
An Energy Efficient Location Service for Mobile Ad

Hoc Networks

Zijian Wang1, Eyuphan Bulut
1
 and Boleslaw K. Szymanski 1,

1 Department of Computer Science, Rensselaer Polytechnic Institute,

Troy, NY 12180 USA
{wangz, bulute, szymansk}@cs.rpi.edu

Abstract. Location based routing protocols are heavily dependent on location
services which provide the position information of the desired destination node.

Seldom location service schemes include energy efficiency metrics when
evaluating their performance in forwarding location update and query packets.

We propose a novel location service that aims at decreasing the distance
traveled by the location update and query packets and, thus, at reducing the

overall energy cost. Simulation results are presented to demonstrate that the
new scheme achieves energy efficiency while maintaining all the other
performance metrics comparable to the previously published algorithms.

Keywords: Location service, mobile ad hoc networks, routing

1 Introduction

A critical issue for location based routing protocols is to design efficient location

services that can track the locations of mobile nodes. The earliest of location service

protocols were flooding-based approaches. And then to restrict the location update

and query flooding, quorum-based protocols were proposed. Recently, hashing-based

protocols have been proposed, which can further be divided into flat or hierarchical.

In the first category [1-2], each node’s identifier is mapped to a home region
consisting of one or more nodes within a fixed location. However, a large overhead is

introduced during the location update procedure and frequent location queries and

replies cause early death of the nodes within home region. In the second category [3-

5], the network area is recursively divided into a hierarchy of squares. For each node,

one or more nodes in each square at each level of the hierarchy are chosen as its

location servers. Thus, the location update cost is significantly reduced and location

servers are scattered all over the network.

However, the main goal of the hierarchical hashing-based protocols is just to find
the location of the destination nodes. They seldom take energy efficiency issue into

consideration when forwarding location update and query packets. We propose a

novel location service scheme which attempts to decrease the distance traveled by the

location update and query packets and, thus, to reduce the overall energy cost.

2 Energy Efficient Location Service

2.1 Network Partition and Coordinate System

Each node knows its own position and also knows the positions of its neighbors. The

whole square network area is recursively divided into a hierarchy of squares which

are known to each node in the network. At the top level, the entire area is called a

level-N square. Each of level-i (1 i N< ≤) squares is further divided into four level-

(i-1) quadrants, until the entire region is divided into 4
(N-1)

 level-1 squares. Given L as

the side length of the whole network area, the side length of a level-i square is

Li=L/2
N-i

. Fig. 1 illustrates an example of a 4-level hierarchy network.

Fig. 1. An example for a 4-level hierarchy network

Using the lower left point as the origin, we define the address of level-i square as a

sequence of coordinate pairs 1 1(,)...(,)N N i i

x y x y
a a a a− − (

|

i

x ya in short) computed as:

1

| | |

1

() /
N i

i i N k

x y x y N k x y i

k

a s L a L
− −

−

−

=

= − •∑ , where (,)i i

x ys s (
|

i

x ys in short) is the lower left

coordinate of the level-i square. For example, the address sequence for the marked

level-1 square in Fig. 1 is (1,0)(1,0)(0,1). Inversely, the lower left coordinate of the

level-i square can be computed as follows:
| |

1

N i
i N k

x y N k x y

k

s L a
−

−

−

=

= •∑ . Given a node’s

coordinate (nx, ny), the address sequence 1 1(,)...(,)N N i i

x y x y
na na na na

− − (
|

i

x yna in short)

of the level-i square to which this node belongs is calculated as:
1

| | |

1

(() /)
N i

i N k

x y x y N k x y i

k

na floor n L na L
− −

−

−

=

= − •∑ .

2.2 Location Update

Each node selects one level-i location server in each level-i square in which it resides.

The position of the level-i location server (,)
i i

x y
ls ls (referred to as location server

point) for each node in level-i square is determined as:

(,) (,) (,)i i i i

x y x y ils ls s s hash ID L= + , where ID is the unique identifier of the node.

Hash is a global function known to each node that maps a node’s ID to a relative

position in a level-i square.

In our method, each location server maintains a list of nodes whose location

information it stores. Each element of the list stores the following information: node

ID (32 bits), location server level (log2N bits), location information (introduced in the

following), and expiration time (32 bits). Please note that the destination node’s exact

location information is only stored at level-1 location servers. At all other levels, the

location servers only store the address sequence of the square in which the level-(i-1)

location server resides, as shown in Fig. 1. Thus, 1) the memory usage is reduced; 2)

the size of the location update packet is also reduced; 3) the location information at

level-i location server needs to be updated only when the destination node moves out

of the corresponding level-(i-1) square, which significantly reduces the frequency of

location updates, thereby saving a lot of energy.

In previous methods, all the location update packets are sent to location servers

individually. In our method, if one node needs to send a location update to more than

one location server, it first calculates the distances traveled by the update messages

both for sending them to each desired location server individually (referred as d-

indiv) and sending them in one packet which traverse all the desired location servers

(referred as d-one). If d-indiv is smaller than d-one, the location update messages are

sent to each desired location server individually. Otherwise, all the update messages

are integrated into one packet that is forwarded according to a forward table which

indicates the sequence of location servers to be visited. Traversing multiple points in a

plane is a kind of Hamiltonian path problem. We use a simple greedy solution in

which the next visited node is always the nearest one to the currently visited node.

Any intermediate node greedily forwards location update packet to the neighbor

nearest to the position of the next location server in the forward table. Once the

location update packet reaches a location server at certain level, the corresponding

location information will be stored at this server and the next entry in the forward

table pops up. All the outdated table entries are deleted.

2.3 Location Query

When the source node resides within a level-s (predefined parameter, we set it to 1)

square that is beside the boundary of any level-h (predefined parameter, we set it to

N-1) square, the search proceeds as follows. The source node calculates all candidate

location server points (from level-N to level-1) that fall into the adjacent level-s

squares (we refer to them as candidate adjacent squares) located on the opposite side

of the boundary of a level-h square. If any level-k candidate location server point is
found in each adjacent level-s square, there is no need to find level-i (i<k) candidate

location server points in the same level-s square. Hence, only the highest candidate

location server in each adjacent square searched needs to be found (we refer to it as

extra location server). Otherwise, the source node will only find all candidate location

server points (we refer to them as base location servers) using the HIGH-GRADE

method. Both of these two kinds of location points (if the extra location servers exist)

are sorted into a list in the sequence that can be traversed by one path starting from

the source node, using the same greedy Hamiltonian path method as sending location

update packets. If any high level base location server is in front of low level base

location server, the lower one is deleted from the list. This is because if the location

query packet checks the high level base location server points first, then there is no

need to check the low level base location server points, as mentioned in our
observation. But for extra location servers, we need to check all of them in each

adjacent level-s square, so we keep all of them.

Fig. 2. Location query procedure and forward table

An example in which the source node resides in the level-1 square which is beside

the boundary of level-3 square is shown in Fig. 2. The source node calculates all

candidate location server points in the adjacent squares (there are at most five of

them, as shown in Fig. 2). There are two candidate location server points in adjacent

level-1 square (1,0)(0,1)(0,1) (one is level-1, the other is level-3). Only the level-3

one will be kept. Then, all candidate location servers are sorted in the order shown in

Fig. 2, as defined by the path traversing from the source node. Since the level-2 base

location server is in front of level-1 base location server on this sorted list, the level-1

base location server will be removed from the list.

4 Simulations

We used NS-2.33 to evaluate our scheme and compared it with the HIGH-GRADE

method presented in [8]. The whole network is deployed over a 1000 m by 1000 m

area partitioned into 4-level squares. The following metrics are evaluated: (1) the total

distance (measured in meters and hops) traveled by all location update packets for all
nodes; (2) the average distance traveled by location query packets; (3) the average

distance traveled by location query packet for specific destination node (for this

kind of location query, we select the source node that resides within a level-1 square

that is beside the boundary of level-3 square; moreover, there is at least one location

server for the destination node residing in the adjacent level-1 square which is also

beside the boundary of level-3 square on the opposite side); (4) the average energy

usage; and (5) the location query success ratio.

In static network scenario, we keep the average number of neighbor nodes constant

and vary the number of nodes from 200 to 600. For each randomly generated

topology, nodes send location update packets at first, then, 20 randomly location

queries start. In the mobile network scenario, nodes move according to the random

way-point model with no pause time. We keep the number of nodes at 400 but vary

the maximum nodal speed Vmax from 2.5 m/s to 7.5 m/s.
Tables 1 to 3 give the average results for metric (1) to (3). Clearly, the location

update cost for our method is much lower than for HGM. This is mainly because the

location update messages in our method could be sent in one packet. It is also clear

that the cost of a specific location query in our method is much lower than for HGM.

This advantage is the result of its properties: quick search within the adjacent low

level squares and visiting higher level candidate location server first. However, for

randomly selected location queries, the costs of the two compared methods are almost

the same. The reason is that the quick search within adjacent low level squares not
always finds the desired location servers. In such cases the distance traveled by the

quick search just increases the cost without any benefit. However, our method still

benefits from visiting higher level candidate location servers first, preventing

unnecessary travel by a location query packet.

Table 1. Simulation results for metric (1)

Static network scenario

Node Number 200 400 600

Our method: distance (hops) 154129.1(1259.6) 302726.2(3285.0) 452976.9(5845.0)

Compared method: distance (hops) 227285.2(1736.0) 435527.5(4495.4) 649542.7(8037.4)

Mobile network scenario

Vmax (m/s) 2.5 5 7.5

Our: distance (hops) 324755.9(3581.9) 352415.3(3903.1) 388754.6(4528.7)

Compared: distance (hops) 475739.1(4946.3) 529158(5736.5) 575242.9(6327.1)

Table 2. Simulation results for metric (2)

Static network scenario

Node Number 200 400 600

Our method: distance (hops) 1288.6(9.9) 1315.5(13.9) 1317.1(16.6)

Compared method: distance (hops) 1299.3(10.0) 1303.4(13.7) 1365.5(17.2)

Mobile network scenario

Vmax (m/s) 2.5 5 7.5

Our method: distance (hops) 1021.6(10.7) 1017.5(11.0) 967.3(10.4)

Compared method: distance (hops) 959.2(10.1) 1055.1(11.3) 1080.8(11.7)

Table 3. Simulation results of static network scenario for metric (3)

Node Number 200 400 600

Our method: distance (hops) 878.6(7.2) 966.8(10.3) 1098.3(14.4)

Compared method: distance (hops) 1443.9(11.2) 1424.8(14.5) 1497.1(18.7)

200 400 600

0.0

0.5

1.0

1.5

2.0

2.5

E
n

e
rg

y
 u

s
a

g
e

 (
J
o

u
le

)

Number of node

 compared

 our

2.5 5.0 7.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

E
n

e
rg

y
 u

s
a

g
e

 (
J
o

u
le

)

Max node speed (m/s)

 compared

 our

Static network scenario Mobile network scenario

Fig. 3. Simulation results for energy usage

The energy usage for both methods is shown in Fig. 3. The energy usage for our

method is lower, in the range of 74% to 88% of the HGM energy use. Table 4 shows

the location query success rate results. This rate is a little higher for our method.

Table 4. Simulation results for metric (5)

Node Number 200 400 600 Vmax (m/s) 2.5 5 7.5

Our method: 99% 96% 96% Our method: 80% 72% 59%
Compared method: 91% 94% 93% Compared method: 74% 69% 56%

5 Conclusion

In this paper, we introduced a novel location service that aims at reducing the overall
energy cost by decreasing the distance traveled by the location update and query

packets. Extensive simulations are performed to demonstrate that the new scheme

achieves energy efficiency while maintaining all the other performance metrics.

References

1. Woo, S. C., Singh, S.: Scalable Routing Protocol for Ad Hoc Networks. ACM Wireless
Networks, vol. 7(5), pp. 513--529 (2001)

2. Das, S. M., Pucha, H., Hu, Y. C.: Performance Comparison of Scalable Location Services
for Geographic Ad Hoc Routing. In: 24th Annual Joint Conference of the IEEE Computer

and Communications Societies (INFOCOM), pp. 1228--1239. IEEE Press, New York (2005)

3. Yan, Y., Zhang, B. X., Mouftah, H.T., Ma, J.: Hierarchical Location Service for Large Scale
Wireless Sensor Networks with Mobile Sinks. In: IEEE Global Telecommunications

Conference (GLOBECOM), pp. 1222--1226. IEEE Press, New York (2007)
4. Ahmed, S., Karmakar, G. C., Kamruzzaman, J.: Hierarchical Adaptive Location Service

Protocol for Mobile Ad Hoc Network. In: IEEE Wireless Communications and Networking
Conference (WCNC), pp. 1--6. IEEE Press, New York (2009)

5. Yu, Y. Z., Lu, G.-H., Zhang, Z.-L.: Enhancing Location Service Scalability with HIGH-
GRADE. In: IEEE International Conference on Mobile Ad-hoc and Sensor Systems
(MASS), pp. 164--173. IEEE Press, New York (2004)

