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Abstract—This paper introduces a novel method of generating the mobility PCFG. The following evaluation section congsar
mobility traces based on Probabilistic Context Free Grammars our method with a 2-level Markov model based synthetic trace
(PCFGs). A PCFG is a generalization of a context free grammar generation method (due to reasons givenPievious Work

in which each production rule is augmented with a probability : . .
with which this production is applied during sentence generation. section) on two separate datasets. The next section descuss

A concise PCFG can be inferred from the given real world trace the previous work on mobility trace generation, and the last
collected from the actual mobile node behaviors. The resulting section contains conclusions and an outline of future wark o
grammar can be used to generate sequences of arbitrary length this topic.
mimicking the mobile node behavior. This is important when new
protocol designs for mobile networks are tested by simulation. II. METHODOLOGY
In the paper, we describe the methods developed to construct .
such grammars from training data (mobility history). We also A. Mobility PCFGs
discuss how to generate the synthetic data with an already A propapilistic Context Free Grammar [1] consists of a five-
constructed grammar. We present the experimental results on tuol Prob.Start where:
two real data sets, measuring similarity of the actual traces with uple <S,S,Rg,Prob, Start where:
the synthetic ones. We compare our grammar based method to « Start is the initial nonterminal symbol of the grammar,

a 2-level Markov Model based trace generation method. The , S is a list of nonterminal symbols defined by production
results demonstrate that the grammar based approach works as rules

an excellent compression method for the actual data. On many - list of t inal bol hich th bol
metrics, the synthetic data generated from the PCFG match the  ° St is a list of terminal symbols which are the symbols

training data much better than the one generated by the Markov actually seen in the sentences,
Model. e Ry is a list of production rules that map a string of
terminal and nonterminal symbols onto a nonterminal
I. INTRODUCTION symbol,

« Prob is a list of probabilities, each assigned to a rule to

Mobility of nodes is one of the key attributes of today’s i o .
define the probability that this rule (as opposed to the

networks. It most often implies that nodes use wireless com- ’ X ) !
munications. Mobile ad hoc networks, delay tolerant neksior other rules forming the same nonterminal) is chosen in
robotic networks and mobile sensor networks are all exasnple ~ Parsing or string generation.
of such networks. To put it simply, a PCFG is an extension of the ordinary
New protocols and algorithms for wireless mobile networkéontext free grammar in which the rules of each nonterminal
benefit from their verification via simulation in their eadg- are assigned probabilities of use (these probabilities sjpito
sign stages. However, such simulations require large afmsun1-0 for each nonterminal). Probability of generating a string
realistic mobility behavior data, which are difficult to teit. given a grammat is the product of the probabilities at each
Therefore, development of methods which can generate lopignch of its parsing tree (if there is more than a singleipars
synthetic mobility data from sample traces is crucial fopar tree, a summation over all parsing tree probabilities mest b

evaluation of protocols and applications via simulation. ~ performed). A simple grammar that generates strings of the
In this paper, we propose a novel trace generation methidm a™ is given below.
based on Probabilistic Context Free Grammars (PCFGs). Our Start — a (0.6) | a Start (0.4)

method takes a real world trace as input, and automatically

constructs a PCFG which concisely represents moveméar the above grammar, the stringa has the probability

sequences of mobile nodes. Once a PCFG is constructed fromh = 0.6 = 0.24 which can also be seen asR{rt —

a real world trace, a large set of sentences can be produeeStart | Start, G) x P(Start — a | Start, G).

from it creating a synthetic mobility trace. To capture spatial patterns of node movements, a PCFG
The rest of the paper is organized as follows. In the negan be built when mobility trace consists of terminal synsbol

section, we give the definition for PCFGs and the features threpresenting the locations at which a mobile node can reside

we added to them to capture the spatial and temporal aspédte probabilities provided in the PCFG give us the likeliloo

of mobile node movements. We also give the trace generatiimn movement patterns. Another mobility information thanc

method, which is basically the production of sentences frobe represented by a PCFG is the meeting sequences for mobile



nodes. In this case however, the terminals represent molSi@ace grammar inference is a search for operands for two pos-
nodes in the network. sible operations, an evaluation method is needed to measure
To represent temporal information of node movementhe goodness of a grammar which results from an application

within a PCFG, we utilize a special time terminal symhol, of each possible operation. A Bayesian posterior prokgbili

It represents a preset time interval specific to the apjdinat of the grammarG given the dataD is used for this purpose
domain. Hence, a mobility sequence of a node contains bathd it is defined as:

location terminals as well as time terminals to represeat th P(G)P(D|G)
time interval between two consecutive location termingts: P(G|D) = P(D)
example, the following trace of movements of a node:

)

For maximization purposeg?(D) can be omitted from the
la 40 lp 25 ¢ formula above P(G) is calculated by using(G) which is the
length of grammar description. The simple description méth
proposed in [1] allows for restricting the search space for
operand of a possible chunk operation to strings of length
at most 5.P(D|G) is calculated as the product of separate
Sentence probabilitiesl() in the training data:

states that once the node arrived at locatignit has taken
40 time units to move to the next locatiolz, and another
25 units to reachls. If the time token was chosen with
time interval of 25 units, the above trace will be represeént
(approximately) by a sentence:
|D|
Iattlpgtle . P(G)=2""9 and P(D|G) =[] P(di|G).
=1

It should be noted that there is a trade-off between the time
interval of the time token (resolution) and the complexify o Formulation of P(D[G) as above helps the algorithm to
the grammar, which is related to the length of the sentenc®4id re-parsing after merging operation and also reduces
in the training data. the search space for the operands of merging operation. [1]
By introducing the notion of time terminals to PCFGs, wéstablishes the time complexity aP(D?log(D)) for the
can store the temporal and spatial aspects of mobility pettelgorithm whereD is the size of the training data.

in a single sentence. . . . .
! s C. Synthetic Mobility Trace Generation with PCFGs

B. Automatic PCFG Construction As aforementioned, synthetic trace generation is bagicall
In our previous work [1], we have described in detail howreating a sentence from the constructed grammar. This sen-
a PCFG can be constructed given a set of sentences (he@ee gives both the temporal and spatial information for
strictly from the positive data). This algorithm was an @xte the single mobile node. Furthermore, once the generated
sion of the works done in [14] and [15] with improvements oBequence is completed (all the nonterminals in the sentence
the time complexity. Although we will not go into details it are replaced with terminals), a new sentence can be gederate
grammar inference algorithm in this paper, we will summarizor the corresponding mobile node. Hence, we present aesing|
its methodology. algorithm here, which gets as input the mobility grammar and
Inference algorithm consists of two stages: (i) data inoerpinitial location of the mobile node (can beull for a node
ration, and (ii) application of operators. In the first stagit that has just begun its journey), and creates a new sequence
sentences are introduced to the initial grammar as rulelseof beginning in the initial location. Of course, the probathsk
START nonterminal and probabilities are assigned accordirg the production rules are taken into account when deciding
to the sentence frequencies. Each terminal symbol (tolen)ihich rule to apply next in sentence generation process. The
introduced to the PCFG by a nonterminal symbol which haflent assumption here is that the input data contain traces

a single rule (that terminal symbol) with probability 1. starting at each location that is the ending location of some
In the second state, the grammar is generalized and madge.
more compact using two operators: In Algorithm 1, the initial stage checks for all possible

« Chunking that creates a new nonterminal which is agnovement sequences (hence all possible sentences produced
signed a string of nonterminals and which replaces all thy the PCFG), and keeps only the ones in which the first
occurrences of this string in other productions with thaerminal is the same as the initial location of the mobile
new nonterminal. Frequency of this nonterminal (henaeode. In the case of modeling meetings of mobile nodes, the
its single rule) is set to the number of replacements madgymbols are the mobile nodes met, hence although the algo-

« Merging that creates a new nonterminal defined as rihm stays the same, the meanings of the symbols produced
combination of two nonterminals. The right hand sidesr matched are different. After the initial elimination,eth
of productions of both nonterminals form the productionsemaining productions are chosen according to a probgabilit
of this new nonterminal and probabilities are assignatistribution. Please note that the sum of all productiorferiee
according to their respective frequencies. The merged twbmination (but not after it) i9.0, so a normalization is done
nonterminals are removed and occurrences of any of thégemultiplying accordingly all the branches of parsing tode
nonterminals are replaced by this new nonterminal.  selected sentences.



Comparison of PCFG and Markov Models on Distribution Difference from Actual Trace
for Route 31
T

Algorithm 1 Method for creating a random route for a mobile
node from the mobility PCFG given an initial location of this
mobile node

init_loc =initial location

g =mobility grammar

for each ruler in ¢.START do
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string =1
for each expansiontring; of string with terminal at 015
position 0do

if string;[0] == init_loc then o1
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end if
end for ) _ . T
end for Fig. 1: Difference of Meeting Distributions between Actual
normalize probabilities irist Traces and PCFG vs Markov Model for Route 31 in DieselNet

random = rand() Dataset.

progressive = 0
for all expansions; of every string inlist do

progressive+ = prob(e;) the euclidean distance between the sequence distributions

if progressive > random then other words, given that generated data hayv@ercentage of
returne; - meeting with bug; and the real world data have percentage
end if of meeting with bus; after a certain single bus, we calculate

end for AcCons = \/Zle(gi — r;)? (wherek is the number of buses).

Another metric is based on the inter-meeting times, in which
we calculate the time it takes for a bus to meet another bus
I1l. EVALUATION OF THE TRACE GENERATION METHOD  given it has met a certain sequence of bubgsrn 2means the

In this section we are measuring similarity between refme it takes to meet a second bus after a sequence of length
world traces and the synthetic mobility traces generated B€ iS met (the length is two fdntern 3 three forintern 4
the proposed method. We have used two datasets, the first 8ife)- Here, we used theeighted euclidean distance between
[16] contains bus-to-bus meeting data collected in Amherétt"e average intermeeting times for calculating errors.tl'reo .
MA (DieselNet - Spring 2006). To train the PCFG for thié/_vords, given that generated data have an average intengeeti
dataset, we have taken sentences to be the set of buses i tg: for busb; and the real world data have an average

during one round of a bus on the route. Each bus type in tfifgérmeeting timetr; for busb; after meeting a certain bus,

dataset has a set route, therefore we can artificially setra stve calculateAj, e, = \/ Zle(wi x (tg; —tr;))? (where
and end point (we chose those as the busiest grids in termg:os the number of buses and; is the weight of bush;,
the number of meetings). Hence we created the synthetic degdculated according to the frequency of meeting). For the
as a set of rounds. taxi mobility dataset, we use the same metrics, however the
The second dataset we have experimented on is the taises are replaced with the location grids, heGoas 3for
mobility data collected in San Francisco, CA [13]. Thighe location distributions means the error on the distiilyubf
data basically contains the taxi routes defined by latitudieree sequences of locations that a mobile node goes through
and longitude of taxi positions. Furthermore, we have alsoTables | and Il give the overall results on DieselNet Dataset
information if a customer is in the taxi or not. To account fofhey are averaged over eight routes (30,31,34,35,37,3%89
this information, we split traces into two subsets: one witlisted, and it can be seen that in all error categories, PCFG
traces with a customer in the taxi and another without thigenerates better traces than a 2-level Markov Model. We
customer. Furthermore, we divided the area into a grid bave already described how the generation with PCFG works,
25x25, for discretization purposes. whereas a Markov Model creates third meeting given the
We used the following metrics in the comparison. Fagprevious two meetings of a given bus while generating the
DieselNet Dataset, we have collected what buses are met hyaace. We also provide the detailed results of an examplierou
bus on a given route right after a certain sequence of meetingl in Figures 1 and 2 for illustration.
For example, the error rat€ons 2gives the difference of a In Figures 3 and 4, we present the results on taxi mobility
given model from the actual trace in terms of the distringio dataset. It can be seen that on all error categories, thaetynt
of which buses are met after a certain single bus is mefata generated by the PCFG is closer to the actual trace than
Hence it can be taken as the distribution difference of mgetithe synthetic data generated by the Markov Model.
sequences of length 2. To calculate the difference, we used’he results demonstrate that real world traces are well




TABLE I: Difference of Meeting Distributions between ActuBraces and PCFG vs Markov Model in DieselNet Dataset.
Cons 2| Cons3| Cons4| Cons5| Cons 6

PCFG 0.149 | 0.213 | 0.410 | 0.238 | 0.344
Markov Model | 1.145 | 0.440 | 0.974 | 1.947 | 2.172

TABLE II: Difference of Inter-meeting Time Distributionsebwveen Actual Traces and PCFG vs Markov Model in DieselNet
Dataset.

Cons 2 Cons 3 Cons 4 Cons 5 Cons 6
PCFG 693415.025| 346170.555| 178383.428| 91175.888 | 57988.681
Markov Model | 842365.695| 496940.369| 303851.526| 174315.950| 110041.562
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Fig. 2: Difference of Inter-meeting Time Distributions been petween Actual Traces and PCFG vs Markov Model in Taxi
Actual Traces and PCFG vs Markov Model for Route 31 iMobility Dataset.

DieselNet Dataset.
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erties separately [4], to capturing group behavior [5],ntve

B FCFG driven [9], [10], [11], and finally to extraction of informian
3 o oy from real world traces [6], [7].
05} 1 Another approach based on a time-variant community mo-
— ] bility model is proposed in [8]. Communities are defined loase
o2r 1 on popular locations, most often visited by nodes. The model

collects two characteristics, skewed location visitingfer-
ences and periodical re-appearance at the same location fro

Distribution Difference from Actual Trace (%)

01 1 real world WLAN traces, in order to produce mobility traces.
Urban pedestrian flows (UPF) mobility scenarios are dismliss
°-°5J 1 in [12]. The system uses a set of pedestrian densities on
. ‘ ‘ ‘ ‘ ‘ streets as well as a set of likely paths that the pedestriays m
Cons 2 Cons 3 Cons 4 Cons 5 Cons 6 follow and creates mobility information based on them. The

trace generator aims at also keeping the observed pedestria
Fig. 3: Difference of Location Distributions between Adtuadensities and the ones in the synthetic data as close ablgossi
Traces and PCFG vs Markov Model in Taxi Mobility Dataset. The works closest to ours utilize Markov Models. In [17],

transitions between areas are modeled by their probailiti
Markov Model based mobility predictors are compared to LZ-
mimicked by the sentences generated by the correspondigged mobility predictors in [18] and the results show that
PCFG. Markov Models perform better. Interestingly, the paperals
demonstrates that in practice, a 2-level Markov Model predi
tor performs better than a 3-level or 4-level predictor, deen
There were many attempts at creating synthetic mobilitycreasing the depth does not necessarily increase predict
patterns, ranging from methods based on connectivity grapbcuracy. Markov Models were extended by adding time
[3], action profiles [2] to combining terrain and vehicle pro information through cumulative time distribution of traiens
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