

1

Distributed Target Tracking with Directional
Binary Sensor Networks

Zijian Wang, Eyuphan Bulut, and Boleslaw K. Szymanski

Abstract—One of the most common and important applications

of wireless sensor networks is target tracking. We study it in its
most basic form, assuming the binary sensing model in which each
sensor can return only information regarding target's presence or
absence within its sensing range. However, unlike of the most of
traditional approaches to binary sensing, we allow sensors to
recognize not only target's range but also a sector within the
circular range around it. This assumption is justified by
increasing importance of sensors with a directionally limited
sensing range caused by a directional antenna or limited
measurement capabilities. Examples of such sensors include
cameras, infrared sensors, ultrasonic sensors, etc. For simplicity,
we assume that either a group of sensors are collocated in a single
spot providing 360 degree coverage or a sensor has multiple
antennas or camera providing such coverage. A novel, real-time
and distributed target tracking algorithm with directional binary
sensor networks is proposed. It is an extension of our previous
work on omni-directional binary sensor networks. Using
simulations, we demonstrate that this new algorithm achieves
high performance and outperforms other algorithms by yielding
accurate estimates of the target's location. In addition, we discuss
the fundamental performance limits and improvement of the
tracking performance resulting from providing direction range in
addition to a distance range for the algorithm.

Index Terms—target tracking, binary sensing, directional
sensing, wireless sensor networks, distributed algorithms

I. INTRODUCTION
IRELESS sensors networks composed of miniature
devices that integrate physical sensing, data processing

and communication capabilities present great opportunities for
a wide range of applications [1]. Among them, target tracking is

both representative and important application that usually relies
on cooperation between sensing nodes to achieve good results
[2, 3]. The fundamental studies of target tracking often focus on
networks composed of sensor nodes with the most elementary
sensing capabilities that provide just binary information about
the target, indicating whether it is present or absent in the

sensing range of a node. These so-called binary sensor
networks constitute the simplest type of sensor networks that
can be used for target tracking.

Manuscript received March 31, 2009. Zijian Wang. Author is with the

Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY
12180 USA. (e-mail: wangz@cs.rpi.edu, phone: 518-944-1156).

Eyuphan Bulut and Boleslaw Szymanski. Co-authors are with the
Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY
12180 USA. (e-mail: {bulute, szymansk}@cs.rpi.edu).

A number of approaches using binary sensor networks for
target tracking have been proposed in recent years. The
algorithms presented in [4, 5] first route the binary information
to a central node and then the central node applies particle
filters on information gathered from all sensors to update the
target’s track. But particle filters are expensive to compute and
transmitting data from each node to a central one is very costly
in terms of the energy needed for communication in any
non-trivial size network. In [6], each point on the target’s path
is computed using the weighted average of the detecting
sensors’ locations. Then, a line that best fits the newly
estimated location and the points on the trajectory established
in the recent past is used as the target trajectory. Kim et al [7]
improve the weight calculation for each sensor node that
detected the target and use the estimated velocity to get the
estimated target location. However, these two methods require
time synchronization of the entire network and assume that the
target moves at a constant velocity on a linear trajectory.
Furthermore, these algorithms use positions of only the sensor
nodes that detected the target. Actually, the absence of
detection also provides the information that can be used to
improve the tracking accuracy. In [8], both the presence and
absence of the target within the node’s sensing range are used
to form local regions that the target has to pass. These regions
are bounded by the intersecting arcs of the circles defined by
the sensing ranges of the relevant nodes. The trajectory is
estimated as a piecewise linear path with the fewest number of
linear segments that traverses all the regions in the order in
which the target passed them. However, the algorithm is
centralized and complex to compute. It also requires a
designated tracker node to fuse data. Additionally, the
designated node has to accumulate information from tracking
sensors to form all regions needed to compute the estimated
trajectory. Hence, the tracking is not real-time but delayed.

In our previous work [9], we proposed a distributed target
tracking algorithm for the ideal binary sensing model. In it,
each active node computes the target’s location locally but uses
cooperation to collect the sensing bits of its neighbors.
Furthermore, the algorithm tracks the target in real–time, does
not require time synchronization between sensor nodes and can
be applied to targets moving in random directions and with

W

2

varied velocities. In [10], we presented an extension of this
algorithm that made it applicable to imperfect binary sensing
model while keeping all the other properties of its predecessor.

All of the algorithms mentioned above used omni-directional
binary sensor networks, in which each sensor can only detect
the target presence or absence within its sensing range but can
not get any direction information of the target. In this paper, we
propose a novel distributed target tracking algorithm using
directional binary sensor networks. Under the directional
binary sensing model, each sensor node’s sensing region is
divided into sectors and each node can identify in which sector
the target is present or absent, which gives rough direction
information of the target. To the best of our knowledge, this
directional binary sensor network model has not been used by
any of the previously published algorithms for target tracking.
To establish fundamental limits of the directional binary
sensing, we consider the ideal case of error-free sensing in this
paper, leaving more complex analysis of impact of errors on the
tracking algorithms to the future work.

The remainder of the paper is organized as follows. We
describe the network model and our assumptions in Section II.
In Section III, we introduce our distributed target tracking
algorithm using four-sector directional binary sensor networks.
We derive the fundamental performance limits for our
algorithm in Section IV. Section V presents the simulation
results. Finally, we provide conclusions in section VI.

II. NETWORK MODEL AND ASSUMPTIONS
The sensor network comprises N nodes placed uniformly

randomly over a finite, two-dimensional planar region to be
monitored. Each node has a unique identifier and its sensing
region forms a disk centered at the node and bounded by a
circle defined by the sensing range R. The union of sensing
regions of all network nodes guarantees redundant coverage of
the region to be monitored. Each node’s sensing region is
divided into sectors. An example of a four-sector directional
binary sensor node is shown in Fig.1. Its entire sensing region
is divided into four equal size sectors, which are numbered
from 0 to 3 in the clockwise sequence order. The boundaries of
sectors intersect with the sensing range at point A, B, C and D,
which divide the sensing circle into four arcs AB, BC, CD and
DA. The initial angle of radius “oA” with positive x-axis is
selected randomly for each sensor. We will denote by s the
number of sectors of each node and by b=log2(s+1) the number
of bits needed to represent presence of target in one of the
sectors or its absence from the node’s sensing range.

At the moment at which the target enters or exits the sensing
range of a sensor node for the first time, that node will generate
b bits of information, indicating in which sector the target is
present or that it is absent from the sensing range. This b-bit
status information is also updated at the moment at which the
target exits currently visited sector and enters another sector of
the same sensor node. If there is no change in b-bit status
information, the node remains silent to save energy and
bandwidth and to avoid collisions with transmissions from

other nodes. Each time a new b-bit information is generated, the
node communicates it to its neighbors that are defined as nodes
whose sensing range intersects its sensing range (depending on
the relation between the sensing and communication radii, this
may require a multi-hop transmission). Henceforward, we use
the term neighbor in this specific sense. A node knows its
location and the locations of its neighbors (possibly through
communication at the network deployment stage, or through
GPS devices, not discussed here). For simplicity, we assume
that the sensing range of each node is identical across the
network and each node’s sensing region is divided into the
same number of equal size sectors. However, our algorithm
also applies when sensing range, sector number and sector size
vary from node to node. Additionally, we assume that the target
moves with velocity that is low relative to the node’s sensing
frequency. Consequently, time of discovery of the change in
the target’s presence or absence within the node’s sensing
range differs negligibly little from the time of the target moves
within or out of this range. This assumption is reasonable
because the sensing frequency for ultrasonic sensor is usually
around 10-2 - 10-3 second and the sensing frequency for infrared
sensor is usually above 10-4 second, which is much higher than
most of the target velocity in real world.

Fig. 1 A four-sector directional binary sensor

III. A COOPERATIVE TRACKING ALGORITHM

A. Basic Idea
To illustrate our basic idea, we use an example from Fig.2,

which shows a target moving through an area covered by two
nodes whose sensing ranges are divided into four sectors.
Initially, the target is outside of the sensing ranges of two nodes.
Later, it moves into sector 3 of node X at the system time t1,
crosses sector 2 of node X and enters sector 3 of node Y at time
t2. Then, it leaves sector 1 of nodes X and sector 0 of node Y in
that sequence, at times t3 and t4, respectively. According to the
model described in the previous section, each node will
generate information at the time of first sensing the target’s
presence and later at the time of first lacking to sense its
presence which corresponds to the times at which the target
enters and then exits sensing range of the node. Besides those,
each node will also generate information when the target leaves
one sector and enters another sector of the same node.
Consequently, at the transition time tj, the target must be on arc
Aj which is a part of the arc of the corresponding sector of the
node reporting the information. Hence, arc Aj can be
determined cooperatively from b-bit information reported by
the neighbors of that node. Let’s consider arc A2 defined at time
t2 as an example. Before time t2, node Y will receive three
messages from node X, which we can mark as “X13”, “X3-2”

3

and “X2-1”. “X13” means that node X first senses the target
(“1” stands for presence, “0” stands for absence) in sector 3.
“X3-2” means that the target within sensing range of node X
leaves sector 3 and enters sector 2 of node X. “X2-1” means
that the target within sensing range of node X leaves sector 2
and enters sector 1 of node X. At time t2, node Y senses the
target presence within its sector 3 for the first time, so the target
must be on arc “abc” which corresponds to sector 3 of node Y.
At that time, node Y also knows that the target is within sector 1
of node X. Hence, node Y concludes that the target must be on
arc A2. It is important to observe that, by using this method, the
two-dimensional uncertainty of the target’s location on the
plane is reduced to a one-dimensional uncertainty within the
circle section. The shorter this circle section is, the smaller the
uncertainty becomes.

1 2 3 4

1

2

3

4

Fig. 2 An illustration of the basic idea behind the algorithm

B. Tracking Algorithm
At the network deployment stage, each node initializes status

lists of its neighbors for its four sectors. Each time a node
receives information from a neighbor, it updates the status list.
At the moment at which the node discovers the change in the
target’s presence within its sensing range (no matter which
sector the target enters or exits), it identifies the arc that the
target is crossing. The target location is estimated as the middle
point of the corresponding arc and broadcast to neighbors.
Neighbor sector match

In the neighbor sector match procedure, each node finds out
neighbor relations from all the sectors of neighbor node for
each of its sector. At first, each node will calculate three types
of intersection points that include: (1) intersection points of the
sensing circles of the node and its neighbor, e.g. points “a” and
“f” in Fig.3; (2) intersection points of the sensing circles of the
node and its neighbor’s sector boundaries, e.g. points “c” and
“d” in Fig. 3; (3) intersection points of the sensing circles of the
node and its sector boundaries that fall into sensing area of its
neighbor, e.g. points “b” and “e” in Fig.3.

Then each of these intersections is sorted by the angle
formed by one of the intersection points of type (1) and the
intersection point itself, e.g. , , . After sorting,
the sequence of intersection points in Fig. 3 will be “abcdef”.
These sorted points form a number of angles defined by each
pair of points in sequence, e.g. , , . Then, the
center point of each arc corresponding to each angle is
calculated and checked to see which sector it falls into. For

example, the center point of the arc corresponding to

aob∠ aoc∠ aod∠

aob∠ boc∠ cod∠

boc∠
falls into sectors 0 of node X and 3 of node Y, which means that
sector 3 of node Y is a neighbor sector of node X’s sector 0.

Fig. 3 Neighbor list initialization

Initialization and information update
Each node first establishes neighbor lists for each of its

sectors. Each element of such list stores: neighbor node
identifier, neighbor sector identifier, intersection points related
to this neighbor sector, an angle corresponding to the arc
defined by these intersection points and b-bit status information
generated by the neighbor, initialized to “0”. Upon receiving
information from a neighbor, the node updates the
corresponding entry in the list. Take sector 0 of node X in Fig. 3
for example. It has three neighbor sectors: sector 0, 1 and 3 of
node Y. The intersection points “c”, “d” and cod∠ are related
to neighbor sector 0. The intersection points “d”, “e” and doe∠
are related to neighbor sector 1. The intersection points “b”, “c”
and boc∠ are related to neighbor sector 3.
Location estimate

When node senses change in the status of presence or
absence of target from one of its sectors, it will combine all
angles in the corresponding neighbor list to determine the arc
that the target is crossing. The four instances of this process are
shown in Fig. 4. If sectors of both neighbors generated bits
indicating target’s presence, the corresponding central angles
are combined by “&” operation that returns the intersection of
the two angles. As shown in Fig. 4(a), the common angle
of 1 3o∠ and 2 4o∠ is 2 3o∠ , so the node Y estimates the target
location as the middle point of arc “23” when it senses that the
target just moved within its sector. One special instance is
shown in Fig. 4(b), where the common angle is just one of the
two angles. If one neighbor sector status indicates presence
while the other absence of the target, the corresponding central
angles are combined with “-” operation that returns the angle
formed by excluding the second angle from the first. For
example, in Fig. 4(c) 1 3o∠ - is equal to2 4o∠ 1 2o∠ . In a
special case shown in Fig. 4(d), the result may consist of two
angles, 1 2o∠ and 3 4o∠ . The correct angle in this case is
chosen by considering the recent estimate of the target location.

Let FA be the sought arc’s central angle initialized to 2π/s
(the sensing border of a sector that the target is crossing). Let IN
be the set of neighbor sectors indicating target’s presence while
OUT be the set of neighbor sectors indicating target’s absence.
Then, the final angle whose corresponding arc is the one that
the target is crossing can be expressed as:

& i j OUTi IN
FA FA angle angle

∈∈
= − j

 (1)

where anglei is the central angle of the neighbor’s sector i.

4

.

.

.

X:1

Y

Z:0

o

1 3

4

2
.

.

.

X:1

Y

Z:1

o

1 3

4

2
.

.

.

X:1

Y

Z:1

o

1
3

4
2

.

.

.

X:1

Y

Z:0

o

1
3

4
2

(a) (b) (c) (d)
Fig. 4 Instances of angle combinations

It should be noted that regardless of the relative position of
any two sensor nodes and their number of sectors, the
intersection situations for them must be one the four cases in
Fig. 4 because the sensor nodes are static. So our tracking
algorithm can always converge and find the correct arc that the
target is crossing. And of course the overhead of the angle
combination procedure is determined by the number of
neighbor sectors which is related to network density and
number of sectors of each node.

IV. FUNDAMENTAL PERFORMANCE LIMITS ANALYSIS
In this section, we first derive the fundamental performance

limits for omni-directional binary sensors and then we extend it
to the directional binary sensors.

Assume that we have a domain of area Ad in which there are
total of N sensors, each with a uniform sensing range (to
simplify the analysis, we set this sensing range to be one unit, R
= 1). Let's consider the specific time instance at which the target
T has been just sensed by node X whose center is at point C0
(we refer to this circle as circle C0), as shown in Figure 5. If
neighbor sensors also sense the target, they must be within a
circle centered at T with radius of one unit. Thus, the
probability Pk that there are k (0<k<N) neighbors that also sense
the target within their sensing ranges is:

1

1
1 −−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

kN

d

k

d
k AAk

N
P ππ

 (2)
All k intersecting arcs will have one point on one side of the

target and another on the other side. So the resulting average
shortest length of the arc of all intersections will be the double
of the length of the distance of the target from the closest
intersection point on the either side of the target. Then, the
accuracy of our algorithm will be just half of the average
shortest length of the arc. Let node Y centered at point N0 is one
of the neighbors of node X that also senses the target within the
sensing range of one unit (we refer to this circle as circle N0).
These two sensing circles intersect at points P and P’. We
chose the notation so that P is the closest of the two intersection
points to the target, so its distance may determine the accuracy
of the target position measurement. It is important to note that
any node whose sensing circle also intersects with circle C0 at
point P must be on the circle centered at point P with radius of
one unit (we refer to this circle as circle P). Consequently, any
node that also senses the target but has an intersection point
with circle C0 closer to target T than point P must fall in the
shadowed area that we denote as A. If x denotes size of angle

PC0T in radians, then the length of arc PT is x. The probability
P(x) that the length of arc PT is less than or equal to x is ||area
A||/||circle T||, where ||..|| returns the area of its argument,
sector QTC0 is in circle T and sector QPC0 is in circle P. We can
get that ||area A||=x+sin(x) and P(x)=(x+sin(x))/ π . The
probability Ps(x) for the shortest arc created by k neighbor
nodes sensing the target being shorter than x is defined as:

.))(1(1)(Pr1)(Pr1)(
1

k
k

i
ss xPxyobxyobxP ∏

=

−−=≥−=≥−=
(3)

Hence the average length of the shortest arc is:
k

k k
k kx 0

P xd(1 (1 P(x))) P
π

=
kδ = − − =∑ ∑∫ δ
 (4)

Where

dxxxxPxd
k

x x

k
k ∫ ∫

= =

⎟
⎠
⎞

⎜
⎝
⎛ −

=−−=
π π

π
δ

0 0

)sin())(1((5)

It is easy to see that

ρ
π

π
πδ

π

π 2
1

)1(2
2

2/

=
+

=⎟
⎠
⎞

⎜
⎝
⎛ −

≈ ∫
= k

dxx
k

x
k

 (6)

where ρ is the density of the sensor in the network when R=1.
In a general case of R being the sensing radius of each node and
d being the sensor density, we have ρ = dR2 and the unit
numerator in (6) is R. Using derivation patterned on [8]
(omitted here for a lack of space) we can show that with
randomly distributed sensors, the linear (1-D) error of our
method is proportional to ())/(1 dRO which is the same order of
magnitude as the radius of the error area reported in [8]. The
reason is because we use the arc of sensing boundary instead of
sensing area to estimate the target location which reduces the
uncertainty dimension from two to one.

For the directional binary sensor, the upper bound of the
integration in (4) and (5) will be . Yet, we only consider
the effect of nodes that sense the target in (4). Actually, nodes
that do not sense the target also contribute to the accuracy of the
algorithm by cutting the arc shorter, which is not discussed
here.

/ sπ

Fig. 5 A configuration for calculating the shared arc length distribution

V. SIMULATION
We have designed a QT (a cross-platform application

5

framework) based simulator that uses data exchange between
multi threads to simulate the wireless communication between
sensor nodes. In the simulator, we assume that there is some
MAC (Media Access Control) protocol providing ideal
wireless communication, which means that there are neither
collisions nor data drops. We chose the location estimation
error, measured as the ratio of the distance between the
estimated and real target locations to the sensing range R as the
basic metrics of target tracking. This metric reflects the final
angle corresponding to the arc that the target is crossing in our
method, and therefore is independent of sensing rage, but
should decrease with the increase of network density.

A. Simulation Setup
When evaluating the impact of network density on the

location estimation accuracy, we kept the number of nodes
fixed at 300 within a 800 by 800 area and varied the sensing
range R from 50 to 150 units with increment of 25 units. The
velocity of the target was adjusted proportionally to the sensing
range, making it constant, if measured in sensing range units.

Several types of trajectories have been considered, including
linear, circular, and a piece-wise linear trajectory with random
turns. To exclude the boundary effect, all the measured
trajectories are confined within the square with sides of
800-Rmax (Rmax=150 is the maximum sensing range) in the
center of the simulation area. For the random trajectory, the
length of the trajectory is proportional to the sensing range R.

B. Algorithms to be Compared
Although papers [4-8] are related to our paper, but paper [4],

[5] and [8] all need a central node to gather the target
information and estimate the target location, while our paper
estimates the target information in a distributed way. So we
compare performance of our algorithm with the following four
other distributed algorithms introduced in [6] and [7]:

 (1) equal weight: target’s position is estimated as the
average of the detecting sensors’ positions;

(2) distance weight: target’s position is estimated as the
weighted average of the detecting sensors’ positions, where the

weight for each node is set at
21/ 0.25(v t)outR − ⋅ 2

and v is the
target velocity while t is the time expired since the target has
been detected;

(3) duration weight: target’s position is estimated as the
weighted average of the detecting sensors’ positions, where
given the time t that expired since the node has detected the
target, the weight for each node is ln(1+t);

(4) line fit: the initial estimate of the target position is made
as in algorithm (2), and then a line that fits the previous target
positions is found and the current target position is refined
using this line and the target velocity.

Because algorithms (2) (3) and (4) are designed for a linear
trajectory with constant velocity, our comparisons in their case
are restricted to the linear trajectory. We also compare this new
algorithm with the original target tracking algorithm using
traditional omni-directional binary sensor networks [9]. In
comparisons, we use either four-sector or twelve-sector sensor

nodes.
There are also some model based methods for target tracking,

but comparing with these methods is beyond the scope of this
paper.

C. Simulation Results and Discussion
Fig. 6 shows the typical example of estimated location points

for three kinds of trajectories. The sample network is composed
of 300 nodes with sensing range of 150 units and four-sector
directional binary sensors.

(a) Liner trajectory (b) Circular trajectory

(c) Random trajectory

Fig. 6 Examples of location estimation
We ran each simulation setup ten times and present the

averages of those runs and their confidence interval under
confidence level of 95%. Fig. 7 shows the location estimate
accuracy results under each of the three trajectories.

In all presented cases, the twelve-sector directional binary
sensing gets the best results, the four-sector directional binary
sensing outperforms our original binary sensing method, which
is already the best than any of the (1) to (4) algorithms. The
ratio of accuracy of twelve-sector directional binary sensing
algorithm to our original binary sensing method is nearly 2. The
ratio of accuracy of twelve-sector directional binary sensing
algorithm to the best results of among (1) to (4) algorithms
grows from nearly 8 for an important case of network with
medium density (sensing range of 50 units) to around 16 for
dense networks. Additionally, the location estimate accuracies
of all the three trajectories of our algorithm are close to each
other, demonstrating that our algorithm works well for all kinds
of trajectories. Even for a sparse network with sensing range R
= 50, which means that there are only three or four neighbor
nodes within each sensing range, the sector directional binary
sensing algorithm performs well. Our tracking algorithm is
very austere in sending messages. A node generates a single
message each time there is a change in target’s presence within
the node’s sensing range or the sector within which the target is
located changes. Hence, the communication incurred creates

6

little burden for the MAC layer and consumes little energy.
It is clear that when the number of sectors of each node

increases, the complexity of the algorithm only increase in the
neighbor initialization procedure due to the increase of
intersection points. But for the angle combination procedure,
the algorithm complexity remains the same because all the
possible angle relations are the four instances shown in Fig. 4.

We also calculated the ratio between the increase in the
number of messages produced and the increase in accuracy
when we increased the sector number from 1 (the
omni-directional binary sensor) to 4, from 4 to 12 and from 1 to
12. These ratios reflect the tradeoff between the gain in
accuracy and the cost of sending more messages. The smaller
the ratio is, the more benefit we gain.

(a) Liner trajectory

(b) Circular trajectory

(c) Random trajectory

Fig. 7 The location estimate accuracy
As shown in Fig. 8, the benefit is not constant. For example,

if we use 4-sector binary sensor instead of omni-directional
binary sensor with sensing range 125, the benefit is higher than
for other sensing ranges. However, using more sectors to get
better accuracy increases the chance of message collisions,
which, by delaying message transmission decrease the location

estimate accuracy. So the number of sector used should be
carefully selected in relation to the network density.

VI. CONCLUSION
In this paper, we extend our study of target tracking from the

traditional omni-directional binary sensing model to directional
binary sensing networks for which we introduced a real-time
distributed target tracking algorithm. Extensive simulations of
this algorithm performed under different configurations are
reported. We observe that our new algorithm yields good
performance, better than the performance achieved by our
previous and other algorithms in terms of accuracy of target’s
location estimation. Our target tracking method can be directly
adapted to multi target tracking when the targets are
sufficiently separated from each other. Even when targets get
close, we should be able to distinguish each target by predicting
its position through past location estimates. The details of such
a design will be the subject of our future works.

Fig. 8 The ratio of message count increase to accuracy increase

 REFERENCES
[1] C.-Y. Chong and S. P. Kumar, “Sensor networks: evolution, opportunities,

and challenges,” Proc. of the IEEE, vol. 91, no. 8, 2003, pp.1247–1256.
[2] Arora et. al, “A line in the sand: A wireless sensor network for target

detection, classification, and tracking,” The International J. of Computer
and Telecom. Networking, Dec. 2004, 46:605-634.

[3] J. Aslam, Z. Butler, F. Constantin, V. Crespi, G. Cybenko, and D. Rus,
“Tracking a moving object with a binary sensor network,” In ACM
SenSys, 2003.

[4] P. M. Djuric, M. Vemula, and M. F. Bugallo, “Signal processing by
particle filtering for binary sensor networks,” Proceedings of the 2004
IEEE 11th Digital Signal Processing Workshop & IEEE Signal
Processing Education Workshop, 2004, pp. 263-267.

[5] Teng Jing, Snoussi Hichem, and Richard Cedric, “Binary variational
filtering for target tracking in sensor networks,” IEEE/SP 14th Workshop
on Statistical Signal Processing, 2007, pp. 685-689.

[6] K. Mechitov, S. Sundresh, Y. Kwon, and G. Agha, “Cooperative tracking
with binary-detection sensor networks,” Technical Report
UIUCDCS-R-2003-2379, University of Illinois at Urbana-Champaign,
September 2003.

[7] W. Kim, K. Mechitov, J.-Y. Choi, and S. Ham, “On target tracking with
binary proximity sensors,” In Proc.IPSN, 2005.

[8] N. Shrivastava, R. Mudumbai, U. Madhow, and S. Suri, “Target tracking
with binary proximity sensors: Fundamental limits, minimal descriptions,
and algorithms,” In Proc. of ACM SenSys, 2006.

[9] Z. Wang, E. Bulut, and B. K. Szymanski, “A distributed cooperative
target tracking with binary sensor networks,” Proc. IEEE International
Conference on Communication (ICC) Workshops, May 2008, Beijing,
China, pp. 306-310.

[10] Z. Wang, E. Bulut, and B. K. Szymanski, “Distributed Target Tracking
with Imperfect Binary Sensor Networks,” Proc. IEEE Global
Communications Conference (Globecom), December, 2008, New Orleans,
USA, pp. 1-5.

http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4301199

	I. INTRODUCTION
	II. Network Model and Assumptions
	III. A Cooperative Tracking Algorithm
	A. Basic Idea
	B. Tracking Algorithm
	IV. Fundamental Performance Limits Analysis
	V. Simulation
	A. Simulation Setup
	B. Algorithms to be Compared
	C. Simulation Results and Discussion

	VI. Conclusion

