
A Distributed Cooperative Target Tracking with
Binary Sensor Networks

Zijian Wang, Eyuphan Bulut, and Boleslaw K. Szymanski
Department of Computer Science and Center for Pervasive Computing and Networking

Rensselaer Polytechnic Institute
Troy, NY 12180 USA

{wangz, bulute, szymansk}@cs.rpi.edu

Abstract—Target tracking is a typical and important cooperative
sensing application of wireless sensor networks. We study it in its
most basic form, assuming the binary sensing model in which
each sensor can return only 1-bit information regarding target’s
presence or absence within its sensing range. A novel, real-time
and distributed target tracking algorithm is proposed. The
algorithm reduces the uncertainty of the target location from a
two-dimensional area into a one-dimensional arc and estimates
the target velocity and trajectory in a distributed and
asynchronous manner. Extensive simulations show that our
algorithm achieves good performance by yielding highly accurate
estimates of the target’s location, velocity and trajectory.

Keywords-cooperative sensing; target tracking; binary sensor
networks; distributed algorithms

I. INTRODUCTION
Wireless sensor networks composed of miniature devices

that integrate physical sensing, data processing and
communication capabilities present great opportunities for a
wide range of applications [1]. Among them, target tracking is
a representative and important application that usually requires
a cooperative sensing processing to achieve good results [2,3].
One of the fundamental studies of target tracking focuses on
networks composed of sensor nodes capable of the most
elementary binary sensing that provides just one bit of
information about the target: whether it is present within the
sensing range or not. These so-called binary sensor networks
constitute the simplest type of sensor networks that can be used
for target tracking.

Under the binary sensing model, individual sensors of the
network have very limited information regarding the target
status, which means that it is necessary to use cooperation to
accurately track the target. A number of approaches to this
problem have been proposed in recent years. The algorithms
presented in [4,5] first route the binary information to a central
node and then the central node applies particle filters on
information gathered from all sensors to update the target’s
track. But particle filters are expensive to compute and
transmitting data from each node to a central one is very costly
in terms of the energy needed for communication for any non-
trivial size network. In [6], each point on the target’s path is
estimated by the weighted average of the detecting sensors’
locations. Then, a line that fits best this point and the points on
the trajectory established in the recent past is used as the target

trajectory. Kim et al. [7] improve the weight calculation for
each sensor node that detected the target and use the estimated
velocity to get the estimated target location. However, these
two methods require time synchronization of the entire network
and assume that the target moves at a constant velocity on a
linear trajectory. Furthermore, they only use positions of the
sensor nodes that detected the target. Actually, the absence of
detection can also provide information that can be used to
improve the tracking accuracy. In [8], both the presence and
absence of the target within the node’s sensing range are used
to form local regions that the target had to pass. These regions
are bounded by the intersecting arcs of the circles defined by
the sensing ranges of the relevant nodes. The trajectory is
estimated as a piecewise linear path with the fewest number of
linear segments that traverses all the regions in the order in
which the target passed them. However, the algorithm is
centralized and complex to compute. It also requires a
designated tracker node to fuse data. Additionally, the
designated node has to accumulate information from tracking
sensors to form all regions needed to compute the estimated
trajectory, which means that the tracking is not real-time but
delayed.

In this paper, we propose a novel distributed target tracking
algorithm using binary sensor networks. Each active node
computes the target’s location, velocity and trajectory locally
but uses cooperation to collect the sensing bits of its neighbors.
Furthermore, the algorithm tracks the target in real–time, does
not require time synchronization between sensor nodes and can
be applied to target moving in random directions and with
varied velocities.

The remainder of the paper is organized as follows. We
describe the network model and our assumptions in Section II.
In Section III, we introduce our distributed target tracking
algorithm using cooperative binary sensor networks. Section
IV presents the simulation results. Finally, we provide
conclusions in section V.

II. NETWORK MODEL AND ASSUMPTIONS
The sensor network comprises N nodes placed randomly

with uniform distribution over a finite, two-dimensional planar
region to be monitored. Each node has a unique identifier and
its sensing region forms a disk centered at the node and
bounded by a circle defined by the sensing range R. The union
of sensing regions of all network nodes guarantees redundant

coverage of the region to be monitored. For simplicity, we
assume that the sensing range of each node is identical across
the network. However, our algorithm also applies when sensing
range vary from node to node. Each node generates one bit of
information (“1” for target’s presence and “0” for its absence)
only at the moment that the target enters or exits the sensing
range of this node. Otherwise, we get no other information
about the location, velocity, or other attributes of the target. A
node that has not detected change in the absence or presence of
the target within its sensing range does not transmit to save
energy and bandwidth. Each time a new bit of information is
generated, the node communicates it to its neighbors that are
defined as nodes whose sensing range intersects its sensing
range (depending on the relation between the sensing and
communication radii, this may require more than one hop).
Henceforward, we use the term neighbor in this specific sense.
A node knows its location and the locations of its neighbors
(possibly through communication at the network deployment
stage, not discussed here). Each node has its own local timer
and can time stamp sent or received messages. Additionally,
we assume that the target moves with velocity that is low
relative to the node’s sensing frequency. Consequently, time of
discovery of the change in the target’s presence within the
node’s sensing range differs negligibly little from the time of
the target moves within or out of this range.

III. A COOPERATIVE TRACKING ALGORITHM

A. Basic Idea

Figure 1. Illustration of the basic idea behind the algorithm

To illustrate our basic idea, we use an example from Fig. 1,
which shows a target moving through an area covered by three
nodes. Initially, the target is outside of the sensing ranges of all
three nodes. Later, it moves within the sensing range of node X
at the system time t1, and then sensing ranges of nodes Y at
time t2 and Z at time t3. Finally, it leaves sensing ranges of
nodes X, Y and Z, in that sequence, at times t4, t5, t6. According
to the model described in the previous section, each node will
generate a bit “1” at the time of first sensing the target’s
presence and later a bit “0” at the time of first lacking to sense
its presence which correspond to the times at which the target
enters and then exits sensing range of the node. Consequently,
at the transition time tj, the target must be on arc Aj which is a
part of the border circle of the sensing range of the node
reporting the bit information and which can be determined
cooperatively from presence and absence bits of neighbors of
that node. Let’s consider arc A2 defined at time t2 as an

example. At time t2, node Y senses the target presence within
its sensing range for the first time, so the arc is a part of the
sensing range border circle of node Y. At that time, node Y
knows that the target is within the sensing range of node X, so
the target must be on arc “abc”. Node Y knows also that the
target is not within the sensing range of node Z, so the target
can not be on arc “bcd”. Hence, node Y concludes that the
target must be on arc A2. It is important to observe that, by
using this method, the two-dimensional uncertainty of the
target’s location on the plane is reduced to a one-dimensional
uncertainty within the circle section. Shorter this circle section
is, smaller the uncertainty becomes.

B. Tracking Algorithm
At the network deployment stage, each node initializes the

status list of its neighbors to “0’’s. Each time a node receives
one-bit information from a neighbor, it updates the status list.
At the moment at which the node discovers the change in the
target’s presence within its sensing range, it identifies the arc of
its sensing range border circle that the target is crossing. The
target location is estimated as the middle point of the
corresponding arc and broadcast to neighbors. Two relatively
accurate estimates of target location combined with the
difference of local times at which those estimates were made
are used for distributed computation of the target velocity. A
weighted line fitting method is used to find a line,
approximating a fragment of the target trajectory, that best fits
the estimated target locations.

1) Initialization and information update
In the initialize procedure, each node establishes a list of its

neighbors. Each element of the list stores the following
information: neighbor node identifier, intersection points of the
sensing circles of the node and its neighbor, an angle
corresponding to the arc defined by these intersection points
and one-bit information generated by the neighbor, initialized
to “0”. Upon receiving one-bit information from a neighbor,
the node updates the corresponding entry in the list.

2) Location estimate

Figure 2. Instances of angle combinations

We combine all angles corresponding to arcs defined by the
neighbor list to determine the arc that the target is crossing. The
four instances of this process are shown in Fig. 2. If the
neighbors both generated bits equal to “1”, the corresponding
central angles are combined by “&” operation that returns the
intersection of these two angles. As shown in Fig. 2(a), the
common angle of 1 3o∠ and 2 4o∠ is 2 3o∠ , so the node Y
estimates the target location as the middle point of arc “23”
when it senses that the target just moved within its sensing

range. One special instance is shown in Fig. 2(b), where the
common angle is just one of the two angles. If one neighbor
status is set to “1” while the other is set to “0”, the
corresponding central angles are combined with “-” operation
that returns the angle formed from the first angle by excluding
from it the second. For example, in Fig. 2(c) 1 3o∠ - 2 4o∠ is
equal to 1 2o∠ . In a special case shown in Fig. 2(d), the result
may consist of two angles, 1 2o∠ and 3 4o∠ . The correct angle
in this case is chosen by considering the recent estimate of the
target location.

Let FA be the sought arc’s central angle initialized to 2π
(the entire circle of the sensing border of a node). Let IN be the
set of neighbor nodes with status set to “1” and let OUT be the
set of neighbor nodes with status set to “0”. Then, the final
angle whose corresponding arc is the one that the target is
crossing can be expressed as:

 & i jj OUTi IN
FA FA angle angle

∈∈
= − (1)

where anglei is the central angle corresponding to neighbor i.

3) Velocity estimate
We use a distributed, asynchronous algorithm to estimate

the target velocity. As shown in Fig. 3, three nodes X, Y and Z
work in asynchronous time. At time tY1 on node Y’s local
clock, node Y senses target’s presence within its sensing range
for the first time and generates a bit “1” message. The
estimated location of the target is also included in this message
to save energy and bandwidth. Since the elapsed time of radio
transmission is negligible, node Z receives this message at time
tZ1 on its local clock. Node Z will also receive the message
from node X at time tZ2. Then, node Z can use the time
difference tZ1-tZ2 and the difference of locations reported in
these two messages to estimate the target velocity. To estimate
velocity accurately, only location estimates with relatively high
accuracy are used, those are locations at the middle points of
the short arcs.

Figure 3. Velocity estimation

4) Trajectory estimate
A weighted line fitting method is used to get the target

trajectory and the weight of each estimate is defined as:

 /w circle arc= (2)

where arc is the length of corresponding arc whose middle
point is the estimated target location and circle is the length
of the sensing range border circle. Each node finds the line (or
two or more line sections if the target turns around) that best
fits these weighted estimated locations. This line when
expressed as y a x b= ⋅ + minimizes the metric Q defined as:

 2()i i i
i E

Q w y a x b
∈

= − ⋅ −∑ (3)

where E=[(y0,x0),…(yi,xi)…(yk,xk)] is a list of the estimated
target locations for which the line is fitted.

IV. SIMULATION
To evaluate our approach, we have performed extensive

simulations in which N wireless nodes are randomly placed on
a 800×800 unit square in a two-dimensional simulated plane to
track a single mobile target. The number of nodes and the
node’s sensing range are varying simulation parameters.

A. Location Estimate
The first metric that we consider is the location estimation

error, measured as the ratio of the distance between the
estimated and real target locations to the sensing range. Several
types of trajectories have been considered: linear, circular, and
a piece-wise linear trajectory with random turns.

Fig. 4 shows the typical example of estimated location
points for these three kinds of trajectories. The sample network
is composed of 600 nodes with sensing range of 150 units.

(a) Liner trajectory (b) Circular trajectory

(c) Random trajectory

Figure 4. Examples of location estimation

When evaluating the impact of simulation parameters on
the location estimation accuracy, we first kept the number of
nodes fixed at 800 and varied the sensing range from 50 to 150
units. Then, we kept the sensing range fixed at 150 units and
varied the number of nodes from 100 to 800. The plots in Fig. 5
show the average error in location for the configuration and the
three trajectories described above. We observe that the
localization error decreases inversely to the sensing range and
to the number of nodes.

50 75 100 125 150

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09
 random
 circular
 linear

A
ve

ra
ge

 L
oc

at
io

n
E

rro
r/S

en
si

ng
 R

an
ge

Sensing Range
(a) Impact of sensing range

100 200 300 400 500 600 700 800

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0.055

0.060

 random
 circular
 linear

A
ve

ra
ge

 lo
ca

tio
n

E
rr

or
/s

en
si

ng
 R

an
ge

Number of Node
(b) Impact of the number of nodes

Figure 5. Location estimate accuracy

For the random trajectory, we made the target move at a
relatively high velocity (up to four times higher than in the
case of linear and circular trajectories). This change affects the
position estimation quality in two ways. First, each node
senses for target with constant frequency, so the error of
sensing the target’s distance linearly increases with the target’s
speed. Second, more frequent reporting of target position may
create traffic congestion where the target is sensed and
therefore delay sensing message delivery and processing.
Because of this delay, each node may have incomplete
neighbor information when it estimated the target position.
Consequently, the error for random trajectory is higher than
for the other two. Yet, even in this case, our location error
(below 10%) with random placement of nodes is smaller than
the results presented in [7] (above 15%). Likewise, in
relatively sparse networks, with the total of 200-400 nodes and
100 units sensing range, our algorithm performed well. It is
also very austere in sending messages. A node generates a
single message only if there is a change in target’s presence
within its sensing range. Hence, with moderately fast targets, it
is unlikely to cause congestion delaying packet delivery. Thus,

in the following, we use a relatively dense network with the
total of 800 nodes and 150 unit sensing range.

B. Velocity Estimate
We tested the performance of velocity estimation under the

configuration of 800 nodes with 150 unit sensing range in two
scenarios in which target moves on a linear trajectory. In the
first scenario, the target moves at a constant velocity. In the
second scenario, the velocity of the target changes suddenly
several times to a random value.

0 10 20 30 40 50 60 70 80
10

11

12

13

14

15

16
 target
 estimate

Ve
lo

ci
ty

 (u
ni

t/s
)

Time (s)

(a) Constant velocity

0 10 20 30 40 50 60 70 80
0

2

4

6

8

10

12

14

16

18

20 target
 estimate

V
el

oc
ity

 (u
ni

t/s
)

Time (s)

(b) Random velocity

Figure 6. Estimated velocity versus real velocity

Fig. 6 shows the estimated versus real velocities as a
function of time in these two scenarios. Clearly, the estimated
velocity is very close to the real velocity in the first scenario.
These two agree also well in the second scenario, although
there is some delay before the change of real velocity is
reflected in its estimate.

0 10 20 30 40 50 60 70 80
0.00

0.05

0.10

0.15

0.20

dv
/v

Time (s)

(a) Constant velocity

0 10 20 30 40 50 60 70 80
0.0

0.5

1.0

1.5

2.0

2.5

3.0

dv
/v

Time (s)
(b) Random velocity

Figure 7. Velocity deviation

In Fig. 7, the plot of the deviation of the two velocities
shows that the maximum deviation is always less than 5% in
the first scenario and below 10% in the second scenario,
excluding the brief moments immediately after the velocity
change.

C. Trajectory Estimate
On all three kinds of trajectories and under the

configuration of 800 nodes with 150 units sensing range, our
trajectory estimate method delivers very good performance.

Fig. 8 shows the typical estimations for these trajectories.
We measure the accuracy of estimated trajectory using the
average difference between the estimated and real trajectories.
It is calculated using the area of a polygon formed by these two
trajectories divided by the length of the real target trajectory.
The average accuracy are 0.085, 0.424 and 0.782, for linear,
circular and piece-wise linear trajectories with random turns,
respectively.

V. CONCLUSION
Target tracking is a typical and important application of

sensor network usually using cooperative sensing. In this paper,
we study the target tracking problem under the simple and
basic binary sensor network model. We introduce a real- time
distributed target tracking algorithm without time
synchronization. Extensive simulations of this algorithm
performed under different configurations and scenarios are
reported. We observe that cooperative sensing involving just
neighbor nodes can compensate for a very simple and basic
sensing capabilities of the senor network nodes. The introduced
algorithm, thanks to cooperative sensing, yields very good
performance estimating accurately the target location, velocity
and trajectory using the binary sensor networks.

ACKNOWLEGEMENT
Research was sponsored by US Army Research Laboratory

and the UK Ministry of Defence and was accomplished under
Agreement Number W911NF-06-3-0001. The views and
conclusions contained in this document are those of the authors
and should not be interpreted as representing the official
policies, either expressed or implied, of the US Army Research
Laboratory, the U.S. Government, the UK Ministry of Defence,

or the UK Government. The US and UK Governments are
authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation hereon.

(a) Linear trajectory (b) Circular trajectory

(c) Random trajectory

Figure 8. Examples of trajectory estimate

REFERENCES
[1] C.-Y. Chong and S. P. Kumar, “Sensor networks: evolution,

opportunities, and challenges,” Proc. of the IEEE, vol. 91(8):1247–1256,
2003.

[2] A. Arora, P. Dutta, S. Bapat, V. Kulathumani, H. Zhang, V. Naik, V.
Mittal, H. Cao, M. Demirbas, M. Gouda, Y-R. Choi, T. Herman, S. S.
Kulkarni, U. Arumugam, M. Nesterenko, A. Vora, and M. Miyashita, “A
line in the sand: A wireless sensor network for target detection,
classification, and tracking,” Int. J. Computer and Telecom. Networking,
46:605-634, Dec. 2004.

[3] J. Aslam, Z. Butler, F. Constantin, V. Crespi, G. Cybenko, and D. Rus,
“Tracking a moving object with a binary sensor network,” Proc. ACM
SenSys, 2003.

[4] P. M. Djuric, M. Vemula, and M. F. Bugallo, “Signal processing by
particle filtering for binary sensor networks,” Proc. 11th IEEE Digital
Signal Processing Workshop & IEEE Signal Processing Education
Workshop, pp. 263-267, 2004.

[5] T. Jing, S. Hichem, and R. Cedric, “Binary variational filtering for
target tracking in sensor networks,” Proc. 14th IEEE/SP Workshop on
Statistical Signal Processing, pp. 685-689, 2007.

[6] K. Mechitov, S. Sundresh, Y. Kwon, and G. Agha, “Cooperative
tracking with binary-detection sensor networks,” Tech. Rep. UIUCDCS-
R-2003-2379, University of Illinois at Urbana-Champaign, Sept. 2003.

[7] W. Kim, K. Mechitov, J.-Y. Choi, and S. Ham, “On target tracking with
binary proximity sensors,” Proc. IPSN, 2005.

[8] N. Shrivastava, R. Mudumbai, U. Madhow, and S. Suri, “Target tracking
with binary proximity sensors: Fundamental limits, minimal
descriptions, and algorithms,” Proc. ACM SenSys, 2006.

