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Abstract—One of the most common and important applications 

of wireless sensor networks is target tracking. We study it in its 
most basic form, assuming the binary sensing model in which each 
sensor can return only information regarding target's presence or 
absence within its sensing range. However, unlike of the most of 
traditional approaches to binary sensing, we allow sensors to 
recognize not only target's range but also a sector within the 
circular range around it. This assumption is justified by 
increasing importance of sensors with a directionally limited 
sensing range caused by a directional antenna or limited 
measurement capabilities. Examples of such sensors include 
cameras, infrared sensors, ultrasonic sensors, etc. For simplicity, 
we assume that either a group of sensors are collocated in a single 
spot providing 360 degree coverage or a sensor has multiple 
antennas or camera providing such coverage. A novel, real-time 
and distributed target tracking algorithm with directional binary 
sensor networks is proposed. It is an extension of our previous 
work on omni-directional binary sensor networks. Using 
simulations, we demonstrate that this new algorithm achieves 
high performance and outperforms other algorithms by yielding 
accurate estimates of the target's location. In addition, we discuss 
the fundamental performance limits and improvement of the 
tracking performance resulting from providing direction range in 
addition to a distance range for the algorithm. 
 

Index Terms—target tracking, binary sensing, directional 
sensing, wireless sensor networks, distributed algorithms 
 

I. INTRODUCTION 
IRELESS sensors networks composed of miniature 
devices that integrate physical sensing, data processing 

and communication capabilities present great opportunities for 
a wide range of applications [1]. Among them, target tracking is  
 
both representative and important application that usually relies 
on cooperation between sensing nodes to achieve good results 
[2, 3]. The fundamental studies of target tracking often focus on 
networks composed of sensor nodes with the most elementary 
sensing capabilities that provide just binary information about 
the target, indicating whether it is present or absent in the  

 
sensing range of a node. These so-called binary sensor 
networks constitute the simplest type of sensor networks that 
can be used for target tracking. 
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A number of approaches using binary sensor networks for 
target tracking have been proposed in recent years. The 
algorithms presented in [4, 5] first route the binary information 
to a central node and then the central node applies particle 
filters on information gathered from all sensors to update the 
target’s track. But particle filters are expensive to compute and 
transmitting data from each node to a central one is very costly 
in terms of the energy needed for communication in any 
non-trivial size network. In [6], each point on the target’s path 
is computed using the weighted average of the detecting 
sensors’ locations. Then, a line that best fits the newly 
estimated location and the points on the trajectory established 
in the recent past is used as the target trajectory. Kim et al [7] 
improve the weight calculation for each sensor node that 
detected the target and use the estimated velocity to get the 
estimated target location. However, these two methods require 
time synchronization of the entire network and assume that the 
target moves at a constant velocity on a linear trajectory. 
Furthermore, these algorithms use positions of only the sensor 
nodes that detected the target. Actually, the absence of 
detection also provides the information that can be used to 
improve the tracking accuracy. In [8], both the presence and 
absence of the target within the node’s sensing range are used 
to form local regions that the target has to pass. These regions 
are bounded by the intersecting arcs of the circles defined by 
the sensing ranges of the relevant nodes. The trajectory is 
estimated as a piecewise linear path with the fewest number of 
linear segments that traverses all the regions in the order in 
which the target passed them. However, the algorithm is 
centralized and complex to compute. It also requires a 
designated tracker node to fuse data. Additionally, the 
designated node has to accumulate information from tracking 
sensors to form all regions needed to compute the estimated 
trajectory. Hence, the tracking is not real-time but delayed.  

In our previous work [9], we proposed a distributed target 
tracking algorithm for the ideal binary sensing model. In it, 
each active node computes the target’s location locally but uses 
cooperation to collect the sensing bits of its neighbors. 
Furthermore, the algorithm tracks the target in real–time, does 
not require time synchronization between sensor nodes and can 
be applied to targets moving in random directions and with 
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varied velocities. In [10], we presented an extension of this 
algorithm that made it applicable to imperfect binary sensing 
model while keeping all the other properties of its predecessor.  

All of the algorithms mentioned above used omni-directional 
binary sensor networks, in which each sensor can only detect 
the target presence or absence within its sensing range but can 
not get any direction information of the target. In this paper, we 
propose a novel distributed target tracking algorithm using 
directional binary sensor networks. Under the directional 
binary sensing model, each sensor node’s sensing region is 
divided into sectors and each node can identify in which sector 
the target is present or absent, which gives rough direction 
information of the target. To the best of our knowledge, this 
directional binary sensor network model has not been used by 
any of the previously published algorithms for target tracking. 
To establish fundamental limits of the directional binary 
sensing, we consider the ideal case of error-free sensing in this 
paper, leaving more complex analysis of impact of errors on the 
tracking algorithms to the future work. 

The remainder of the paper is organized as follows. We 
describe the network model and our assumptions in Section II. 
In Section III, we introduce our distributed target tracking 
algorithm using four-sector directional binary sensor networks. 
We derive the fundamental performance limits for our 
algorithm in Section IV. Section V presents the simulation 
results. Finally, we provide conclusions in section VI. 

II. NETWORK MODEL AND ASSUMPTIONS 
The sensor network comprises N nodes placed uniformly 

randomly over a finite, two-dimensional planar region to be 
monitored. Each node has a unique identifier and its sensing 
region forms a disk centered at the node and bounded by a 
circle defined by the sensing range R. The union of sensing 
regions of all network nodes guarantees redundant coverage of 
the region to be monitored. Each node’s sensing region is 
divided into sectors. An example of a four-sector directional 
binary sensor node is shown in Fig.1. Its entire sensing region 
is divided into four equal size sectors, which are numbered 
from 0 to 3 in the clockwise sequence order. The boundaries of 
sectors intersect with the sensing range at point A, B, C and D, 
which divide the sensing circle into four arcs AB, BC, CD and 
DA. The initial angle of radius “oA” with positive x-axis is 
selected randomly for each sensor. We will denote by s the 
number of sectors of each node and by b=log2(s+1) the number 
of bits needed to represent presence of target in one of the 
sectors or its absence from the node’s sensing range.  

At the moment at which the target enters or exits the sensing 
range of a sensor node for the first time, that node will generate 
b bits of information, indicating in which sector the target is 
present or that it is absent from the sensing range. This b-bit 
status information is also updated at the moment at which the 
target exits currently visited sector and enters another sector of 
the same sensor node. If there is no change in b-bit status 
information, the node remains silent to save energy and 
bandwidth and to avoid collisions with transmissions from 

other nodes. Each time a new b-bit information is generated, the 
node communicates it to its neighbors that are defined as nodes 
whose sensing range intersects its sensing range (depending on 
the relation between the sensing and communication radii, this 
may require a multi-hop transmission). Henceforward, we use 
the term neighbor in this specific sense. A node knows its 
location and the locations of its neighbors (possibly through 
communication at the network deployment stage, or through 
GPS devices, not discussed here). For simplicity, we assume 
that the sensing range of each node is identical across the 
network and each node’s sensing region is divided into the 
same number of equal size sectors. However, our algorithm 
also applies when sensing range, sector number and sector size 
vary from node to node. Additionally, we assume that the target 
moves with velocity that is low relative to the node’s sensing 
frequency. Consequently, time of discovery of the change in 
the target’s presence or absence within the node’s sensing 
range differs negligibly little from the time of the target moves 
within or out of this range. This assumption is reasonable 
because the sensing frequency for ultrasonic sensor is usually 
around 10-2 - 10-3 second and the sensing frequency for infrared 
sensor is usually above 10-4 second, which is much higher than 
most of the target velocity in real world.  

 
Fig. 1 A four-sector directional binary sensor 

III. A COOPERATIVE TRACKING ALGORITHM 

A. Basic Idea 
To illustrate our basic idea, we use an example from Fig.2, 

which shows a target moving through an area covered by two 
nodes whose sensing ranges are divided into four sectors. 
Initially, the target is outside of the sensing ranges of two nodes. 
Later, it moves into sector 3 of node X at the system time t1, 
crosses sector 2 of node X and enters sector 3 of node Y at time 
t2. Then, it leaves sector 1 of nodes X and sector 0 of node Y in 
that sequence, at times t3 and t4, respectively. According to the 
model described in the previous section, each node will 
generate information at the time of first sensing the target’s 
presence and later at the time of first lacking to sense its 
presence which corresponds to the times at which the target 
enters and then exits sensing range of the node. Besides those, 
each node will also generate information when the target leaves 
one sector and enters another sector of the same node. 
Consequently, at the transition time tj, the target must be on arc 
Aj which is a part of the arc of the corresponding sector of the 
node reporting the information. Hence, arc Aj can be 
determined cooperatively from b-bit information reported by 
the neighbors of that node. Let’s consider arc A2 defined at time 
t2 as an example. Before time t2, node Y will receive three 
messages from node X, which we can mark as “X13”, “X3-2” 
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and “X2-1”. “X13” means that node X first senses the target 
(“1” stands for presence, “0” stands for absence) in sector 3.  
“X3-2” means that the target within sensing range of node X 
leaves sector 3 and enters sector 2 of node X. “X2-1” means 
that the target within sensing range of node X leaves sector 2 
and enters sector 1 of node X. At time t2, node Y senses the 
target presence within its sector 3 for the first time, so the target 
must be on arc “abc” which corresponds to sector 3 of node Y. 
At that time, node Y also knows that the target is within sector 1 
of node X. Hence, node Y concludes that the target must be on 
arc A2. It is important to observe that, by using this method, the 
two-dimensional uncertainty of the target’s location on the 
plane is reduced to a one-dimensional uncertainty within the 
circle section. The shorter this circle section is, the smaller the 
uncertainty becomes. 

1 2 3 4

1

2

3

4

 
Fig. 2 An illustration of the basic idea behind the algorithm 

B. Tracking Algorithm 
At the network deployment stage, each node initializes status 

lists of its neighbors for its four sectors. Each time a node 
receives information from a neighbor, it updates the status list. 
At the moment at which the node discovers the change in the 
target’s presence within its sensing range (no matter which 
sector the target enters or exits), it identifies the arc that the 
target is crossing. The target location is estimated as the middle 
point of the corresponding arc and broadcast to neighbors. 
Neighbor sector match 

In the neighbor sector match procedure, each node finds out 
neighbor relations from all the sectors of neighbor node for 
each of its sector. At first, each node will calculate three types 
of intersection points that include: (1) intersection points of the 
sensing circles of the node and its neighbor, e.g. points “a” and 
“f” in Fig.3; (2) intersection points of the sensing circles of the 
node and its neighbor’s sector boundaries, e.g. points “c” and 
“d” in Fig. 3; (3) intersection points of the sensing circles of the 
node and its sector boundaries that fall into sensing area of its 
neighbor, e.g. points “b” and “e” in Fig.3. 

Then each of these intersections is sorted by the angle 
formed by one of the intersection points of type (1) and the 
intersection point itself, e.g. , , . After sorting, 
the sequence of intersection points in Fig. 3 will be “abcdef”.  
These sorted points form a number of angles defined by each 
pair of points in sequence, e.g. , , . Then, the 
center point of each arc corresponding to each angle is 
calculated and checked to see which sector it falls into. For 

example, the center point of the arc corresponding to 

aob∠ aoc∠ aod∠

aob∠ boc∠ cod∠

boc∠  
falls into sectors 0 of node X and 3 of node Y, which means that 
sector 3 of node Y is a neighbor sector of node X’s sector 0. 

 
Fig. 3 Neighbor list initialization 

Initialization and information update 
Each node first establishes neighbor lists for each of its 

sectors. Each element of such list stores: neighbor node 
identifier, neighbor sector identifier, intersection points related 
to this neighbor sector, an angle corresponding to the arc 
defined by these intersection points and b-bit status information 
generated by the neighbor, initialized to “0”. Upon receiving 
information from a neighbor, the node updates the 
corresponding entry in the list. Take sector 0 of node X in Fig. 3    
for example. It has three neighbor sectors: sector 0, 1 and 3 of 
node Y. The intersection points “c”, “d” and cod∠  are related 
to neighbor sector 0. The intersection points “d”, “e” and doe∠  
are related to neighbor sector 1. The intersection points “b”, “c” 
and boc∠  are related to neighbor sector 3. 
Location estimate 

When node senses change in the status of presence or 
absence of target from one of its sectors, it will combine all 
angles in the corresponding neighbor list to determine the arc 
that the target is crossing. The four instances of this process are 
shown in Fig. 4. If sectors of both neighbors generated bits 
indicating target’s presence, the corresponding central angles 
are combined by “&” operation that returns the intersection of 
the two angles. As shown in Fig. 4(a), the common angle 
of 1 3o∠  and 2 4o∠  is 2 3o∠ , so the node Y estimates the target 
location as the middle point of arc “23” when it senses that the 
target just moved within its sector. One special instance is 
shown in Fig. 4(b), where the common angle is just one of the 
two angles. If one neighbor sector status indicates presence 
while the other absence of the target, the corresponding central 
angles are combined with “-” operation that returns the angle 
formed by excluding the second angle from the first. For 
example, in Fig. 4(c) 1 3o∠  -  is equal to2 4o∠ 1 2o∠ . In a 
special case shown in Fig. 4(d), the result may consist of two 
angles, 1 2o∠  and 3 4o∠ . The correct angle in this case is 
chosen by considering the recent estimate of the target location. 

Let FA be the sought arc’s central angle initialized to 2π/s 
(the sensing border of a sector that the target is crossing). Let IN 
be the set of neighbor sectors indicating target’s presence while 
OUT be the set of neighbor sectors indicating target’s absence. 
Then, the final angle whose corresponding arc is the one that 
the target is crossing can be expressed as: 

& i j OUTi IN
FA FA angle angle

∈∈
= − j

                          (1) 

where anglei is the central angle of the neighbor’s sector i. 
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(a) (b) (c) (d)  
Fig. 4 Instances of angle combinations 

It should be noted that regardless of the relative position of 
any two sensor nodes and their number of sectors, the 
intersection situations for them must be one the four cases in 
Fig. 4 because the sensor nodes are static. So our tracking 
algorithm can always converge and find the correct arc that the 
target is crossing. And of course the overhead of the angle 
combination procedure is determined by the number of 
neighbor sectors which is related to network density and 
number of sectors of each node. 

IV. FUNDAMENTAL PERFORMANCE LIMITS ANALYSIS 
In this section, we first derive the fundamental performance 

limits for omni-directional binary sensors and then we extend it 
to the directional binary sensors. 

Assume that we have a domain of area Ad in which there are 
total of N sensors, each with a uniform sensing range (to 
simplify the analysis, we set this sensing range to be one unit, R 
= 1). Let's consider the specific time instance at which the target 
T has been just sensed by node X whose center is at point C0 
(we refer to this circle as circle C0), as shown in Figure 5. If 
neighbor sensors also sense the target, they must be within a 
circle centered at T with radius of one unit. Thus, the 
probability Pk that there are k (0<k<N) neighbors that also sense 
the target within their sensing ranges is: 

1

1
1 −−
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P ππ

                          (2) 
All k intersecting arcs will have one point on one side of the 

target and another on the other side. So the resulting average 
shortest length of the arc of all intersections will be the double 
of the length of the distance of the target from the closest 
intersection point on the either side of the target. Then, the 
accuracy of our algorithm will be just half of the average 
shortest length of the arc. Let node Y centered at point N0 is one 
of the neighbors of node X that also senses the target within the 
sensing range of one unit (we refer to this circle as circle N0). 
These two sensing circles intersect at points P and P’. We 
chose the notation so that P is the closest of the two intersection 
points to the target, so its distance may determine the accuracy 
of the target position measurement. It is important to note that 
any node whose sensing circle also intersects with circle C0 at 
point P must be on the circle centered at point P with radius of 
one unit (we refer to this circle as circle P). Consequently, any 
node that also senses the target but has an intersection point 
with circle C0 closer to target T than point P must fall in the 
shadowed area that we denote as A. If x denotes size of angle 

PC0T in radians, then the length of arc PT is x. The probability 
P(x) that the length of arc PT is less than or equal to x is ||area 
A||/||circle T||, where ||..|| returns the area of its argument, 
sector QTC0 is in circle T and sector QPC0 is in circle P. We can 
get that ||area A||=x+sin(x) and P(x)=(x+sin(x))/ π . The 
probability Ps(x) for the shortest arc created by k neighbor 
nodes sensing the target being shorter than x is defined as:  

.))(1(1)(Pr1)(Pr1)(
1

k
k

i
ss xPxyobxyobxP ∏

=

−−=≥−=≥−=
(3) 

Hence the average length of the shortest arc is: 
k
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It is easy to see that  
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             (6) 

where ρ is the density of the sensor in the network when R=1. 
In a general case of R being the sensing radius of each node and 
d being the sensor density, we have ρ = dR2 and the unit 
numerator in (6) is R. Using derivation patterned on [8] 
(omitted here for a lack of space) we can show that with 
randomly distributed sensors, the linear (1-D) error of our 
method is proportional to ( ))/(1 dRO which is the same order of 
magnitude as the radius of the error area reported in [8]. The 
reason is because we use the arc of sensing boundary instead of 
sensing area to estimate the target location which reduces the 
uncertainty dimension from two to one. 

For the directional binary sensor, the upper bound of the 
integration in (4) and (5) will be . Yet, we only consider 
the effect of nodes that sense the target in (4). Actually, nodes 
that do not sense the target also contribute to the accuracy of the 
algorithm by cutting the arc shorter, which is not discussed 
here. 

/ sπ

 
Fig. 5 A configuration for calculating the shared arc length distribution 

V. SIMULATION 
We have designed a QT (a cross-platform application 
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framework) based simulator that uses data exchange between 
multi threads to simulate the wireless communication between 
sensor nodes. In the simulator, we assume that there is some 
MAC (Media Access Control) protocol providing ideal 
wireless communication, which means that there are neither 
collisions nor data drops. We chose the location estimation 
error, measured as the ratio of the distance between the 
estimated and real target locations to the sensing range R as the 
basic metrics of target tracking. This metric reflects the final 
angle corresponding to the arc that the target is crossing in our 
method, and therefore is independent of sensing rage, but 
should decrease with the increase of network density. 

A. Simulation Setup 
When evaluating the impact of network density on the 

location estimation accuracy, we kept the number of nodes 
fixed at 300 within a 800 by 800 area and varied the sensing 
range R from 50 to 150 units with increment of 25 units. The 
velocity of the target was adjusted proportionally to the sensing 
range, making it constant, if measured in sensing range units. 

Several types of trajectories have been considered, including 
linear, circular, and a piece-wise linear trajectory with random 
turns. To exclude the boundary effect, all the measured 
trajectories are confined within the square with sides of 
800-Rmax (Rmax=150 is the maximum sensing range) in the 
center of the simulation area. For the random trajectory, the 
length of the trajectory is proportional to the sensing range R. 

B. Algorithms to be Compared 
Although papers [4-8] are related to our paper, but paper [4], 

[5] and [8] all need a central node to gather the target 
information and estimate the target location, while our paper 
estimates the target information in a distributed way. So we 
compare performance of our algorithm with the following four 
other distributed algorithms introduced in [6] and [7]: 

 (1) equal weight: target’s position is estimated as the 
average of the detecting sensors’ positions; 

(2) distance weight: target’s position is estimated as the 
weighted average of the detecting sensors’ positions, where the 

weight for each node is set at 
21/ 0.25(v t)outR − ⋅ 2

and  v is the 
target velocity while t is the time expired since the target has 
been detected; 

(3) duration weight: target’s position is estimated as the 
weighted average of the detecting sensors’ positions, where 
given the time t that expired since the node has detected the 
target, the weight for each node is ln(1+t); 

(4) line fit: the initial estimate of the target position is made 
as in algorithm (2), and then a line that fits the previous target 
positions is found and the current target position is refined 
using this line and the target velocity. 

Because algorithms (2) (3) and (4) are designed for a linear 
trajectory with constant velocity, our comparisons in their case 
are restricted to the linear trajectory. We also compare this new 
algorithm with the original target tracking algorithm using 
traditional omni-directional binary sensor networks [9]. In 
comparisons, we use either four-sector or twelve-sector sensor 

nodes.  
There are also some model based methods for target tracking, 

but comparing with these methods is beyond the scope of this 
paper. 

C. Simulation Results and Discussion 
Fig. 6 shows the typical example of estimated location points 

for three kinds of trajectories. The sample network is composed 
of 300 nodes with sensing range of 150 units and four-sector 
directional binary sensors. 

      
(a) Liner trajectory                     (b) Circular trajectory 

 
(c) Random trajectory 

Fig. 6 Examples of location estimation 
We ran each simulation setup ten times and present the 

averages of those runs and their confidence interval under 
confidence level of 95%. Fig. 7 shows the location estimate 
accuracy results under each of the three trajectories. 

In all presented cases, the twelve-sector directional binary 
sensing gets the best results, the four-sector directional binary 
sensing outperforms our original binary sensing method, which 
is already the best than any of the (1) to (4) algorithms. The 
ratio of accuracy of twelve-sector directional binary sensing 
algorithm to our original binary sensing method is nearly 2. The 
ratio of accuracy of twelve-sector directional binary sensing 
algorithm to the best results of among (1) to (4) algorithms 
grows from nearly 8 for an important case of network with 
medium density (sensing range of 50 units) to around 16 for 
dense networks. Additionally, the location estimate accuracies 
of all the three trajectories of our algorithm are close to each 
other, demonstrating that our algorithm works well for all kinds 
of trajectories. Even for a sparse network with sensing range R 
= 50, which means that there are only three or four neighbor 
nodes within each sensing range, the sector directional binary 
sensing algorithm performs well. Our tracking algorithm is 
very austere in sending messages. A node generates a single 
message each time there is a change in target’s presence within 
the node’s sensing range or the sector within which the target is 
located changes. Hence, the communication incurred creates 
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little burden for the MAC layer and consumes little energy. 
It is clear that when the number of sectors of each node 

increases, the complexity of the algorithm only increase in the 
neighbor initialization procedure due to the increase of 
intersection points. But for the angle combination procedure, 
the algorithm complexity remains the same because all the 
possible angle relations are the four instances shown in Fig. 4. 

We also calculated the ratio between the increase in the 
number of messages produced and the increase in accuracy 
when we increased the sector number from 1 (the 
omni-directional binary sensor) to 4, from 4 to 12 and from 1 to 
12. These ratios reflect the tradeoff between the gain in 
accuracy and the cost of sending more messages. The smaller 
the ratio is, the more benefit we gain. 

 
(a) Liner trajectory 

 
(b) Circular trajectory 

 
(c) Random trajectory 

Fig. 7 The location estimate accuracy 
As shown in Fig. 8, the benefit is not constant. For example, 

if we use 4-sector binary sensor instead of omni-directional 
binary sensor with sensing range 125, the benefit is higher than 
for other sensing ranges. However, using more sectors to get 
better accuracy increases the chance of message collisions, 
which, by delaying message transmission decrease the location 

estimate accuracy. So the number of sector used should be 
carefully selected in relation to the network density. 

VI. CONCLUSION 
In this paper, we extend our study of target tracking from the 

traditional omni-directional binary sensing model to directional 
binary sensing networks for which we introduced a real-time 
distributed target tracking algorithm. Extensive simulations of 
this algorithm performed under different configurations are 
reported. We observe that our new algorithm yields good 
performance, better than the performance achieved by our 
previous and other algorithms in terms of accuracy of target’s 
location estimation. Our target tracking method can be directly 
adapted to multi target tracking when the targets are 
sufficiently separated from each other. Even when targets get 
close, we should be able to distinguish each target by predicting 
its position through past location estimates. The details of such 
a design will be the subject of our future works.  

 
Fig. 8 The ratio of message count increase to accuracy increase 

      REFERENCES 
[1] C.-Y. Chong and S. P. Kumar, “Sensor networks: evolution, opportunities, 

and challenges,” Proc. of the IEEE, vol. 91, no. 8, 2003, pp.1247–1256. 
[2] Arora et. al, “A line in the sand: A wireless sensor network for target 

detection, classification, and tracking,” The International J. of Computer 
and Telecom. Networking, Dec. 2004, 46:605-634. 

[3] J. Aslam, Z. Butler, F. Constantin, V. Crespi, G. Cybenko, and D. Rus, 
“Tracking a moving object with a binary sensor network,” In ACM 
SenSys, 2003. 

[4] P. M. Djuric, M. Vemula, and M. F. Bugallo, “Signal processing by 
particle filtering for binary sensor networks,” Proceedings of the 2004 
IEEE 11th Digital Signal Processing Workshop & IEEE Signal 
Processing Education Workshop, 2004, pp. 263-267. 

[5] Teng Jing,  Snoussi Hichem, and Richard Cedric, “Binary variational 
filtering for target tracking in sensor networks,” IEEE/SP 14th Workshop 
on Statistical Signal Processing, 2007, pp. 685-689. 

[6] K. Mechitov, S. Sundresh, Y. Kwon, and G. Agha, “Cooperative tracking 
with binary-detection sensor networks,” Technical Report 
UIUCDCS-R-2003-2379, University of Illinois at Urbana-Champaign, 
September 2003. 

[7] W. Kim, K. Mechitov, J.-Y. Choi, and S. Ham, “On target tracking with 
binary proximity sensors,” In Proc.IPSN, 2005. 

[8] N. Shrivastava, R. Mudumbai, U. Madhow, and S. Suri, “Target tracking 
with binary proximity sensors: Fundamental limits, minimal descriptions, 
and algorithms,” In Proc. of ACM SenSys, 2006. 

[9] Z. Wang, E. Bulut, and B. K. Szymanski, “A distributed cooperative 
target tracking with binary sensor networks,” Proc. IEEE International 
Conference on Communication (ICC) Workshops, May 2008, Beijing, 
China, pp. 306-310. 

[10] Z. Wang, E. Bulut, and B. K. Szymanski, “Distributed Target Tracking 
with Imperfect Binary Sensor Networks,” Proc. IEEE Global 
Communications Conference (Globecom), December, 2008, New Orleans, 
USA, pp. 1-5. 

http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4301199

	I. INTRODUCTION 
	II. Network Model and Assumptions 
	III. A Cooperative Tracking Algorithm 
	A. Basic Idea 
	B. Tracking Algorithm 
	IV. Fundamental Performance Limits Analysis 
	V. Simulation 
	A. Simulation Setup 
	B. Algorithms to be Compared 
	C. Simulation Results and Discussion 

	VI. Conclusion 


