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Abstract—Target tracking is a typical and important cooperative 
sensing application of wireless sensor networks. We study it in its 
most basic form, assuming the binary sensing model in which 
each sensor can return only 1-bit information regarding target’s 
presence or absence within its sensing range. A novel, real-time 
and distributed target tracking algorithm is proposed. The 
algorithm reduces the uncertainty of the target location from a 
two-dimensional area into a one-dimensional arc and estimates 
the target velocity and trajectory in a distributed and 
asynchronous manner. Extensive simulations show that our 
algorithm achieves good performance by yielding highly accurate 
estimates of the target’s location, velocity and trajectory. 
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I.  INTRODUCTION 
Wireless sensor networks composed of miniature devices 

that integrate physical sensing, data processing and 
communication capabilities present great opportunities for a 
wide range of applications [1]. Among them, target tracking is 
a representative and important application that usually requires 
a cooperative sensing processing to achieve good results [2,3].  
One of the fundamental studies of target tracking focuses on 
networks composed of sensor nodes capable of the most 
elementary binary sensing that provides just one bit of 
information about the target: whether it is present within the 
sensing range or not. These so-called binary sensor networks 
constitute the simplest type of sensor networks that can be used 
for target tracking. 

Under the binary sensing model, individual sensors of the 
network have very limited information regarding the target 
status, which means that it is necessary to use cooperation to 
accurately track the target. A number of approaches to this 
problem have been proposed in recent years. The algorithms 
presented in [4,5] first route the binary information to a central 
node and then the central node applies particle filters on 
information gathered from all sensors to update the target’s 
track. But particle filters are expensive to compute and 
transmitting data from each node to a central one is very costly 
in terms of the energy needed for communication for any non-
trivial size network. In [6], each point on the target’s path is 
estimated by the weighted average of the detecting sensors’ 
locations. Then, a line that fits best this point and the points on 
the trajectory established in the recent past is used as the target 

trajectory. Kim et al. [7] improve the weight calculation for 
each sensor node that detected the target and use the estimated 
velocity to get the estimated target location. However, these 
two methods require time synchronization of the entire network 
and assume that the target moves at a constant velocity on a 
linear trajectory. Furthermore, they only use positions of the 
sensor nodes that detected the target. Actually, the absence of 
detection can also provide information that can be used to 
improve the tracking accuracy. In [8], both the presence and 
absence of the target within the node’s sensing range are used 
to form local regions that the target had to pass. These regions 
are bounded by the intersecting arcs of the circles defined by 
the sensing ranges of the relevant nodes. The trajectory is 
estimated as a piecewise linear path with the fewest number of 
linear segments that traverses all the regions in the order in 
which the target passed them. However, the algorithm is 
centralized and complex to compute. It also requires a 
designated tracker node to fuse data. Additionally, the 
designated node has to accumulate information from tracking 
sensors to form all regions needed to compute the estimated 
trajectory, which means that the tracking is not real-time but 
delayed. 

In this paper, we propose a novel distributed target tracking 
algorithm using binary sensor networks. Each active node 
computes the target’s location, velocity and trajectory locally 
but uses cooperation to collect the sensing bits of its neighbors. 
Furthermore, the algorithm tracks the target in real–time, does 
not require time synchronization between sensor nodes and can 
be applied to target moving in random directions and with 
varied velocities. 

The remainder of the paper is organized as follows. We 
describe the network model and our assumptions in Section II. 
In Section III, we introduce our distributed target tracking 
algorithm using cooperative binary sensor networks. Section 
IV presents the simulation results. Finally, we provide 
conclusions in section V. 

II. NETWORK MODEL AND ASSUMPTIONS 
The sensor network comprises N nodes placed randomly 

with uniform distribution over a finite, two-dimensional planar 
region to be monitored. Each node has a unique identifier and 
its sensing region forms a disk centered at the node and 
bounded by a circle defined by the sensing range R. The union 
of sensing regions of all network nodes guarantees redundant 



coverage of the region to be monitored. For simplicity, we 
assume that the sensing range of each node is identical across 
the network. However, our algorithm also applies when sensing 
range vary from node to node. Each node generates one bit of 
information (“1” for target’s presence and “0” for its absence) 
only at the moment that the target enters or exits the sensing 
range of this node. Otherwise, we get no other information 
about the location, velocity, or other attributes of the target. A 
node that has not detected change in the absence or presence of 
the target within its sensing range does not transmit to save 
energy and bandwidth. Each time a new bit of information is 
generated, the node communicates it to its neighbors that are 
defined as nodes whose sensing range intersects its sensing 
range (depending on the relation between the sensing and 
communication radii, this may require more than one hop). 
Henceforward, we use the term neighbor in this specific sense. 
A node knows its location and the locations of its neighbors 
(possibly through communication at the network deployment 
stage, not discussed here). Each node has its own local timer 
and can time stamp sent or received messages. Additionally, 
we assume that the target moves with velocity that is low 
relative to the node’s sensing frequency. Consequently, time of 
discovery of the change in the target’s presence within the 
node’s sensing range differs negligibly little from the time of 
the target moves within or out of this range. 

III. A COOPERATIVE TRACKING ALGORITHM 

A. Basic Idea 

 

Figure 1.  Illustration of the basic idea behind the algorithm 

To illustrate our basic idea, we use an example from Fig. 1, 
which shows a target moving through an area covered by three 
nodes. Initially, the target is outside of the sensing ranges of all 
three nodes. Later, it moves within the sensing range of node X 
at the system time t1, and then sensing ranges of nodes Y at 
time t2 and Z at time t3. Finally, it leaves sensing ranges of 
nodes X, Y and Z, in that sequence, at times t4, t5, t6. According 
to the model described in the previous section, each node will 
generate a bit “1” at the time of first sensing the target’s 
presence and later a bit “0” at the time of first lacking to sense 
its presence which correspond to the times at which the target 
enters and then exits sensing range of the node. Consequently, 
at the transition time tj, the target must be on arc Aj which is a 
part of the border circle of the sensing range of the node 
reporting the bit information and which can be determined 
cooperatively from presence and absence bits of neighbors of 
that node. Let’s consider arc A2 defined at time t2 as an 

example. At time t2, node Y senses the target presence within 
its sensing range for the first time, so the arc is a part of the 
sensing range border circle of node Y. At that time, node Y 
knows that the target is within the sensing range of node X, so 
the target must be on arc “abc”. Node Y knows also that the 
target is not within the sensing range of node Z, so the target 
can not be on arc “bcd”. Hence, node Y concludes that the 
target must be on arc A2. It is important to observe that, by 
using this method, the two-dimensional uncertainty of the 
target’s location on the plane is reduced to a one-dimensional 
uncertainty within the circle section. Shorter this circle section 
is, smaller the uncertainty becomes. 

B. Tracking Algorithm 
At the network deployment stage, each node initializes the 

status list of its neighbors to “0’’s. Each time a node receives 
one-bit information from a neighbor, it updates the status list. 
At the moment at which the node discovers the change in the 
target’s presence within its sensing range, it identifies the arc of 
its sensing range border circle that the target is crossing. The 
target location is estimated as the middle point of the 
corresponding arc and broadcast to neighbors. Two relatively 
accurate estimates of target location combined with the 
difference of local times at which those estimates were made 
are used for distributed computation of the target velocity. A 
weighted line fitting method is used to find a line, 
approximating a fragment of the target trajectory, that best fits 
the estimated target locations. 

1) Initialization and information update 
In the initialize procedure, each node establishes a list of its 

neighbors. Each element of the list stores the following 
information: neighbor node identifier, intersection points of the 
sensing circles of the node and its neighbor, an angle 
corresponding to the arc defined by these intersection points 
and one-bit information generated by the neighbor, initialized 
to “0”. Upon receiving one-bit information from a neighbor, 
the node updates the corresponding entry in the list. 

2) Location estimate 

 

Figure 2.  Instances of angle combinations 

We combine all angles corresponding to arcs defined by the 
neighbor list to determine the arc that the target is crossing. The 
four instances of this process are shown in Fig. 2. If the 
neighbors both generated bits equal to “1”, the corresponding 
central angles are combined by “&” operation that returns the 
intersection of these two angles. As shown in Fig. 2(a), the 
common angle of 1 3o∠  and 2 4o∠  is 2 3o∠ , so the node Y 
estimates the target location as the middle point of arc “23” 
when it senses that the target just moved within its sensing 



range. One special instance is shown in Fig. 2(b), where the 
common angle is just one of the two angles. If one neighbor 
status is set to “1” while the other is set to “0”, the 
corresponding central angles are combined with “-” operation 
that returns the angle formed from the first angle by excluding 
from it the second. For example, in Fig. 2(c) 1 3o∠  - 2 4o∠  is 
equal to 1 2o∠ . In a special case shown in Fig. 2(d), the result 
may consist of two angles, 1 2o∠  and 3 4o∠ . The correct angle 
in this case is chosen by considering the recent estimate of the 
target location. 

Let FA be the sought arc’s central angle initialized to 2π  
(the entire circle of the sensing border of a node). Let IN be the 
set of neighbor nodes with status set to “1” and let OUT be the 
set of neighbor nodes with status set to “0”. Then, the final 
angle whose corresponding arc is the one that the target is 
crossing can be expressed as: 

 & i jj OUTi IN
FA FA angle angle

∈∈
= −  (1) 

where anglei is the central angle corresponding to neighbor i. 

3) Velocity estimate 
We use a distributed, asynchronous algorithm to estimate 

the target velocity. As shown in Fig. 3, three nodes X, Y and Z 
work in asynchronous time. At time tY1 on node Y’s local 
clock, node Y senses target’s presence within its sensing range 
for the first time and generates a bit “1” message. The 
estimated location of the target is also included in this message 
to save energy and bandwidth. Since the elapsed time of radio 
transmission is negligible, node Z receives this message at time 
tZ1 on its local clock. Node Z will also receive the message 
from node X at time tZ2. Then, node Z can use the time 
difference tZ1-tZ2 and the difference of locations reported in 
these two messages to estimate the target velocity. To estimate 
velocity accurately, only location estimates with relatively high 
accuracy are used, those are locations at the middle points of 
the short arcs. 

 

Figure 3.  Velocity estimation 

4) Trajectory estimate 
A weighted line fitting method is used to get the target 

trajectory and the weight of each estimate is defined as:  

 /w circle arc=  (2) 

where arc  is the length of corresponding arc whose middle 
point is the estimated target location and circle  is the length 
of the sensing range border circle. Each node finds the line (or 
two or more line sections if the target turns around) that best 
fits these weighted estimated locations. This line when 
expressed as y a x b= ⋅ +  minimizes the metric Q defined as: 

 2( )i i i
i E

Q w y a x b
∈

= − ⋅ −∑  (3) 

where E=[(y0,x0),…(yi,xi)…(yk,xk)] is a list of the estimated 
target locations for which the line is fitted. 

IV. SIMULATION 
To evaluate our approach, we have performed extensive 

simulations in which N wireless nodes are randomly placed on 
a 800×800 unit square in a two-dimensional simulated plane to 
track a single mobile target. The number of nodes and the 
node’s sensing range are varying simulation parameters. 

A. Location Estimate 
The first metric that we consider is the location estimation 

error, measured as the ratio of the distance between the 
estimated and real target locations to the sensing range. Several 
types of trajectories have been considered: linear, circular, and 
a piece-wise linear trajectory with random turns. 

Fig. 4 shows the typical example of estimated location 
points for these three kinds of trajectories. The sample network 
is composed of 600 nodes with sensing range of 150 units. 

    
(a) Liner trajectory   (b) Circular trajectory 

 

 
(c) Random trajectory 

Figure 4.  Examples of location estimation 



When evaluating the impact of simulation parameters on 
the location estimation accuracy, we first kept the number of 
nodes fixed at 800 and varied the sensing range from 50 to 150 
units. Then, we kept the sensing range fixed at 150 units and 
varied the number of nodes from 100 to 800. The plots in Fig. 5 
show the average error in location for the configuration and the 
three trajectories described above. We observe that the 
localization error decreases inversely to the sensing range and 
to the number of nodes.  
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Figure 5.  Location estimate accuracy 

For the random trajectory, we made the target move at a 
relatively high velocity (up to four times higher than in the 
case of linear and circular trajectories). This change affects the 
position estimation quality in two ways. First, each node 
senses for target with constant frequency, so the error of 
sensing the target’s distance linearly increases with the target’s 
speed. Second, more frequent reporting of target position may 
create traffic congestion where the target is sensed and 
therefore delay sensing message delivery and processing. 
Because of this delay, each node may have incomplete 
neighbor information when it estimated the target position. 
Consequently, the error for random trajectory is higher than 
for the other two. Yet, even in this case, our location error 
(below 10%) with random placement of nodes is smaller than 
the results presented in [7] (above 15%).  Likewise, in 
relatively sparse networks, with the total of 200-400 nodes and 
100 units sensing range, our algorithm performed well. It is 
also very austere in sending messages. A node generates a 
single message only if there is a change in target’s presence 
within its sensing range. Hence, with moderately fast targets, it 
is unlikely to cause congestion delaying packet delivery. Thus, 

in the following, we use a relatively dense network with the 
total of 800 nodes and 150 unit sensing range. 

B. Velocity Estimate 
We tested the performance of velocity estimation under the 

configuration of 800 nodes with 150 unit sensing range in two 
scenarios in which target moves on a linear trajectory. In the 
first scenario, the target moves at a constant velocity. In the 
second scenario, the velocity of the target changes suddenly 
several times to a random value. 
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(a) Constant velocity 
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(b) Random velocity 

Figure 6.  Estimated velocity versus real velocity 

Fig. 6 shows the estimated versus real velocities as a 
function of time in these two scenarios. Clearly, the estimated 
velocity is very close to the real velocity in the first scenario. 
These two agree also well in the second scenario, although 
there is some delay before the change of real velocity is 
reflected in its estimate.  
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(a) Constant velocity 
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Figure 7.  Velocity deviation 

In Fig. 7, the plot of the deviation of the two velocities 
shows that the maximum deviation is always less than 5% in 
the first scenario and below 10% in the second scenario, 
excluding the brief moments immediately after the velocity 
change. 

C. Trajectory Estimate 
On all three kinds of trajectories and under the 

configuration of 800 nodes with 150 units sensing range, our 
trajectory estimate method delivers very good performance.  

Fig. 8 shows the typical estimations for these trajectories. 
We measure the accuracy of estimated trajectory using the 
average difference between the estimated and real trajectories. 
It is calculated using the area of a polygon formed by these two 
trajectories divided by the length of the real target trajectory. 
The average accuracy are 0.085, 0.424 and 0.782, for linear, 
circular and piece-wise linear trajectories with random turns, 
respectively.   

V. CONCLUSION 
Target tracking is a typical and important application of 

sensor network usually using cooperative sensing. In this paper, 
we study the target tracking problem under the simple and 
basic binary sensor network model. We introduce a real- time 
distributed target tracking algorithm without time 
synchronization. Extensive simulations of this algorithm 
performed under different configurations and scenarios are 
reported. We observe that cooperative sensing involving just 
neighbor nodes can compensate for a very simple and basic 
sensing capabilities of the senor network nodes. The introduced 
algorithm, thanks to cooperative sensing, yields very good 
performance estimating accurately the target location, velocity 
and trajectory using the binary sensor networks. 
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(a) Linear trajectory                      (b) Circular trajectory 
 

 
 

(c) Random trajectory 

Figure 8.  Examples of trajectory estimate 
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