
1 2 2 78.7%
2 1 1 96.4%
2 1 2 63.2%
2 2 1 79.1%
2 2 2 95.6%

Datta, 2013) where the algorithm opts to filter any segments whose area
is less than a threshold (in their case, when the area of the segment is
less than 1∕3 the area of the largest segment).

In the worst case we can recognize that the valid area for the
contact-based method (Acontact) is equal to the area through our PDI
method (APDI). This case can occur when two nodes are placed directly
on the edge of the communication range of each node. In this case,
the only movement option which results in visibility for the nodes
would be to approach each other. This is because if they retreat, they
would no longer be visible to one another. Thus, because Acontact =
A(approaching)

PDI + A(retreating)
PDI , if Acontact = A(approaching)

PDI then A(retreating)
PDI = 0.

This means that if the nodes move closer to each other by a very small
amount, then in the next time instance A(retreating)

PDI becomes only slightly
larger than 0. As a result, we have 0 ≤ APDI ≤ Acontact . This then con-
cludes that PDI improves sampling for contact-based localization algo-
rithms by reducing the valid sampling area for the algorithm and the
area provided by PDI is never greater than the original contact-based
area.

6. Simulations

In this section, we evaluate our PDI enabled TrinaryMC algorithm
through simulations. Our simulations use a 500 m × 500 m area where
50 mobile nodes move using a random waypoint mobility model with a
velocity randomly assigned from [1–10] m/s. We use k = 2 as a default
value in TrinaryMC algorithm, however, we also explore the impact of

Fig. 8. Given four points A,B,C,D, we derive the following plots if D moves at time t + 1. (left) Plot showing the possible locations for D depending on the recognized
contact from A(D),B(D),C(D). (right) Showing how contact A(D),B(D),C(D) = 111 can be further reduced through the use of PDI (view in color). (For interpretation
of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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Table 4
Simulation parameters.

Parameter Value

N 50 nodes
r 50 m
vmax 10 m/s
𝜏 retained 100
𝜏 init 100
𝜏children 10

different values of k. The values of other parameters used in simulations
are given in Table 4. Simulation experiments were run on a laptop with
an Intel Core i7 2.2 GHz Quad-Core Processor and 16 GB of RAM. The
codebase used to perform Monte Carlo Localization simulations is made
publicly available.5

6.1. Algorithms for comparison

We compare our method to three state-of-the-art MCL techniques
namely the Standard Monte Carlo Localization algorithm (St-MCL)
(Alaybeyoglu, 2015) (described in section 5.1), Orbit (Orbit-MCL)
(MacLean and Datta, 2013) and finally Low Communication Cost MCL
(LCC-MCL) (Abu znaid et al., 2017). In addition to comparing our tri-
nary method to existing MCL methods, we also compare it to its variants
(i.e., binary-no-memory and the binary methods) that will be described
in Section 6.1.3. We describe these unique features of each of these
methods below.

6.1.1. Orbit (Orbit-MCL)
The most common improvements made to MCL algorithms is to

reduce the possible sampling area with the goal of both decreasing
computation time by reducing possible locations and also reducing
error by removing invalid samples. One work employing this method
is (MacLean and Datta, 2013) where the authors consider graph theory
to develop a new MCL method called Orbit. One of the key features they
recognize is that when considering negative information (node A can-
not see B), there are cases when multiple disjoint regions may occur in
the sampling stage. In this work, they determine that ignoring regions
with fewer than one-third the number of samples as the largest region
reduces sampling area and produces much higher accuracy.

6.1.2. Low Communication Cost Monte Carlo (LCC-MCL)
Previous methods rely exclusively on anchor nodes to inform their

predictions, however the LCC-MCL method (Abu znaid et al., 2017)
considers not only anchor nodes but also normal, non-anchor nodes.
Non-anchor nodes share their own predicted location with neighboring
nodes which then use it to derive their own location. The issue with this
is that sharing predicted locations of each and every node requires high
numbers of packets to update the state between neighbors. The authors
mitigate this issue by only sharing locations with neighbors which are
believed to be close by. Determining whether nodes are close by one
another is a matter of finding the intersection of the set of neighbors
for each node. If the number of intersecting neighbors is above a thresh-
old, the nodes are considered close by, in which case, communication
occurs.

6.1.3. TrinaryMC derivatives
Our trinary algorithm can be simplified in a couple of ways. We use

these simplified algorithms to further evaluate our trinary approach
later on. First, we consider a simple case where we assume no memory
exists between t − 1 and t for each node. In this case, we have no reason

5 https://github.com/StevenMHernandez/TrinaryMC.

Fig. 9. As the ratio of anchor seed nodes increases, the number of packets
communicated through the network also increases except for our TrinaryMC
method and the LCC-MCL method.

to move samples or resample. Thus, this first simplified algorithm only
runs the initialization step at each time instance no matter if |S| > 0 or
not in t − 1. We call this the binary-no-memory method, binary because
without memory of t − 1, neither approaching nor retreating can be rec-
ognized. A middle ground algorithm between this binary-no-memory
algorithm and our trinary algorithm is running the trinary algorithm
using only the binary states visible and invisible. For this, we continue
to remember the movement of samples over time, thus we retain the
sampling and filtering steps. We call this second simplified algorithm
as the binary method.

6.2. Results

First, we consider the communication required for each method.
The primary gain in this aspect for our TrinaryMC method compared
to existing methods is that our method needs to share message with
first and second hop neighbors only when a trinary state change occurs
between a pair of devices. In St-MCL, updates are shared between
each k-hop neighbor whenever an anchor node receives a new GPS
position. Because we simulate time discretely, all anchor nodes move
every single time instance. The Orbit-MCL and LCC-MCL methods not
only require communication for each anchor position change but also
require updates from non-anchor nodes to provide additional accuracy
in their methods. Only LCC-MCL considers this additional communica-
tion and provides a method to lower this cost. Instead of sharing GPS
position updates from all anchor and non-anchor nodes to all neighbor-
ing nodes, a closeness metric is obtained to determine whether a given
neighbor is close enough to gain insight from the new GPS position. As
the ratio of anchor seed nodes increases, the amount of communication
required also increases for all methods except for our TrinaryMC and
LCC-MCL as can be seen in Fig. 9. For TrinaryMC, this is because the
model does not consider anchors whatsoever. For LCC-MCL this occurs
as a result of the use of the closeness metric when determining which
nodes to communicate with instead of simply whether the node is an
anchor or not. This closeness metric does not change for LCC-MCL as
more nodes become anchor seeds.

Next we consider the effects of communication radius (r). As r
increases, more neighbors on average are seen within k-hop range of
each node, as shown in Fig. 10. Note that, when r is smaller than 30 m,
the number of one-hop neighbors on average is smaller than 1. In these
cases, as we cannot make predictions without any data from neigh-
bors, we ignore them in our analysis. Our expectation is that increasing
the number of neighboring nodes will reduce the valid sampling area
which thus means a decrease in overall error. For evaluating the error
produced by each method in our simulations, we take the difference of
the predicted distance and the actual distance for all node pairs.
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Fig. 10. Average number of k-hop neighbors seen given some communication
radius (r).

Fig. 11. Comparison of our methods as communication radius changes (thus
more neighbors are seen per node) and as k increases (also causing more neigh-
bors to be seen).

Fig. 11 shows the error obtained in our three methods, binary no-
memory, binary and trinary. We take the calculated average error per
node after 100 time steps divided by the communication radius (r) to
produce a percent error relative to r. We can see that as radius increases,
error decreases, which can be attributed to the fact that more neighbors
are seen with higher r. Further, we can see when k = 2, we achieve
better accuracy than we do with k = 1. We can attribute this increase
in accuracy again to more neighbors, which helps create fewer possible
locations when generating samples. We also observe that our trinary
method provides lower error than the binary method, which itself pro-
duces lower error than the binary no-memory method.

Existing MCL algorithms require anchor nodes or seed nodes with
knowledge of their exact location at any given time through a method
such as GPS. As more seeds are added, these anchor-based methods are
expected to become more accurate, however with an increase in hard-
ware cost and energy usage. Because our method is anchorless, Tri-
naryMC is not affected by an increase of seeds. We explore how chang-
ing the percentage of seed nodes within the network affects St-MCL and
how TrinaryMC compares to St-MCL as a result in Fig. 12. We can see
when only 20% of nodes are labeled as seeds, accuracy decreases signif-
icantly, ranging from 40% to 70% of r. However, with 50% of nodes as
seeds, we begin to reach the same average error as in our trinary case.
Another observation we can make from this figure shows that as com-
munication radius for nodes increases, average error decreases. This is
explained by the fact that a larger communication radius reveals more
neighbors which thus allows for a more restricted area when predicting
samples.

Next, with r = 50 and k = 2, Fig. 13 compares our algorithm with
additional state-of-the-art methods. We again see the trend where a
lower ratio of seeds (below 50%) produces worse accuracy results than

Fig. 12. TrinaryMC method comparing to the Standard Monte Carlo Localiza-
tion (St-MCL) methods for different number of anchor seeds in the network.

Fig. 13. Comparison of TrinaryMC to state-of-the-art MCL methods when dif-
ferent percentage of the nodes in the network are marked as anchor nodes and
communication radius, r = 50, and k = 2.

TrinaryMC for each of the existing state-of-the-art algorithms. We also
notice that both Orbit-MCL and LCC-MCL perform better than St-MCL
when the ratio is between 0.3 and 0.7, but perform similarly to one
another. Of course, having a high ratio of seed nodes in the network
is not reasonable because of considerations such as hardware cost as
well as the issue of battery consumption from modules such as GPS.
Thus, even though the solution may provide better results with greater
number of seeds, the solution is highly impractical and costly.

We also compare the TrinaryMC algorithm to other algorithms based
on cumulative distribution function (CDF) of error with two different
ratios of seed nodes. As it is shown in Fig. 14a, with a seed ratio of
0.2, each of the other MCL algorithms performs similarly worse than
TrinaryMC. On the other hand, as shown in Fig. 14b, with a ratio of 0.8,
all algorithms perform similarly initially then TrinaryMC diverges with
worse CDF error results. Similarly, St-MCL diverges from both Orbit-
MCL and LCC-MCL between the 0.5–0.9 CDF mark. Both Orbit-MCL
and LCC-MCL perform similarly when a high ratio of seed nodes are
present.

Next, we compare our method to RSSI based distance estimation.
Many existing works use the Log-distance path model (Shue and Con-
rad, 2017) to explain how RSSI is affected by both distance (d) and noise
(n). In works employing this model (Shue and Conrad, 2017; Karvonen
et al., 2017), authors set the noise parameter (n) for their model as
some static value between 2 and 4. Because the model does not change
for a given environment, selecting an incorrect value for n can result
in poor distance predictions. To simulate the effect of different val-
ues for n on distance predictions, we randomly set a true environmen-
tal noise value (ntrue) along with another randomly assigned predicted
noise value (npred) denoting the value assigned by the model-designer.
This means if the model-designer chooses a bad value for npred, then
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Fig. 14. CDF Error with different ratios of seed nodes.

Fig. 15. Results of simulation of RSSI values with different path-loss exponent
and variance, and their comparison with our methods.

|ntrue − npred| ≫ 0 and thus distance predictions will subsequently be
poor. For this simulation, we calculate the RSSI value based on ntrue:

RSSI = 10 × ntrue × log(d) + A (4)

where A is the baseline RSSI for a pair of devices at a distance of 1 m
and d is the actual distance of the devices for some time instance. Using
this RSSI value and npred, we predict distance using the Log-distance
path model:

dpred = 10
A−RSSI

10×npred (5)

For both equations, we set A = −30 as this was a common value we
found through experiments and existing literature. In Fig. 15, we show
how different values for n affect the average error. For each value of
n we show how well the Log-distance path model performs when ntrue
and npred are within ±0.5 of each other (lower error) and when ntrue
and npred are within ±1.0 of one another (higher error). We can see
the average error with RSSI based distance estimation is equal when
n = 2 and better on average as n increases than the binary-no-mem
method. However, we can see that our trinary method performs better
on the average until n reaches 2.8. Still, given a poor choice for npred,
it is possible that RSSI method will still perform worse than both the
trinary and binary methods up to n = 3. This suggests that our method
can perform as good as the RSSI method or better in very uncertain
environments such as highly congested areas with more noise or indoor
environments with high signal reflections.

While in this study, our focus is the positioning of the nodes rela-
tive to each other, it is possible to derive the approximate true loca-
tions of all nodes in the network from these relative positions. Thus, to
demonstrate the results of TrinaryMC from a full network perspective,

we present in Fig. 16a the actual positions and the predicted positions
of 15 nodes, each with communication range of 50 units moving within
a 100 × 100 unit area. Predicted positions are obtained by performing
Multi-Dimensional Scaling (MDS) as described in (Rajan et al., 2019;
Abouzar et al., 2016) with our TrinaryMC predicted per-node distances.
In the figure, we see very high similarity between the true positions and
the predicted positions for this specific example. In order to quantify
the expected error of predicted locations in network of further network
sizes, we simulate networks with number of nodes |N| ∈ (Alzantot and
Youssef, 2012; Wang et al., 2008). For each value of |N|, we calculate
the average error for all nodes over 50 simulations with a mobility area
of 100 × 100 units and a communication range of 50 units. We see
in Fig. 16b that the total MDS error increases as the number of nodes
increases. This is expected, because adding more nodes results in more
node pairings where additional error may occur. However, if we divide
the total MDS error by the number of nodes in each network we can see
the average MDS error per node-pair. In this case, we begin to identify a
negative trend where an increase of nodes results in a decrease in error
per node-pair.

As more neighbors are added, each algorithm performs additional
computation when collecting sample sets. Because our TrinaryMC algo-
rithm is designed to perform relative positioning, it is unique when
compared to existing non-relative MCL algorithms. In our algorithm,
each node must compute sub-samples for each neighbor, while anchor-
based MCL algorithms only produce one sub-sample per node regardless
of the number of neighbors. We see in Fig. 17a that increasing radius
does affect TrinaryMC greater than other methods as a result of this
sub-sampling. However, normalizing this computation time by dividing
it with the number of computed sub-samples in Fig. 17b reveals that
TrinaryMC performs similarly to both St-MCL and LCC-MCL and more
efficiently per sub-sample than Orbit. We see in this normalized case
that average per node computation increases similarly for each method
as r increases. This demonstrates that the increase in computation time
for TrinaryMC is dependant solely on the fact that, because TrinaryMC
is designed as a relative positioning algorithm, it must compute more
information (i.e., position predictions for each neighbor) per sample
than anchor-based MCL algorithms which consider only the device’s
own coordinate per sample. Specifically, this shows that the increase in
time to perform one iteration of the TrinaryMC algorithm compared to
other algorithms is proportional to the number of neighbors for a given
node.

7. Conclusion

In this work, we present an anchorless relative positioning method
which utilizes multi-hop neighborhood Perceived Direction Informa-
tion (PDI) composed of states: approaching, retreating and invisible. We
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Fig. 16. (a) Example result from the use of MDS on the predictions from TrinaryMC, (b) Average error using TrinaryMC with MDS over 50 simulations with different
numbers of nodes.

Fig. 17. Time taken to compute each MCL algorithm. (a) Because TrinaryMC is designed for relative positioning rather than localization, TrinaryMC must compute
one sub-sample per neighbor resulting in more data and more computation. (b) Normalizing by the number of sub-samples required for each method, TrinaryMC
performs more closely with St-MCL and LCC-MCL.

demonstrate issues inherent to the use of RSSI in indoor localization
such as amplitude differences across heterogeneous radio hardware.
Through our development of a Dense Neural Network for predicting
PDI, we find that we can reliably achieve more than 95% accuracy
even in networks composed of hardware from unseen manufacturers.
We then show how PDI can be used to reduce the sampling area com-
pared to contact-based localization algorithms by up to 99%. Finally
we develop a Monte Carlo Localization algorithm using PDI to pro-
duce relative positioning with lower error and lower communication
overhead than existing Monte Carlo Localization methods which rely
on anchor nodes present within the network. Because of our improve-
ment of removing all reliance on anchor nodes, our method can remove
energy consumption from the use of GPS radio hardware, decrease
hardware cost by removing the need for GPS modules on all devices,
and decrease the reliance on the limited individual anchor nodes in a
system. Our method benefits as more devices join the system as each
not only contributes information about themselves, but also their own
k-hop neighbors, thus giving each node a further look into the network
allowing for more accurate sampling.
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