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Abstract—Coverage redundancy problem is one of the sig-
nificant problems in wireless sensor networks. To reduce the
energy consumption that arises when the high number of sensors
is active, various coverage control protocols (sleep scheduling
algorithms) have been proposed. In these protocols, a subset
of nodes necessary to maintain sufficient sensing coverage are
kept active while the others are put into sleep modes to reduce
the energy consumption. In this paper, we study the coverage
redundancy problem in a sensor network where the locations
of nodes and the distances between nodes are neither known
nor could be easily calculated. We define a neighbor graph as
the graph formed by the neighbors of a node and analyze the
effect of different levels of connectivity in neighbor graphs on the
coverage redundancy of sensor nodes. Moreover, we apply our
results to a lightweight deployment-aware scheduling algorithm
and demonstrate the improvement on the performance of the
algorithm.

I. I NTRODUCTION

The advances in wireless communications and electronics
have enabled the development of low-power and small-size
sensor devices with limited memory and limited computing
capabilities [1]. A Wireless Sensor Network (WSN) consists
of a large number of these sensor nodes deployed into a
region. Depending on the application of WSN (i.e. battlefield
surveillance, environment monitoring), the sensor nodes can
detect various phenomena including temperature, light and
motion in their environment, perform simple computations and
communicate with each other through radio transmission.

Sensor networks are usually deployed with high densities to
have extended network reliability and lifetime. However, ex-
cessive energy consumption will occur if all the nodes operate
at the same time. This will quickly cripple data acquisitionby
the sensor network as the increasing number of nodes will
exhaust their limited energy. Therefore, in sufficiently dense
networks, to avoid redundancy and increase network lifetime, a
common technique calledcoverage controlor sleep scheduling
is used in which some sensor nodes are put into sleep mode
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and only a subset of nodes necessary to ensure coverage are
kept active for sensing and communication. Coverage control
algorithms control the number of active sensor nodes and
enable the sleeping nodes conserve their energies for future
use.

Depending on different assumptions made about the sensor
network features, many coverage control algorithms have been
proposed with the common objective of selecting the active
nodes among all sensor nodes in the network in such a way
that the network field is covered by these nodes at the desired
ratio while the usage of the energy by the sensor nodes is as
balanced as possible. However, some of these algorithms [2],
[3] assume that the nodes know their locations by either being
equipped with GPS devices or by using some triangulation
techniques; others [4] assume that the distances between nodes
can be computed via received signal strengths while some
others [5] assume the existence of some mobile nodes with
controllable mobility. Satisfying each of these assumptions
increases the cost of hardware deployed in the sensor network
(i.e., the cost of GPS or RSSI technology) or imposes an
additional communication delay and power consumption.

To prevent these extra costs and to be consistent with the
simple capabilities of sensor networks, some researchers have
also suggested coverage control algorithms without exploiting
any location, distance or angle information about the sensor
nodes. In these studies [6-11], by using either one-hop or two-
hop neighbor counts, the redundant coverages of sensors are
computed and the nodes that needs to be active to satisfy the
required network functions (required ratio of covered areaor
minimum number of sensors necessary to cover each point
etc.) are determined.

In this paper, we study the coverage redundancy problem
under similar assumptions, as described latter. However, unlike
the previous work, we utilizeneighbor graphsto compute the
expected coverage redundancy of sensor nodes. To the best
of our knowledge, this is totally a novel approach. We define
a neighbor graphas the graph formed by the neighbors of
a node and analyze the effect of different configurations of
neighbor graphs on the coverage redundancy of sensor nodes.

The rest of the paper is organized as follows. In Section II
we describe our network model and assumptions. In Section III
we give the details of expected coverage redundancy analysis.
Then, in Section IV, we mention an application of our findings
to a coverage control protocol. In Section V, we discuss some



issues regarding the performance of the proposed protocols.
Finally, we conclude and outline the future work in Section VI.

II. N ETWORK MODEL AND ASSUMPTIONS

We assume thatN static homogeneous sensors are deployed
randomly with uniform distribution in a two dimensional field.
Nodes neither know nor attempt to compute their locations, the
distances to their neighbors and the angles of their neighbors
with respect to their own coordinate systems. We use the same
sensing and communication model as in most sensor network
studies and assume that each sensor node has a circular
sensing area with radiusRs and a circular communication
area with radiusRt centered at the location of the sensor
node. The sensing and communication are reliable, i.e. any
event occurring within sensing range can be detected and
the node can communicate with any other node within its
communication range.

We assume the existence of a mechanism which enables
nodes to know their one and two-hop neighbors. Obviously,
every node can learn the nodes within two hops away by two
broadcasts of hello messages. In the first one, each node will
only send their ids. Then, after they gathered all the ids of their
one-hop neighbors (it can simply be achieved by setting time
out value for receiving the first hello messages), each node will
send the second hello message which will also include the ids
of its neighbors in addition to its own id. Observe that in a
static sensor network it is sufficient to perform this process
only once (after deployment), therefore it has ignorable effect
on the communication cost of the network. Moreover, all
coverage control algorithms assuming no location and distance
information make also similar assumptions (i.e. [7] assumes
the existence of a mechanism to learn one-hop neighbors
periodically and [8] assumes that nodes know their one and
two-hop neighbors).

III. E XPECTEDCOVERAGE REDUNDANCY ANALYSIS

In this section, we analyze the expected coverage redun-
dancy of a sensor node in two cases: (i) when it knows only the
number of its one-hop neighbors, and (ii) when it also knows
its neighbor graph. We denote the set of one-hop neighbors
of a nodei by Ni and we defineGi = (Vi, Ei) as a neighbor
graph of nodei whereVi = Ni ∪ {i} and Ei is the set of
edges between nodes inVi. If two neighbor graphs with the
sameNi can be generated from each other by relabeling the
nodes, they are isomorphic. Figure 2 shows the two possible
non-isomorphic neighbor graphs whenNi=2.

For the sake of simplicity, throughout the analysis and
simulations in this paper, we assume thatRt = Rs = R for
all sensors. However, our model can easily be adapted to the
more general case when there is no relation betweenRt and
Rs.

A. Case when onlyNi is known:

Let Pn(i) denote the expected coverage redundancy (i.e.
expected ratio of sensing area covered by other nodes) of a
node i by its n one-hop neighbors. If a nodei knows the

Fig. 1. The probability that a pointP inside the sensing area of a nodei

will be covered by a one-hop neighbor of nodei is equal to the ratio of the
overlapping area (of circles) to the whole sensing area.

value ofNi, it can compute its expected coverage redundancy,
PNi

(i), as follows. Consider the sensor nodei illustrated in
Figure 1. Without loss of generality, we assume thatR=1. For
a pointP inside the sensing area with distancex from node
i, to be covered by a node j∈ Ni, nodej must be within the
common area of circles centered ati and P . Let’s call this
areaA(x). Since we assume uniform distribution of nodes in
the network field, the probability that pointP will be covered
by a nodej ∈ Ni is A(x)/π. Clearly, A(x) = 2θ − sin 2θ,
whereθ = arccos x/2. Then, when we integrate the pointP
over the sensing area of nodei, P1(i) (or simplyP1) becomes:
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If there aren one-hop neighbors, then:
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When n = 2, 3, 4, 5, 6 the above formula gives 0.808,
0.906, 0.952, 0.974, 0.986 respectively. That is, for example
if Ni = 4, nodei can expect that 95.2% of its sensing area is
covered by its one-hop neighbors.

B. Case when bothNi and Gi are known:

Observe that once the nodes know their one and two-hop
neighbors (using the aforementioned mechanism), they can
form their neighbor graphs using the ids of these nodes. In
this section, we will show how the knowledge ofGi enables
nodes to compute their expected coverage redundancy more
accurately.

Let’s assume that a nodei has Ni one-hop neighbors.
Consider the question,how many non-isomorphicGi’s can
node i have?. Every nodej ∈ Ni has an edge to nodei
in Gi. When we remove these edges, this problem reduces
to the problem (how many non-isomorphic graphs can be
generated withn vertices?) studied in graph theory under
graph enumeration topic. Several solutions such as Polyas
theorem have been proposed to define the number of non-
isomorphic graphs with a given vertex count. For example,



Fig. 2. Two possible non-isomorphic neighbor graphs with their p and r

values when there are two one-hop neighbors.

Fig. 3. Four possible non-isomorphic neighbor graphs with their p and r

values when there are three one-hop neighbors.

whenn = 3, 4, 5 the number of non-isomorphic graphs (G(n))
is 4, 11, 34, respectively. That is, for example whenNi = 3,
then neighbors of nodei can connect to each other in four
different ways.

Next, we will show that when nodei knows its Gi case
among all possibleG(Ni) configurations, then it can compute
its expected coverage redundancy more accurately. To do this,
we will find the answers of the following two questions for
each neighbor graph case generated with givenNi; 1) what is
the expected coverage redundancy (p) of nodei and 2) what is
the occurrence rate (r) of the case under uniform distribution?

Here, we will use Monte-Carlo method to findp and r
values for each case. The method works as follows. We create
a node (i) centered at origin. Then, for eachNi value, we
randomly deployNi nodes within the sensing range of node
i. We first find the case of generated neighbor graph among
all possibleG(Ni) cases and increase its occurrence count
by 1. Then, by dividing the sensing region of nodei into
grids, we compute the percentage of all grids which are also
covered by any of theseNi nodes. This ratio gives the coverage
redundancy of nodei. We add this ratio to the variable keeping
the sum of all computed redundancy ratios for that specific
case. When we repeat this process a large number of times (i.e.
106) and take the average of all redundancy ratios computed
for each case we obtain the value ofp for each case. Moreover,
dividing the total occurrence count of each case by the total
test count gives us the value ofr for that specific case.

In Figures 2, 3 and 4, we show all possible neighbor graphs
with their p and r values when there are two, three and four
one-hop neighbors, respectively. The results show how the
expected coverage redundancy of a node differs in different
cases of neighbor graphs even when the number of one-hop
neighbors remains the same. For example, consider two nodes
i andj having four neighbors and assume that nodei hasGi

of case 4.2 and nodej hasGj of case 4.10. From the expected
redundancy analysis in previous section, both can expect that
95.2% of their sensing areas will be covered by their one-hop

neighbors. However, from the results in this section, while
nodei expects that 99.1% of its sensing area will be covered
by its neighbors, nodej expects that 94.0% of its sensing
area will be covered by its neighbors. This clearly shows how
a small additional information with negligible cost to obtain
can improve the accuracy of expected coverage redundancy of
a node.

IV. U TILIZATION OF NEIGHBOR GRAPHS ONCOVERAGE

CONTROL ALGORITHMS

In this section, we show an example application of our re-
sults from the previous section to the design of a coverage con-
trol algorithm. For this purpose, we will modify Lightweight
Deployment-Aware Scheduling Algorithm (LDAS) [7] as it
only uses the number of neighbors of a node while deciding
which nodes will stay active.

A. Overview of LDAS

In LDAS [7], each sensor node maintains the number of
its working one-hop neighbors by periodical beacons. It also
occasionally sends out tickets to its neighbors and then checks
whether it has received enough tickets to be qualified to go to
sleep mode. If it did, it enters aready-to-offmode, otherwise
it stays active until it collects enough tickets. Inready-to-off
mode, the node first backs off for a randomly selected time.
Then, if it has enough neighbors to satisfy required qualityof
surveillance (QoS measured by the percentage of the sensing
area that needs to be covered), it goes to sleep mode and
stays in that mode for a limited time. Otherwise, it continue
waiting in ready-to-offmode until the necessary number of
nodes becomes active in its neighborhood.

In LDAS, the number of tickets to be distributed depends on
the number of neighbors required to achieve the givenQoS.
Wu et al. present in [7] a formula for the lower bound of
the percentage of the redundant area with a given number
of neighbors. Using this formula, each node first finds the
minimum neighbor count (c) which can provide requiredQoS
and then sendsn − c tickets, each to a randomly selected
working neighbor amongn neighbors. As a result, the nodes
in dense areas send more tickets out increasing their chanceto
get into sleep mode compared to nodes in low density areas.
The nodes also needc active neighbors to go to sleep mode
after their back off inready-to-offmode expires.

B. Proposed Algorithms

We provide three different algorithms adopting the basic
working principles of LDAS but updating or extending it to
show the effect of neighbor graphs on the performance of the
algorithm. These three protocols with corresponding additions
are as follows:

1) U-LDAS: In LDAS, the number of neighbors required
to achieve the given QoS is set conservatively using the lower
bound of coverage redundancy with the given one-hop neigh-
bor count. Here, we modify this algorithm by enabling nodes
to decide the required number of neighbors using the results



Fig. 4. Eleven possible non-isomorphic neighbor graphs withtheir p andr

values when there are four one-hop neighbors.

from section III-A. For example, if requiredQoS = 0.91, U-
LDAS requires the existence of four neighbors while LDAS
requires five neighbors.

2) E1-LDAS: The results in the section III-B emphasize
the significant effect of neighbor graphs on computing the
expected ratios of redundantly covered areas of nodes. For
example, when there are three neighbors, the total occurrence
rate of cases which provide a higherp value than the average
value of all cases (expected coverage redundancy obtained
using onlyNi) is 72.6%. This indicates that we can improve
the performance of coverage redundancy check algorithm up
to 72.6% (the improvement depends on the requiredQoS). In
E1-LDAS, we slightly extend U-LDAS algorithm by enabling
nodes to decide the required number of active neighbors at
the last step using their neighbor graphs. That is, when the
back off time expires for a node inready-to-offmode, instead
of checking whether it has enough active neighbors to go to
sleep mode using only the number of its one-hop neighbors,
it performs this check according top value of its current
neighbor graph.

3) E2-LDAS: In all previous protocols including LDAS,
the nodes collecting more tickets have higher chance to get
into sleep mode. Here, we change it and give more chance
to nodes having fewer ticket to go to sleep mode. To achieve
this, we update the ticket distribution scheme as follows. After
a nodei forms its Gi, it first generates all subgraphs ofGi

using onlys ≤ Ni of its neighbors. Then for each subgraph of
neighbor graph, it checks whether it can provide the required
QoS (using the results obtained in Section III-B). If this is
the case, then it increases the number of tickets that nodei
will give to each of the neighbors in this specific subgraph
by one. After all subgraphs are processed, then nodei sends
the number of tickets it will give to each of its neighbors.

Here, note that the voting mechanism of E2-LDAS works
selectively rather than in random manner as it is done in the
previous algorithms. Once all the nodes gather their tickets, the
nodes assigns a back off time directly proportional to their
ticket count and when it expires, they go to sleep mode if
their current active neighbor count provides enough expected
redundant coverage on its sensing area (bigger than required
QoS). This self-selecting voting mechanism of E2-LDAS in
the style of [12] forces nodes having critical connections with
their neighbors (in terms of coverage redundancy) to gather
more tickets so that they select longer back off times and
lower their chance of getting into sleep mode.

C. Simulation Results

To evaluate the performance of proposed schemes, we
performed a set of simulations. We randomly deployedN
nodes in a 150 m x 150 m square region. We assumed all
sensor nodes are identical and they have the same sensing and
transmission range of 10 meters. For differentN and required
QoS values, we ran each proposed algorithm on ten different
networks (created with different seeds) and computed the
average active number of nodes that each algorithm achieve.
Our initial results here only show the results of running each
algorithm on the initially deployed network where all the
nodes are active and have the same energy levels.

Figure 5 and Figure 6 show the number of active nodes
obtained for two different requiredQoS (0.96 and 0.91) after
running each algorithm on the initial network with different
number of nodes deployed. We have selected these specific
QoS ratios to show the difference of active node counts
generated in U-LDAS and E1-LDAS algorithms more clearly.
This is because the selectedQoS values are slightly higher
than the boundary values deciding the number of required
number of neighbors in terms of expected redundant coverage.
For example, when requiredQoS = 0.91, the number of one-
hop neighbors required to achieve thatQoS is four. However,
as it is seen in Figure 3, three cases of 3-node neighborhood
graph provide expected redundant coverage equal to or higher
than91%.

In both graphs we observe that U-LDAS generates fewer ac-
tive nodes than LDAS while the requiredQoS is successfully
achieved (all algorithms provide higherQoS than required, for
brevity, we did not show the exactQoS of each algorithm).
This shows the benefits of using expected coverage analysis to
decide the required number of one-hop neighbors. Moreover,
it is clear from the two graphs of results that the active node
count generated by LDAS is always the maximum and the
active node count generated by E2-LDAS algorithm is always
the minimum among all four algorithms. The number of active
nodes generated in E2-LDAS is sometimes half of the active
nodes generated in LDAS. Comparing the performances of U-
LDAS and E1-LDAS, we notice that when the requiredQoS
is equal to0.91 the difference in their performance is bigger
than when it is0.96. This is in agreement with the observation
that we made in the description of E1-LDAS algorithm. When
requiredQoS = 0.91, U-LDAS requires four neighbors but in
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Fig. 5. Number of active nodes determined by each algorithm with different
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Fig. 6. Number of active nodes determined by each algorithm with different
number of nodes deployed when requiredQoS=0.91.

72.6% of all neighbor graphs with three neighbors E1-LDAS
will find them sufficient for thisQoS. On the other hand
when requiredQoS = 0.96, U-LDAS requires five neighbors
but in 6% of all neighbor graphs with three neighbors E1-
LDAS will just require three neighbors and in 37.6% of all
neighbor graphs with four neighbors it will find four neighbors
sufficient. Hence, E1-LDAS has higher chance of improvement
over U-LDAS for QoS = 0.91 than forQoS = 0.96.

V. D ISCUSSIONS

A. Handling Connectivity

In this paper, we only focused on the coverage of sensor
networks. However, the connectivity of nodes is required in
most of the sensor network applications. IfRt ≥ 2Rs then
coverage implies connectivity [2]. However, our algorithms
can also be modified for differentRt/Rs ratios.

B. Balancing Energy Consumption

To balance the energy consumption among nodes in the
network, we can use the remaining energy levels of nodes.
For example, in E2-LDAS, if nodes first multiply their ticket
counts by their remaining energy levels and assign a back
off time proportional to this new value, they attempt to sleep
earlier to save energy even though they have more tickets.

C. Complexity of Algorithms

The complexity of U-LDAS and E1-LDAS algorithms are
almost the same as the original LDAS algorithm (except
negligible cost of knowing two-hop neighbors and forming

neighbor graphs). For E2-LDAS, at first glance it seems that
computation of ticket counts that will be distributed to each
neighbor may increase the complexity. However, a node can
remember its previous computations and it can remove this
additional cost. On the other hand, in dense networks where
nodes have many neighbors, the cost of ticket computation
can increase. This can also be eliminated by dividing the
nodes into distinct sets as in [9], such that each set is kept
active at different times and the nodes in each set cover the
network area sufficiently. Then, we can run E2-LDAS on each
of these smaller sets (where nodes have fewer neighbors)
independently.

VI. CONCLUSION AND FUTURE WORK

In this paper, we studied the coverage redundancy problem
in wireless sensor networks in which nodes neither know their
locations nor the distances to their neighbors. Specifically,
we looked at the effects of neighbor graph connectivity
on the expected redundant coverage by sensor nodes and
we demonstrated that using neighbor graphs provides more
accurate information than using only neighbor counts. In
simulations, we also showed that utilization of neighbor graphs
can improve the performance of coverage control protocols.In
future work, we will extend our simulations and we will search
for improvements throughout the lifetime of network. We also
plan to compare proposed algorithms with other algorithms
published in the relevant literature.
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