
Computer Networks 172 (2020) 107156

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

User satisfaction aware maximum utility task assignment in mobile

crowdsensing

Fatih Yucel, Eyuphan Bulut ∗

Department of Computer Science, Virginia Commonwealth University, 401 West Main, St. Richmond, VA 23284, USA

a r t i c l e i n f o

Keywords:

Mobile crowdsensing

Task assignment

Stable matching

a b s t r a c t

In mobile crowdsensing systems (MCS) efficient task assignment is the key problem that defines the performance

of the system. The current state-of-the-art solutions consider the problem from system’s point of view and target

an assignment that optimizes the overall system utility such as minimizing the cost of sensing or maximizing the

collected data quality. However, users (i.e., task requesters and task performers or workers) may have individual

preferences, hence the resulting assignment may not satisfy the users and can discourage them from participation

in the future. Stable matching based solutions can help achieving satisfactory assignments for the users, but

they may degrade the system utility especially when the number of eligible task performers for each task is

limited, hence may not be desired for the MCS platform. To address this problem, in this paper, we study the task

assignment problem that aims to maximize the system utility and user satisfaction simultaneously as much as

possible. As the problem is NP-complete, we first solve the problem using Integer Linear Programming (ILP) and

provide two different heuristic based polynomial solutions. We perform extensive simulations using real dataset

and show that the proposed solutions provide close to optimal results, complementing each other at different

scenarios.

1

a

t

r

a

s

a

a

e

a

T

a

r

p

c

a

e

d

s

t

w

w

p

o

a

e

s

e

m

o

c

t

i

s

h

R

A

1

. Introduction

Mobile crowdsensing (MCS) has emerged as an effective approach to
ccomplish large scale sensing and computation tasks that are beyond
he capabilities of the task requesters themselves [1] . Mobile users car-
ying devices equipped with various sensors (e.g., microphone, camera,
nd GPS) are recruited to efficiently carry out the tasks that require mas-
ive expenses and execution times when performed individually. There
re many applications of MCS systems today in use such as traffic [2] and
ir quality monitoring [3] .

An MCS system consists of a platform, requesters, tasks and work-
rs 1 . Task requesters post a set of tasks with different requirements such
s a deadline to complete the task and a reward for completing the task.
he workers register to the system together with their capabilities and
ny applicable restrictions (e.g., can only perform tasks in a specific
egion, or can perform a task with at least a minimum reward). The
latform defines the workers eligible for each task and either automati-
ally matches them based on some optimization goal or let the workers
nd task requesters communicate and agree on a task allocation in a
∗ Corresponding author.

E-mail addresses: yucelf@vcu.edu (F. Yucel), ebulut@vcu.edu (E. Bulut).
1 We utilize the term “user ” to refer to both task requesters and workers. Work-

rs are the users who are recruited to perform tasks.

i

t

o

ttps://doi.org/10.1016/j.comnet.2020.107156

eceived 14 September 2019; Received in revised form 19 December 2019; Accepted

vailable online 19 February 2020

389-1286/© 2020 Elsevier B.V. All rights reserved.
istributed manner based on their preferences, where the platform only
erves as the advertiser. For example, a worker may prefer to take the
asks that will provide more profit with a minimal effort based on the
orker’s capabilities.

MCS can be performed either opportunistically or in a participatory
ay. In the opportunistic MCS, workers passively contribute to the com-
letion of tasks (e.g., sensing humidity in some region of the city) with-
ut changing their mobility. On the contrary, in participatory sensing,
 central authority usually assigns workers to the tasks, and the work-
rs actively move to the task location to complete the tasks in return of
ome reward. Depending on the MCS application and its requirements,
ither one may have advantages over the other. In both scenarios, the
ain challenging problem is the assignment of tasks to users under some

ptimization goal. However, the nature of the task assignment process
hanges depending on the scenario.

There have been many studies [4–16] performed to propose solu-
ions to this task assignment problem under different scenarios and lim-
tations (e.g., budget, maximum distance to travel). In most of these
tudies, however, the problem is formulated as a maximum system util-
ty (e.g., number of completed tasks, quality of completed tasks, average
ime needed to complete a task) problem and users’ individual goals are
verlooked. However, users may not want to sacrifice their individual
 17 February 2020

https://doi.org/10.1016/j.comnet.2020.107156
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2020.107156&domain=pdf
mailto:yucelf@vcu.edu
mailto:ebulut@vcu.edu
https://doi.org/10.1016/j.comnet.2020.107156

F. Yucel and E. Bulut Computer Networks 172 (2020) 107156

Fig. 1. An MCS scenario with 5 workers and 5 tasks, which are respectively denoted by numbers and letters. (a) The task and current worker locations on the map

(workers eligible to perform a task is connected with an edge to that task); (b) corresponding bipartite graph with the list and preference order (from left to right)

of workers and tasks; (c) Deferred acceptance based stable matching (Gale–Shapley algorithm [21]) leaving 4 and b unassigned, yielding a lower system utility; and

(d) An assignment that maximizes the system utility but yielding unhappy users (shown with dashed edges).

c

n

p

a

a

w

t

t

t

i

t

t

t

t

d

b

d

v

s

b

a

h

t

t

i

i

f

c

t

h

m

s

w

p

fi

t

b

m

p

c

t

m

c

h

r

p

v

p

h

u

F

2

2

a

c

h

s

i

t

o

g

s

t

b

s

a

n

b

u

e

p

d
onvenience for the system utility, and thus such task assignments may
ot be appealing to users (i.e., both task requesters and workers) and im-
air their future participation. Recently, stable matching based solutions
re adopted to address this problem [17–20] , and task assignments that
re aware of user preferences are developed to make the users happy
ith their assignments. However, these solutions may reduce the sys-

em utility (e.g., some tasks and workers left unassigned) while trying
o satisfy users in some cases.

We illustrate this tradeoff between user happiness and system utility
hrough an example MCS scenario with 5 tasks and 5 workers shown
n Fig. 1 a, which will be referenced throughout the paper to describe
he problem and the proposed solutions for convenience. We assume
hat workers have some serving region and they are only eligible for
he tasks in that region. The preference orders of the workers and the
ask requesters are also provided in Fig. 1 b (we will describe how users
efine their preferences in Section 3). A matching that satisfies all users
ased on their preferences in the sense that they cannot claim to have
eserved a better assignment than their assigned partners can be found
ia the well-known Gale–Shapley algorithm [21] . There can be many
uch stable matchings in a single matching instance with the same size,
ut there is only one in our example which is shown in Fig. 1 c. Thus,
ny other matching will make at least two users unhappy. On the other
and, the issue with this matching is that it leaves a worker (4) and a
ask (b) unassigned and hence diminishes the system utility. However,
he foremost objective of a reasonable platform would be to maximize
ts own utility by assigning as many tasks as possible (as in Fig. 1 d), since
t is typically paid a brokerage fee for each assignment it makes. Yet it is
or the platform’s own benefit to also take the preferences of users into
onsideration and aim to decrease the number of unhappy users with
heir assignments, because a user that continuously gets unhappy with
is assignments is likely to abandon the platform at some point, which
ight have a more significant and permanent detrimental effect on the

ystem utility. Therefore, the platform should aim to find the matching
ith the minimum number of unhappy pairs (i.e., a worker-task pair
referring each other more than their current partners) without sacri-
cing from its own utility. For example, a matching that also achieves
he maximum system utility, but with only one unhappy pair is possi-
le in the given scenario; thus, the platform should try to produce this
atching instead of the one given in Fig. 1 d, which contains 4 unhappy
airs. In this paper, we address this problem, which turns out to be NP-
omplete, and propose two polynomial time heuristic algorithms to find
he matching that contains as few unhappy pairs as possible among all
atchings with maximum system utility. The contributions of this paper

an be summarized as follows:
o
• We formulate the user satisfaction aware maximum utility task as-
signment problem and solve it optimally using Integer Linear Pro-
gramming (ILP).

• We provide two heuristic based efficient solutions that run in poly-
nomial time using different approaches.

• We perform extensive real dataset based simulations covering nu-
merous scenarios and show that the proposed solutions provide close
to optimal results and complement each other at different scenarios.

In the preliminary version of this study [22] , we only provide a single
euristic based solution (i.e., Stable to Maximum) and limited simulation
esults. The rest of the paper is organized as follows. In Section 2 , we
resent an overview of related work. In Section 3 , we provide the moti-
ation of the study together with a background on stable matching and
roblem definition. In Section 4 , we elaborate on the ILP solution and
euristic based approaches. In Section 5 , we present an extensive eval-
ation of the proposed approaches through real data based simulations.
inally, we end up with conclusion in Section 6 .

. Related work

.1. Mobile crowdsensing

Mobile crowdsensing has received a great attention in recent years
nd several aspects have been studied by many researchers. A primary
omponent of MCS systems is incentive mechanisms , which determine
ow the participants of the system should be incentivized to perform as-
igned tasks. In some studies, participants are simply assumed to be self-
ncentivized due to the entertaining [23] or mutually beneficial [24] na-
ure of the tasks tackled in the system, or by the fact that the objective
f the task coincides with their political, cultural, environmental or reli-
ious views. However, for the majority of the MCS systems that involve
ensing tasks that require the workers to spend their own resources (e.g.,
ime, travel costs) to achieve the assigned tasks, it may not be feasi-
le to assume self-incentivized workers. In such systems, the workers
hould be compensated financially by the crowdsourcer for their efforts
nd disbursements. In order to achieve this, various incentive mecha-
isms (e.g., auctions, lottery contests, reputation based models) have
een proposed [25] , among which auction models are the most pop-
lar and commonly used [26–28] . In these models, generally, workers
stimate and announce the level of effort they will have to put in to com-
lete each task, and the platform strategically selects the workers and
etermines how much they will be rewarded while ensuring the quality
f the sensed data.

F. Yucel and E. Bulut Computer Networks 172 (2020) 107156

m

i

p

t

t

f

o

i

s

c

c

a

c

s

o

a

a

r

l

t

2

o

fi

o

S

c

i

p

m

l

l

l

i

d

fi

a

m

m

o

q

i

a

o

b

t

i

l

a

c

a

t

e

f

f

t

s

o

m

e

p

a

s

s

p

t

m

p

u

H

u

i

a

p

w

a

i

m

a

m

t

s

[

i

d

b

a

i

a

i

a

t

p

r

3

3

=

c

r

h

t

a



A

p

e

w

a

w



S

o

2 Note that cost can be defined with a complicated function that considers

the worker’s traveling and task completion duration due to spatio-temporal con-

straints, energy consumption on the worker’s device due to sensing, and privacy

risks to the worker. Similarly, reward can be defined based on several factors

such as the quality of sensed data and the trustworthiness of the users.
Another challenge in MCS systems that is as crucial as incentive
echanisms is how to assign the requested tasks to the workers given the

ncentives that the task requesters are willing to provide and the cost of
erforming these tasks for each worker. This problem is referred to as the

ask assignment/allocation or user recruitment problem in the MCS litera-
ure, and has been studied quite extensively [4–16] . In these works, dif-
erent objectives have been considered such as maximizing the number
f completed tasks, minimizing the completion times of tasks [11] , min-
mizing the incentives provided to the users [12,13] , assuring the task or
ensing quality [14–16] within some limits such as budget [29] , energy
onsumption [15] and traveling distance [14] . Beyond these works, se-
urity [30] , privacy [5,31,32] , and trustfulness [6,33] of workers have
lso been considered during the recruitment process.

Despite the variety of the literature on the task assignment and in-
entive models in MCS systems, the goal is mostly defined from overall
ystem’s point of view without considering the user preferences. Most
f these studies aim to maximize the overall system utility according to
 specific performance metric, but fail to take the user preferences into
ccount. Consequently, in the proposed models, some worker and task
equester pairs end up preferring each other to their assignments, which
eads to unstable and unfair results, discouraging users from future par-
icipation.

.2. Stable matching

Stable Matching (SM) problem is introduced in the seminal paper
f Gale and Shapley [21] and can simply be defined as the problem of
nding a matching between two groups of objects such that no pair of
bjects favor each other over their partners in the matching. Gale and
hapley have also introduced what is called the deferred acceptance pro-
edure that finds stable matchings in both one-to-one matching scenar-
os (i.e., stable marriages) and many-to-one matching scenarios with ca-
acity constraints (i.e., stable college admissions) in  (𝑚𝑛) time, where
 and n are the size of the sets being matched (e.g., men/women, col-

eges/students, workers/tasks). Since its introduction in Gale and Shap-
ey [21] , the concept of stability has been utilized in different prob-
ems including hospital resident assignment [34] , resource allocation
n device-to-device communications [35] , SDN controller assignment in
ata center networks [36] , and electric vehicle charging [37] .

Since there can be multiple stable matchings in a matching instance,
nding the best SM in terms of another performance metric has received
 lot of attention. First, Gale and Sotomayor [38] proves that the set of
atched nodes is identical in all stable matchings, therefore all stable
atchings are of the same size. Iwama et al. [39] studies the problem

f finding sex-equal stable matchings where the difference between the
uality of the matching for two sides (e.g., men/women) of the matching
s minimum. The authors prove that the problem is NP-hard and propose
 polynomial time approximation algorithm. Irving et al. [40] focuses
n the maximum weighted stable matching problem, which turns out to
e solvable in  (𝑁

4 log 𝑁) time (𝑁 = max { 𝑚, 𝑛 }) and remains as one of
he few significant optimal stable matching problems that are solvable
n polynomial time. Note that an explicit method to solve these prob-
ems and all optimal stable matching problems is simply to enumerate
ll stable matchings and find the best according to the utility metric
onsidered. In fact, Gusfield [41] proposes an algorithm that iterates
ll stable matchings in a matching instance of size N in  (𝑁

2 + 𝑁|𝑆|)
ime, where S is the set of all stable matchings in the instance. How-
ver, since the number of stable matchings (| S |) can be massive even
or small problem sizes (e.g., the maximum number of stable matching
or a problem of size 𝑁 = 32 is larger than 10 11) and grows exponen-
ially with increasing problem size [42] , this method (i.e., enumerating
table matchings to find the optimal one) would be a feasible solution
nly in a very limited set of scenarios.

Recently, the concept of stability has also been utilized [17–20] in
obile crowdsensing (and crowdsourcing) systems. In terms of consid-

ring user preferences in the task assignment, the closest studies to this
aper are [18,20] . In [18] , the authors study the many-to-one stable job
ssignment problem under budget constraints. They define the unique
tability conditions for many-to-one matching scenarios where a crowd-
ourcer would like to recruit as many workers as his budget permits, and
ropose an ILP-based algorithm to find pairwise stable matchings. On
he other hand, Abououf et al. [20] focuses on the problem of finding
any-to-many stable task assignments under capacity constraints and
rovides a polynomial time heuristic algorithm that aims to maximize
ser satisfaction in the resulting matching according to user preferences.
owever, neither of these studies addresses the issue of flawed system
tility (or matching size) that comes with stable matchings. This issue
s firstly addressed in Biró et al. [43] from a theoretical perspective,
nd it has been shown that given a matching instance with incomplete
reference lists, the problem of finding a matching of maximum size
ith as few blocking/unhappy pairs as possible is NP-hard and is not
pproximable within a constant factor. In other words, there cannot ex-
st a polynomial time c -approximation algorithm that would produce
atchings with at most c × 𝛽 unhappy pairs unless P = NP, where c is
 constant (≥ 1) and 𝛽 is the number of blocking pairs in the optimal
atching. In the SM literature, the idea of relaxing the stability in order

o achieve a better matching in terms of another utility has also been
tudied under the concept of almost stable matchings , but these studies
44,45] have mostly focused on reducing the running time by sacrific-
ng from the stability, for which they propose truncated versions of the
eferred acceptance procedure.

Despite the extensive studies in stable matching literature, to the
est of our knowledge, there is no study that provides an experimental
nalysis that shows the severity of system utility loss in stable match-
ngs, or proposes a heuristic algorithm to solve the problem of finding
 maximum system utility matching with as few unhappy pairs (i.e.,
nstability) as possible by trading the optimality for speed. In order to
ddress these, this paper first investigates the trade-off between the sys-
em utility and the stability (user satisfaction), and then proposes two
olynomial time heuristic algorithms that achieve very close to optimal
esults in different scenarios.

. System model

.1. Assumptions

Let  = { 𝑤 1 , 𝑤 2 , … , 𝑤 𝑛 } denote the set of || = 𝑛 workers and 
 { 𝑡 1 , 𝑡 2 , … , 𝑡 𝑚 } denote the set of | | = 𝑚 tasks in the system. Also, let
 ij denote the cost 2 of assigning worker w i to task t j and r j denote the
eward of completing the task t j . We assume that workers are rational;
ence, they do not perform a task if its cost is higher than the reward of
he task. The set of eligible tasks that worker w i can perform are defined
s:

(𝑤 𝑖) = { 𝑡 𝑗 |𝑟 𝑗 ≥ 𝑐 𝑖𝑗 , ∀𝑗 ∈ [1 , … , 𝑚]} (1)

s workers aim to increase the profit from the tasks they complete, they
refer the tasks with higher 𝑟 𝑗 − 𝑐 𝑖𝑗 value. We use 𝑡 𝑗 ≻𝑤 𝑖 𝑡 𝑗 ′ notation to
xpress that w i prefers t j to 𝑡 𝑗 ′ , which happens when 𝑟 𝑗 − 𝑐 𝑖𝑗 > 𝑟 𝑗 ′ − 𝑐 𝑖𝑗 ′ .

The task requesters cannot also hire a worker if the cost of hiring that
orker is more than the reward the requester can provide (which could
lso be considered as the budget of the requester). The set of eligible

orkers that can perform the task t j is then similarly defined as:

(𝑡 𝑗) = { 𝑤 𝑖 |𝑟 𝑗 ≥ 𝑐 𝑖𝑗 , ∀𝑖 ∈ [1 , … , 𝑛]} (2)

imilarly, the task requester can have preferences on the eligible set
f workers. For example, if the cost of assigning a worker to a task is

F. Yucel and E. Bulut Computer Networks 172 (2020) 107156

Table 1

Notations

Notation Description

 ,  Set of workers and tasks, respectively.

n, m Number of workers and tasks, respectively.

N max { m, n }.

 Matching between workers and tasks.

 (𝑢) Task/worker assigned for user (worker/task) u .

𝑈 () The set of unhappy pairs in matching  . |𝑈 () | Unhappiness Index (UI).

(𝑢) Eligible tasks/workers for worker/task u . || Average eligible task/worker size.

P u Preference list of user u .

c ij Cost for worker w i to perform task t j .

r j Reward of completing task t j .

𝑤 𝑖 ≻𝑡 𝑗
𝑤 𝑖 ′ Task t j prefers worker w i to worker 𝑤 𝑖 ′ .

𝐺 = (𝑉 , 𝐸) Bipartite graph between workers and tasks.

d

l

c

a

i

b

w

u

𝐺

L

a



o

a

3

f

s

u

b

v

a

t

H

i

(

q

w



h

d

h

m

u

u

m

m

b

r

t

i

w

d

a

w

r

v

u

t

i

o

a

u

s

i

a

1

F

1

m

s

b

c

s

s

t

a

w

T

b

a

u

a

i

a

f

c

i

c

M

b

w

4

g

w

t

ependent on the traveling distance from the worker location to the task
ocation [7,46] , the task requester may prefer the workers who have less
ost, as they indicate quicker arrival of the worker to the task location
nd early completion of the task. It could also be a totally location-
ndependent cost function and the preference of the task requester can
e determined by other factors such as the quality of the sensed data the
orkers can provide. Given the eligibility relations, the corresponding
ndirected bipartite graph 𝐺 = (𝑉 , 𝐸) can be defined as

𝐺.𝑉 =  ∪ 

.𝐸 = {(𝑢, 𝑣) |𝑢, 𝑣 ∈ 𝐺.𝑉 , 𝑢 ∈ (𝑣) , 𝑣 ∈ (𝑢)} (3)

astly, we use 𝑤 𝑖 ≻𝑡 𝑗
𝑤 𝑖 ′ notation to express that t j prefers w i to 𝑤 𝑖 ′ ,

nd we assume that the preference list of a user u is the ordered list of
(𝑢) in which a more favorable candidate precedes the less favorable
nes, and is denoted by P u . The notations used throughout the paper
re summarized in Table 1 .

.2. Trade-off analysis

Having the set of eligible workers for each task and eligible tasks
or each worker, the platform then assigns the tasks to workers with
ome optimization goal. An assignment aiming to maximize the system
tility 3 can be obtained by constructing the corresponding maximum
ipartite matching instance between workers and tasks and solving it
ia the well-known Hungarian algorithm [47] . Similarly, an assignment
iming to satisfy users with their assignments can be obtained using
he deferred acceptance mechanism in the Gale–Shapley algorithm [21] .
owever, achieving both may not be possible at the same time and there

s a trade-off between system utility and user satisfaction.
Let  = {(𝑤 𝑖 1

, 𝑡 𝑗 1
) , … , (𝑤 𝑖 𝑘

, 𝑡 𝑗 𝑘
)} , k ≤ min { m, n } denote the set of

worker, task) pairs assigned to each other depending on the task re-
uirements and worker skills. We denote the task assigned to a worker
 in a matching  by  (𝑤) . We say  (𝑤) = ∅, if w is not matched in
 . Analogously, we denote the user assigned to a task t by  (𝑡) .
In order for a matching  to be stable it should not admit any un-

appy (i.e., blocking) pair ⟨w, t ⟩ such that 𝑡 ∈ (𝑤) , 𝑤 ∈ (𝑡) , and

• 𝑡 ≻𝑤  (𝑤) and 𝑤 ≻𝑡  (𝑡) , or
• 𝑡 ≻𝑤  (𝑤) and  (𝑡) = ∅, or
• 𝑤 ≻𝑡  (𝑡) and  (𝑤) = ∅, or
•  (𝑤) = ∅ and  (𝑡) = ∅.

If  , however, contains such pairs, we say that  is unstable and
enote the set of unhappy pairs in  by 𝑈 () . The number of un-
appy pairs, |𝑈 () |, (which we also call as unhappiness index (UI)) in a
3 As we assume that the platform is paid a brokerage fee for each assignment it

akes, this refers to the number of worker task pairs assigned. More complicated

tility models can also be defined similarly and proposed algorithms could be

pdated accordingly.

4

m
atching has been a recognized way of measuring the instability of the
atching [43] .

In Section 1 , the instance in Fig. 1 is used to show that there can
e a trade-off between system utility and user satisfaction, which are
espectively measured by the number of assigned users and UI . In order
o quantify the loss in system utility and user satisfaction, respectively,
n stable matchings and maximum system utility matchings in general,
e run a series of experiments with 50 workers and 50 tasks randomly
eployed in a 1 km by 1 km region. Eligibility conditions for workers
nd tasks are defined in two ways. In the local case, we assume that each
orker can only travel up to a distance with travel cost less than the task

eward and a worker prefers the task closer to the worker’s location and
ice versa. In the random case, since each user may have a distinct and
nique set of criteria to determine the eligibility, we randomly decide
he eligible user sets. We then obtained the task assignments with max-
mum system utility and stable matching procedures for eligibility sets
f different density (obtained by adjusting the rewards in the local case
nd the probability of eligibility in the random case).

Fig. 2 shows the unhappiness index obtained with maximum system
tility matching and the percentage of decrease in the number of as-
igned workers and tasks in stable matching ( 𝑆𝑀

) compared to max-
mum system utility matching ( 𝑀𝑀

), which can formally be defined
s

00 ×
| 𝑀𝑀

| − | 𝑆𝑀

|| 𝑀𝑀

| .

or all results in this and the following sections, we take the average of
00 different runs for statistical significance. We observe that up to 17%
ore users are left unassigned with stable matching, while maximum

ystem utility matching yields massively larger unhappiness index (i.e.,
y definition, unhappiness index is 0 in stable matching). Although one
an carefully use the appropriate algorithm in the extreme cases (e.g.,
table matching when all workers are eligible for all tasks, and maximum
ystem utility matching when only a few workers are eligible for each
ask provided that small number of unhappy pairs is acceptable), neither
lgorithm provides efficient results for most scenarios.

In Fig. 3 , the same trade-off is also obtained for different ratios of
orker and task ratios with an average eligible worker/task size of 3.
he highest decrease in the number of unassigned workers/tasks by sta-
le matching is observed when the ratio is 1 (i.e., the set of workers
nd tasks have equal size), where we see the minimum but comparable
nhappiness index obtained by maximum system utility matching.

In this paper, we aim to address this trade-off and develop a task
ssignment algorithm that reaches the maximum possible system util-
ty (i.e., number of matched workers/tasks) while satisfying the users
s much as possible, thus minimizing the unhappiness index. A brute
orce method to solve this problem would be to enumerate all maximum
ardinality matchings, and pick the one with the smallest unhappiness
ndex. However, this would be too costly since the number of maximum
ardinality matchings grows exponentially with the number of nodes.
oreover, this problem can be reduced to max cardinality with min

locking pairs problem [43] , which is proven to be NP-complete, even
hen the size of eligible worker/task sets is 3.

. User satisfaction aware maximum utility task assignment

In this section, we first model the problem using Integer Linear Pro-
ramming (ILP) to find the optimal solution for a given set of tasks and
orkers with their restrictions and eligibility. Then, we provide the de-

ails of two different heuristic based cost efficient solutions.

.1. ILP design

Our goal is to assign as many workers and tasks as possible with the
inimum number of unhappy pairs, which can be formally defined as

F. Yucel and E. Bulut Computer Networks 172 (2020) 107156

Fig. 2. Percentage of decrease in the number of assigned workers/tasks in stable matching compared to maximum system utility matching (left) and unhappiness

index in maximum system utility matching (right) with varying size of eligible worker/task sets in local and random settings.

Fig. 3. Percentage of decrease in the number of assigned workers/tasks in stable matching compared to maximum system utility matching (left) and unhappiness

index in maximum system utility matching (right) with different ratios of worker and task set sizes. We use an average eligible worker/task set size of 3 with the

total number of tasks and workers fixed at 100.

f

m

w

∑
∑

w

𝑒





i

(

a

i

4

w

d

t

w

t

4

h

e

t

m

a

(

a

𝑏

t

o

h

u

m

t
ollows:

ax
∑
∀𝑖,𝑗

(
𝑚𝑛  𝑖𝑗 −  𝑖𝑗

)
(4)

ith the constraints:

∀𝑖
 𝑖𝑗 ≤ 1 ∀𝑗

∀𝑗
 𝑖𝑗 ≤ 1 ∀𝑖

 𝑖𝑗 ≤ 𝑒 𝑖𝑗 ∀𝑖, 𝑗

here,

 𝑖𝑗 =

{

1 , if 𝑤 𝑖 is eligible to perform 𝑡 𝑗
0 , otherwise

 𝑖𝑗 =

{

1 , if 𝑤 𝑖 is assigned to 𝑡 𝑗
0 , otherwise

 𝑖𝑗 =

{

1 , if (𝑤 𝑖 , 𝑡 𝑗) is an unhappy pair
0 , otherwise

Note that the number of unhappy pairs can be at most mn . Increment-
ng the assigned pair count will increase the objective function value in
4) more than removing all unhappy pairs. Thus, it first tries to reach
n assignment with maximum system utility, then reduces unhappiness

ndex as much as possible.
.2. Maximum to stable reduction algorithm

The first proposed algorithm works based on a greedy heuristic
hich aims to first find the maximum utility matching and then try to
ecrease the number of unhappy pairs in it one by one without altering
he total utility of the matching. Before elaborating the algorithm steps,
e first describe happify procedure, which constitutes the core part of

he algorithm.

.2.1. Happify procedure

The purpose of the happify procedure is to get rid of a specific un-
appy pair by re-matching the worker and the task that form it with
ach other. Consider the example in Fig. 4 a, in which worker 1 and
ask a form an unhappy pair, denoted by ⟨1, a ⟩. We happify ⟨1, a ⟩ by
atching 1 with a . In order to maintain the utility of the matching, we

lso attempt to match their former partners, b and 2, with each other
and form the matching 

′). Yet this is not always feasible, because b
nd 2 may be considering each other unacceptable (i.e., 2 ∉ (𝑏) and
 ∉ (2)). In this case, since leaving b and 2 unmatched would decrease
he utility of the matching, we avoid performing the happify procedure
n such pairs.

On the other hand, even if b and 2 consider each other as acceptable,
appifying ⟨1, a ⟩ would not always yield a matching that contains fewer
nhappy pairs. In fact, the number of unhappy pairs can decrease, re-
ain unchanged, or even increase. To figure that out, we need to check

he preference lists of these four nodes, and identify the nodes in their

F. Yucel and E. Bulut Computer Networks 172 (2020) 107156

Fig. 4. An instance of happify procedure. (a) the matching  before happify;

(b) the matching 

′ after happifying the unhappy pair ⟨1, a ⟩ in  ; (c) 1’s pref-

erence list, P 1 ; (d) 2’s possible preference list, 𝑃 ′2 ; (e) 2’s alternative preference

list, 𝑃 ′′2 .  𝑖 ’s are defined in (5) .

p

i

h

i

d

s

t

1

t

(

a

t

{

i

f

{

w

t

{

i

𝑥

d

n

a ⟨
{

s

{

d

e

m

o

{

w

o

i

{

g

i

o

e

g

a

a

n

𝑈

a

i

𝑈

T

𝑈

T

U

x

u

P

g

w

w |

e

4

t

h

p

t

h

t

i

i

h

c

i

c

m

r

u

i

f

o

T

p

s

o

h

l

p

a

a

p

h

g

H
reference lists, which can be potentially affected by partner change. To
llustrate this, we will analyze the possible scenarios that can arise after
appifying ⟨1, a ⟩. Since the relationship between the tasks and workers
s symmetric as seen in Fig. 4 a, 1 and a will have similar scenarios, as
o 2 and b . Therefore, the examination of scenarios for nodes 1 and 2
hould be sufficiently descriptive.

First of all, since ⟨1, a ⟩ is given as an unhappy pair, we can deduce
hat 𝑎 ≻1 ( (1) = 𝑏) . Then, we divide P 1 (i.e., preference list of worker
 on eligible tasks in (1)) into regions as  1 ∪ { 𝑎 } ∪ 2 ∪ { 𝑏 } ∪ 3 such
hat

∀𝑥 ∈  1) ≻1 𝑎 ≻1 (∀𝑥 ∈  2) ≻1 𝑏 ≻1 (∀𝑥 ∈  3) (5)

s illustrated in Fig. 4 c. Note that the partner change of 1, from  (1) = 𝑏

o 

′(1) = 𝑎, will result in clearing all unhappy pairs in

 ⟨1 , 𝑥 ⟩ ∣ 𝑥 ∈  2 , ⟨1 , 𝑥 ⟩ ∈ 𝑈 ()} ,

f any, because for all 𝑥 ∈  2 , a ≻1 x . The set of other unhappy pairs
ormed as

 ⟨1 , 𝑥 ⟩ ∣ 𝑥 ∈  1 , ⟨1 , 𝑥 ⟩ ∈ 𝑈 ()}

ill remain unchanged in 

′, as ∀𝑥 ∈  1 , 𝑥 ≻1 (𝑎 = 

′(1)) . Lastly,
here cannot exist any unhappy pairs

 ⟨1 , 𝑥 ⟩ ∣ 𝑥 ∈  3 }

n neither  nor 

′, since (𝑏 =  (1)) ≻1 𝑥 and (𝑎 = 

′(1)) ≻1 𝑥, for all
 ∈  3 .

Although we know how a and b are ranked in P 1 , we do not have any
ata to infer that for P 2 . Therefore, we must consider both possibilities,
amely 𝑃 ′2 if a ≻2 b and 𝑃 ′′2 if b ≻2 a , which are also partitioned into regions
s shown in Fig. 4 d and e. Note that, regardless of 𝑃 ′2 or 𝑃 ′′2 , happifying
1, a ⟩ will not affect the unhappy pairs in

 ⟨2 , 𝑥 ⟩ ∣ 𝑥 ∈  1 , ⟨2 , 𝑥 ⟩ ∈ 𝑈 ()} ,

o that they will still be present in 

′, and

 ⟨2 , 𝑥 ⟩ ∣ 𝑥 ∈  3 , ⟨2 , 𝑥 ⟩ ∈ 𝑈 () ∪ 𝑈 (

′)} = ∅,

ue to same reasons pointed out above. As for  2 , we face two differ-
nt scenarios. Considering 𝑃 2 = 𝑃 ′2 , since happifying ⟨1, a ⟩ forces 2 to
atch with b , which it prefers less than its former partner a , a new set

f unhappy pairs

 ⟨2 , 𝑥 ⟩ ∣ 𝑥 ∈  2 , 2 ≻𝑥 

′(𝑥)}

ill arise in 

′. Contrary to this, matching 2 with b is for the benefit
f 2 if 𝑃 2 = 𝑃 ′′2 and will indirectly happify all the unhappy pairs, if any,
n

 ⟨2 , 𝑥 ⟩ ∣ 𝑥 ∈  2 , ⟨2 , 𝑥 ⟩ ∈ 𝑈 ()} .

The idea behind the happify procedure could also be applied to a
roup of unhappy pairs simultaneously. However, it would dramatically
ncrease the number of permutations for the matching of former partners
f nodes comprising the unhappy pairs. To address that, as it will be
xplained in the next section, we introduce a phased approach . Before
oing to its details, we next show how the set of unhappy pairs in 
nd 

′ are related.
Let U denote the subset of unhappy pairs in  that will be happified

nd 

′ be the resulting matching. The set of unhappy pairs, which were
ot present in  , however will arise in 

′ is

 𝑁

=

{ ⟨𝑥, 𝑦 ⟩ ∉ 𝑈 () ∣ 𝑦 ≻𝑥 

′(𝑥) , 𝑥 ≻𝑦 

′(𝑦)
}

, (6)

nd the set of unhappy pairs that were found in  , but will disappear
n 

′ is

 𝑂 =

{ ⟨𝑥, 𝑦 ⟩ ∈ 𝑈 () ∣ 

′(𝑥) ≻𝑥 𝑦 or 

′(𝑦) ≻𝑦 𝑥
}

. (7)

hen, the set of unhappy pairs in the new matching becomes

(

′) =

(
𝑈 () ∪ 𝑈 𝑁

) \
𝑈 𝑂

hus, to find the new set of unhappy pairs, 𝑈 (

′) , we need to identify
 N and U O , for which we just need to check whether the users (i.e.,
) whose partners have changed due to the happify procedure form an
nhappy pair with those (i.e., y) who are between  (𝑥) and 

′(𝑥) in
 x . Note that only the users that are in at least one of the pairs in U will
et matched with a different user. Thus, for each worker w and task t , for
hich  (𝑤) ≠ 

′(𝑤) and  (𝑡) ≠ 

′(𝑡) (i.e., there are at most 4 of them
ithin a single round of happify procedure), we need to check at most
 | − 2 and || − 2 worker-task pairs to find 𝑈 (

′) , respectively. Thus,
ach happify operation has  (𝑁) complexity, where 𝑁 = max { 𝑚, 𝑛 } .

.2.2. The algorithm

The algorithm aims to reduce the number of unhappy pairs greedily
hrough consecutive happify operations. To this end, we find the un-
appy pair which, when happified, reduces the total number of unhappy
airs the most and proceed with it. However, it is possible that none of
he happify operations at the current iteration is able to reduce the un-
appy pair count as the result of hitting a local minimum. To address
his, we introduce a hop-based approach and give chance to reduction
n the unhappy pair count up to k consecutive happify operations. That
s, even though the happify operation that results in the minimum un-
appy pair count increases the current unhappy pair count, the process
ontinues up to k tries expecting that there will be a decrease.

Another consideration is rather than happifying the unhappy pairs
ndividually, we can happify them in groups simultaneously. In that
ase, former partners of nodes comprising the unhappy pairs will have
ore options to be matched. For example, Fig. 5 shows some possible

e-matchings of former partners for different cases observed when two
nhappy pairs are happified simultaneously. While this extension will
ncrease the likelihood of reducing the unhappy pair count without af-
ecting the matching utility at each iteration, it increases the complexity
f the algorithm due to more permutations to be checked.

In order to address all these points, we propose a phased approach.
hat is, we begin by considering unhappy pairs individually in the hap-
ify procedure, and when this fails to provide further improvement, we
tart to happify them in groups of two (it can also be extended to groups
f three or more). However, with the phased approach, we consider the
op-based happify operations only for the last phase to avoid hitting the
ocal minimum earlier. Algorithm 1 shows a two-phase instance of the
roposed solution. The phases are iterated by the for loop in line 4. The
lgorithm makes use of a subroutine, happify , that takes a matching 
nd a set U of unhappy pairs in  as input and returns the set of all
ossible matchings that can arise by happifying U . A pseudo-code of the
appify procedure is given in Algorithm 2 .

Maximum to Stable Reduction algorithm, shown in Algorithm 1 , be-
ins with finding a maximum utility (i.e., cardinality) matching,  , via
ungarian Algorithm [47] . For the first phase, when 𝑖 = 1 , we find the

F. Yucel and E. Bulut Computer Networks 172 (2020) 107156

Fig. 5. Some possible happify attempts that can occur in Phase 2. Unhappy

pairs are shown with red dotted lines. Once the two unhappy pairs are matched

with each other in each case, remaining workers and tasks are matched with all

possible permutations.

b

t

(

s

r

t

i

p



u

t

p

s

i

e

4

d

w

m

t

c

t

u

i

Algorithm 1: Maximum to stable reduction ( ,  , k).

Input :  : The set of workers
 : The set of tasks
𝑘 : The number of hops

1  ← Find a maximum cardinality matching via Hungarian
algorithm between  and  .

2 𝑈 () ← Identify the unhappy pairs in  .
3  𝑏𝑒𝑠𝑡 ← 

4 for 𝑖 ← 1 to 2 do

5 if 𝑖 == 2 then

6 𝑗 ← 𝑘

7 else

8 𝑗 ← 1

9 while 𝑗 > 0 do

10 

′ ← NIL ⊳ |𝑈 (

′) | = ∞
11  ← {  ⊆ 𝑈 () ∶ | | = 𝑖 }
12 for 𝑈 ∈  do

13 for  𝑛𝑒𝑤 ∈ Happify( , 𝑈) do

14 if |𝑈 ( 𝑛𝑒𝑤) | < |𝑈 (

′) | then

15 

′ ←  𝑛𝑒𝑤

16 if |𝑈 (

′) | < |𝑈 ( 𝑏𝑒𝑠𝑡) | then

17 𝑗 ← 𝑘

18  𝑏𝑒𝑠𝑡 ← 

′

19 else

20 𝑗 ← 𝑗 − 1

21  ← 

′

22  ←  𝑏𝑒𝑠𝑡

23 return  𝑏𝑒𝑠𝑡

Algorithm 2: Happify ( , U).

Input :  : A matching between  and 
𝑈 : The set of unhappy pairs to be happified

1 Let  𝑆 be the set of all matchings that can be obtained by
happifying the unhappy pairs in 𝑈 (as shown in Figs. 4 and 5).

2 foreach 𝜇 ∈  𝑆 do

3 Find 𝑈 𝑁

and 𝑈 𝑂 by Eqs. (6) and (7).
4 |𝑈 (𝜇) | = |𝑈 () | + |𝑈 𝑁

| − |𝑈 𝑂 |
5 return  𝑆

Table 2

Matchings to be obtained by happifying each

unhappy pair in Fig. 6 a.

Unhappy pair 𝑈 ( 𝑛𝑒𝑤)

⟨1, a ⟩ cannot be happified ⟨2, c ⟩ ⟨1, a ⟩, ⟨3, d ⟩⟨3, d ⟩ cannot be happified ⟨5, c ⟩ ⟨1, a ⟩, ⟨2, c ⟩, ⟨3, a ⟩, ⟨3, d ⟩

r

d

p

m

t

u

p

o

u
est matching, 

′, amongst a set of matchings, each of which is ob-
ained from  by happifying a single, different unhappy pair in 𝑈 ()
i.e., the set  in line 12 consists of the subsets  of unhappy pairs with
ize 1). We update  𝑏𝑒𝑠𝑡 , which denotes the best matching that is ever
eached by the algorithm, if 

′ is better than  𝑏𝑒𝑠𝑡 . Note that since all
he matchings that are scanned by the algorithm are of maximum util-
ty, the goodness of a matching depends only on the number of unhappy
airs it has. The same process is then repeated for the new matching

′ in the same manner as long as an improvement in the number of
nhappy pairs is observed in at least one of k consecutive steps. Note
hat in the first phase, k is set to 1 as explained above. In the second
hase of our algorithm (i.e., 𝑖 = 2), it tries to relax two unhappy pairs
imultaneously (happify in line 13 returns all possible variations). If no
mprovement achieved in unhappy pair count by k hops, the algorithm
nds.

.2.3. A toy example

We provide a sample run of Algorithm 1 on the instance in Fig. 1 to
emonstrate how it gradually decreases the number of unhappy pairs
hile preserving the maximum system utility. Firstly, a maximum
atching is found via Hungarian algorithm, which, as shown in Fig. 6 a,

urns out to have 4 unhappy pairs, namely ⟨1, a ⟩, ⟨2, c ⟩, ⟨3, d ⟩, and ⟨5,
 ⟩. We try to happify each of these unhappy pairs individually and find
he one that leads to a better matching when happified. The new set of
nhappy pairs that could be obtained by happifying each unhappy pair
s given in Table 2 .
Note that we cannot happify ⟨1, a ⟩ and ⟨3, d ⟩, because their cur-
ent partners in the initial matching, (d , 5) for ⟨1, a ⟩, and (b , 1) for ⟨3,
 ⟩, consider each other unacceptable, therefore, we skip these unhappy
airs. Since the matching obtained by happifying ⟨2, c ⟩ has the mini-
um number of unhappy pairs among all, we proceed with it (Fig. 6 b)

o the second phase (any further try in phase 1 would not decrease the
nhappy pair count, as neither ⟨1, a ⟩ nor ⟨3, d ⟩ can be happified due to
artner incompatibility as above). In the second phase, since there are
nly two unhappy pairs in the matching, we will have only one subset of
nhappy pairs of size 2 that we will, if possible, happify simultaneously,

F. Yucel and E. Bulut Computer Networks 172 (2020) 107156

Fig. 6. Steps of running Algorithm 1 on the instance given in Fig. 1 . (a) the

initial maximum matching found via Hungarian algorithm; (b) the best matching

reached by the end of the first phase; (c) the best matching ever found by the

algorithm, also an optimal solution; (d) happifying ⟨2, c ⟩ on the matching in

Fig. 6 a; (e) happifying { ⟨1, a ⟩, ⟨3, d ⟩} on the matching in Fig. 6 b.

w

n

s

i

f

t

h

i

s

1

m

e

w

t

a

o

p

s

t

o

s

d

(

h

b

4

w

t

i

m

b

w

p

a

G

c

a

i







B

a

s

m

a

i





w

o

a

w

i

e

m

S

t

d

o

t

F

c

r

fi

b

b

A

o

A

t

i

t

b

a

s

p

w

t

n

i
hich is { ⟨1, a ⟩, ⟨3, d ⟩}. Indeed, these two unhappy pairs, which could
ot be happified separately, can be jointly happified as in Fig. 6 e. Be-
ides, this yields a matching with just one unhappy pair, ⟨5, e ⟩, as shown
n Fig. 6 c, which, having less than 2 unhappy pairs, cannot be improved
urthermore by the second phase. Even if we run the first phase again on
his final matching, it would make no difference since ⟨5, e ⟩ cannot be
appified due to partner incompatibility. Actually, this final matching is
dentical to the optimal solution found via ILP, and is the only optimal
olution possible.

As for the complexity of Algorithm 1 , since the loop starting at line
2 may run as many as the number of unhappy pairs in the current
atching, which could be at most mn , and the computation of the ben-

fit that can be obtained by happifying each unhappy pair takes  (𝑁) ,
here 𝑁 = max { 𝑚, 𝑛 } (see Section 4.2.1), the worst-case complexity of

he first phase of our algorithm is  (𝑁

5) . Luckily, this can be improved
s the calculation of the benefit that will come from happifying each set
f unhappy pairs, U , is independent from the others, hence can be run in
arallel. Thus, a time complexity of  (𝑁

3) is theoretically achievable. In
imulations, we obtain results showing this improvement. Similarly, the
ime complexity of the second phase is  (𝐵

3 𝑁) , where B is the number
f unhappy pairs in the final matching produced by the first phase. The
ame parallelization approach could also be applied here to further re-
uce the complexity to  (𝐵

2 + 𝐵𝑁) , however, as B is usually very small
as will be shown in simulations) compared to the initial number of un-
appy pairs that the first phase deals with, the complexity is determined
y the complexity of the first phase.
.3. Stable to maximum convergence algorithm

In the second algorithm, we propose a reversed approach. That is,
e first aim to obtain an assignment based on the preferences of both

ask requesters and workers so that every user is happy (i.e., unhappiness

ndex is 0). Then, we update it iteratively to obtain the assignment with
aximum system utility. Note that this can increase unhappiness index

ut we aim to minimize it as much as possible.
The iterative process goes through finding special paths between

orkers and tasks at every step that will increase the number of assigned
airs with respect to the current assignment. We simply call these paths
s beneficial paths. Given a matching  defined on the bipartite graph
 (defined in (3)), a path 𝑝 = { 𝑝 1 , 𝑝 2 , … 𝑝 2 𝑗+2 } is considered a benefi-
ial path if its both endpoints are not matched with any node in  ,

nd its edges alternate between the edges in  and the other edges not
ncluded  . More formally,

 (𝑝 1) = ∅,  (𝑝 2 𝑗+2) = ∅

 (𝑝 2 𝑖) = 𝑝 2 𝑖 +1 , and (𝑝 2 𝑖 , 𝑝 2 𝑖 +1) ∈  ∀𝑖 ∈ [1 , … , 𝑗]

 (𝑝 2 𝑖 −1) ≠ 𝑝 2 𝑖 , but (𝑝 2 𝑖 −1 , 𝑝 2 𝑖) ∈ 𝐺.𝐸 ⧵ ∀𝑖 ∈ [1 , … , 𝑗]

y definition, note that there cannot be a beneficial path of even length,
nd for a path 𝑝 = { 𝑝 1 , 𝑝 2 } of length 1 to be beneficial, both p 1 and p 2
hould be unmatched in  .

The proposed algorithm is given in Algorithm 3 . We first find a stable
atching  between the given workers and tasks using the deferred

cceptance mechanism in Gale–Shapley algorithm [21] . Then, in each
teration of the while loop in line 2, we try to find a beneficial path p in

 . If we find one, we update  as follows

 ← ( ⧵ 𝐸(𝑝)) ∪ (𝐸(𝑝) ⧵) ,

here E (p) is the set of edges in p . Note that in a beneficial path p
f length 2 𝑗 + 1 (with 2 𝑗 + 2 nodes), there are j edges that are in  ,

nd 𝑗 + 1 edges that are not. Thus, replacing the former j edges in 
ith the latter 𝑗 + 1 edges will increase the system utility by 1, which

s performed between lines 9–12. However, if we cannot find a ben-
ficial path, it means  has reached the maximum possible assign-
ent [48] and will be returned as the final matching.

The procedure of finding a beneficial path is shown in Algorithm 4 .
tarting from each worker w not matched currently in  , we attempt
o find a beneficial path (lines 4–8 in Algorithm 3). If w can be matched
irectly with an unmatched task in P w , a beneficial path of length 1 is
btained immediately (lines 2–6 in Algorithm 4). Otherwise, the tasks
hat are currently matched in  are processed in their preference order.
or each such task t , a new potential path is created by extending the
urrent path with task t and its partner  (𝑡) , and the same process is
epeated recursively (lines 7–12 in Algorithm 4).

We run Algorithm 3 on the same toy example given in Fig. 1 . We
rst obtain the stable matching given in Fig. 7 a. Then, we look for a
eneficial path in this matching. The process in Algorithm 4 finds the
eneficial path 4 → e → 5 → b (of length 3). Executing the lines 10–12 in
lgorithm 3 will result in the optimal solution (with unhappiness index

f 1 caused by (5,e)) shown in Fig. 7 c. Since this matching is maximum,
lgorithm 3 will return it as the final matching. However, note that

here can be multiple beneficial paths in the initial stable matching, as
llustrated in Fig. 7 , and any of them might be returned first based on
he implementation. For example, assume this time that we find the
eneficial path 4 → c → 2 → e → 5 → a → 1 → d → 3 → b . It gives us
n assignment with unhappiness index of 4 and hence is not an optimal
olution. In our implementation, we visit the neighbors greedily in their
reference orders to find a beneficial path with the expectation that it
ill generate smaller unhappiness index .

As for the complexity of Algorithm 3 , the Gale–Shapley algorithm
akes  (𝑁

2) , where 𝑁 = max { 𝑚, 𝑛 } . There can be at most  (𝑁) cardi-
ality difference between a stable matching and a maximum matching
n a bipartite graph. Since finding a beneficial path, as well as updating

F. Yucel and E. Bulut Computer Networks 172 (2020) 107156

Fig. 7. Two example beneficial paths (shown with dotted lines) in the initial stable matching (shown with solid lines) generated in the first line of Algorithm 3 when

it is run on the example illustrated in Fig. 1 . (a) Beneficial path (4 → e → 5 → b) found by Algorithms 3 and 4 ; (b) An alternative beneficial path

(4 → c → 2 → e → 5 → a → 1 → d → 3 → b) that could be found if the search was done without considering preference orders; (c) Matching obtained by

Algorithm 3 using the beneficial path shown in (a). The only remaining unhappy pair is shown with a dashed line.

Algorithm 3: Stable to maximum convergence ( , ).

Input :  : The set of workers
 : The set of tasks

1  ← Find a stable matching via Gale–Shapley algorithm between
 and  .

2 while true do

3 set all 𝑡 ∈  as unvisited
4 foreach unmatched 𝑤 ∈  do

5 𝑝 = { 𝑤 }
6 𝑝 ← FindBeneficialPath(𝑝)

7 if 𝑝 .isBeneficialPath then

8 break

9 if a beneficial path 𝑝 = { 𝑝 1 , 𝑝 2 , .., 𝑝 2 𝑗+2 } is found then

10 for 𝑖 ← 1 to 𝑗 + 1 do

11  (𝑝 2 𝑖 −1) ← 𝑝 2 𝑖
12  (𝑝 2 𝑖) ← 𝑝 2 𝑖 −1

13 else

14 break

15 return 

Algorithm 4: FindBeneficialPath(p).

Input : 𝑝 : Current path
1 𝑤 ← 𝑝.𝑙𝑎𝑠𝑡 () ⊳ last node on current path

2 foreach 𝑡 ∈ 𝑃 𝑤 do

3 if  (𝑡) = ∅ then

4 𝑝 ← 𝑝 ∪ { 𝑡 }
5 𝑝 . isBeneficialPath ← true

6 return 𝑝

7 foreach 𝑡 ∈ 𝑃 𝑤 in the preference order do

8 if 𝑡 is unvisited then

9 set 𝑡 as visited
10 𝑝 ′ ← FindBeneficialPath(𝑝 ∪ { 𝑡,  (𝑡)})
11 if 𝑝 ′.FindBeneficialPath then

12 return 𝑝 ′

t

a

5

r

5

t

o

a

r

s

o
t

w

a

n

c

fi

t

a

c

c

p

s

s

s

M

r

a

o

5

p
he matching accordingly, has  (𝑁

2) complexity (as an edge is visited
t most once), the total running time of Algorithm 3 becomes  (𝑁

3) .

. Simulation results

In this section, we evaluate the performance of the proposed algo-
ithms using a real world dataset.

.1. Settings

In order to have a realistic set of user locations, we have used a taxi
rip dataset [49] in a city (i.e., New York City (NYC)) similar to previ-
us work [50–52] . Previous work mostly consider taxi driver locations
s workers and assign task locations randomly. In order to have more
ealistic task locations as well, we have used the pick up locations of pas-
engers as task locations. Specifically, we generate the user set for each
f the 100 runs of an experiment by selecting the taxis that dropped off
heir passengers between 1–2 pm on a randomly selected day in 2015 as
orkers at the corresponding drop-off locations, and by creating a task
t the pick up location of each passenger who requested a taxi in the
ext hour of the same day. Then, from this set we randomly sample a
ertain number of workers and tasks according to the experiment speci-
cations. Fig. 8 shows a distribution of different number of workers and
asks on the NYC map.

In the first part of the simulations, we use 50 workers and 50 tasks
s smaller and equal set sizes represent the hardest scenario. This is be-
ause, as it is shown in Fig. 3 , the largest difference in the matching
ardinality between stable and maximum system utility matching hap-
ens when /  = 1. That is, the trade-off between user satisfaction and
ystem utility becomes more important and harder to handle when the
ize of the worker and task sets are equal. Nonetheless, in the following
imulations, we also examine the scenarios with different /  values.
oreover, we provide results regarding the scalability of proposed algo-

ithms with up to 1000 workers/tasks. The preference lists of workers
nd tasks are defined either locally (i.e., based on the ascending order
f distances) or randomly, as described in Section 3 .

.2. Results

We first look at the effectiveness of the proposed approaches by com-
aring them with ILP results in terms of unhappiness index. Throughout

F. Yucel and E. Bulut Computer Networks 172 (2020) 107156

Fig. 8. The distribution of workers (circles)

and tasks (diamonds) on the NYC map: (i) 50

(ii) 100 and (iii) 1000 workers/tasks.

Fig. 9. Performance comparison of the heuristic algorithms with optimal re-

sults (ILP) and maximum system utility matching in terms of unhappiness index

(UI) in local (upper) and random (lower) settings, respectively. Both heuristics

achieve UI values that are very close to optimal UI and significantly smaller

than that of the maximum system utility matching. It is also noteworthy that

the best-performing heuristic is different in local and random settings.

t

b

r

f

S

r

t

i

g

r

M

u

i

f

s

g |

d

a

c

u

r

r

a

o

t

p

u |

t

u

w

t

P

A

p

t

t

d

s

n

i

i

t

I |

4 It refers to the solution found by Hungarian algorithm [47] without taking

into account the preferences of the users.
he section, we use the notation Ph x -Hop k to denote the Maximum to Sta-

le reduction algorithm with x phases in which the first (𝑥 − 1) phases
un only 1 hop and the x th phase runs up to k hops. Fig. 9 shows the per-
ormance comparison of Ph 1 -Hop 1 , Ph 2 -Hop 1 , Stable to Max and Max
ystem Utility 4 algorithms with ILP results in local and random settings,
espectively. First of all, note that, as expected, the unhappiness index in
he initial maximum matching grows linearly with increasing average el-
gible worker/task set size (simply denoted as ||). Ph 1 -Hop 1 algorithm
ives a very close result to ILP, and Ph 2 -Hop 1 can further improve the
esult. The improvement is, however, more in random setting. Stable to

ax algorithm also performs differently. It performs better (i.e., fewer
nhappy pairs) than other algorithms in random setting, while it results
n more unhappiness index in local setting. With larger ||, it also per-
orms better in local setting and always reaches complete perfect user
atisfaction and stability with unhappiness index zero. The maximum
ap between the proposed algorithms and the ILP results occurs with
| around 10-20 and gets smaller as it increases or decreases.

Next, in Fig. 10 , we look at the impact of the number of hops and
ifferent phases on the performance of the Maximum to Stable reduction
lgorithm variants in both local and random settings. Note that, in lo-
al setting, the unhappiness index in the optimal assignment increases
ntil || is 15 and then starts to decline, while it peaks at around 4-5 in
andom setting. Besides, a sharper decrease is observed after the peak in
andom setting compared to local setting. The results of our algorithms
re also in accordance with these trends in both settings.

As for the usefulness of Phase 2 or 3, we observe that more phases
ffer more benefit in random setting compared to local setting. However,
here is not much benefit in running Phase 2 (or Phase 3) before the
eak in neither settings. This is because the likelihood of finding a set of
nhappy pairs that can be happified simultaneously is quite low when
| is small given that happifying multiple unhappy pairs at the same
ime necessitates that the current partners of the nodes forming those
nhappy pairs have each other in their eligibility lists.

Note that we also run a special version called Only Ph 2 -Hop 5 in
hich Phase 2 is directly run by skipping Phase 1. This was to show

he benefit of phased approach as it can provide results as good as Only

h 2 -Hop 5 with a much less running time (as it is shown in Fig. 12).
nother point is that the difference between the performance of same
hases with different number of hops is more profound in random set-
ing than it is in local setting. In fact, as it is shown in Fig. 11 , running
he algorithm with higher number of hops reduces the unhappiness in-
ex by 1.12 per hop in random setting and by only 0.52 per hop in local
etting, on average. Nonetheless, increasing the number of hops does
ot seem to be very beneficial after a certain point (around 5–10 hops)
n either setting.

In Fig. 12 , we compare the running time of the proposed algorithms
n local setting (since the results are almost identical in random setting,
he corresponding figure is not shown here for brevity). Unsurprisingly,
LP has a very long running time (e.g., approximately an hour when
| = 50), which makes it infeasible to find the optimal solutions for ap-

F. Yucel and E. Bulut Computer Networks 172 (2020) 107156

Fig. 10. The impact of number of hops and different phases on the performance

of the Maximum to Stable Reduction algorithm in local (upper) and random

(lower) settings, respectively. In both settings, we observe an improvement in

the performance with increasing number of hops and additional phases.

p

H

s

p

a

w

t

F

t

P

t

F

1

a

2

w

S

i

b

t

b

a

t

Fig. 11. The change in the unhappiness index (in Ph 1 -Hop #) with different

number of hops in local (upper) and random (lower) setting, respectively, for

different eligible worker/task sizes (||). Increasing the number of hops notably

improves the performance of the algorithm, and the improvement is usually

more profound in random setting.

Fig. 12. Comparison of running times of proposed algorithms. Regardless of the
lications that demand timely response. The running time of Only Ph 2 -

op 5 also increases substantially as the average eligible worker/task
et size, ||, grows, which actually confirms the idea behind phased ap-
roach. Indeed, all the other variations of Maximum to Stable reduction
lgorithm and the Stable to Max algorithm take less than 4 seconds even
hen all workers are eligible for all tasks. It should also be noted that

he running time is not much affected by number of phases and hops.
or example, Ph 1 -Hop 1 and Ph 2 -Hop 1 take almost equal time despite
he fact that Ph 2 -Hop 1 involves Ph 1 -Hop 1 in it and additionally runs
hase 2 of the algorithm. This is due to the fact that the large part of
he reduction in the number of unhappy pairs occurs during Phase 1.
or instance, in Fig. 9 , when the average number of eligible workers is
0 in local setting, Phase 1 decreases the number of unhappy pairs by
round 155 (from 185 to 30), while Phase 2 decreases it by only about
 and hence takes a lot less.

In Fig. 13 , we analyze the performance of the proposed algorithms
hen there are unequal number of workers and tasks in the system.
pecifically, we calculate the difference between the unhappiness index
n the optimal (i.e., ILP) matching and in the final matching produced
y Ph 2 -Hop 1 (others perform similar). We observe that the difference in
he unhappiness index gets smaller as the disparity between the num-
er of workers and tasks grows. 5 This is also consistent with the results
5 For unequal number of tasks and workers, there is a limit on the maximum

verage eligible worker/task set size achievable. Thus, data is available up to

his maximum.

average number of eligible workers, ILP has the worst running time, and Stable

to Max algorithm has the best running time (which are in accordance with the

theoretical time complexities of the algorithms).

F. Yucel and E. Bulut Computer Networks 172 (2020) 107156

Fig. 13. The difference in the unhappiness index between ILP and Ph 2 -Hop 1 for

different number of workers/tasks ratios. Note that when || ≈ | |, the average

loss in system utility with stable matchings is larger as shown in Fig. 3 , implying

a harder scenario for trade-off between system utility and user satisfaction.

Fig. 14. The ratio of unhappiness index (UI) to 𝑁 = || = | | in Ph 1 -Hop 1 and

Stable to Max algorithms, respectively, for different number of workers and tasks

(in local and random setting, respectively). The inner graphs show the difference

of UI / N in Max System Utility matching from the compared algorithms when

𝑁 = 1024 .

Fig. 15. The percentage of the unhappiness index in the Ph 1 -Hop 1 and Stable to

Max algorithms, respectively, to the unhappiness index in the maximum system

utility based assignment for different number of workers and tasks (in local and

random setting, respectively).

i

a

n

t

b

h

S

i

t

o

T

d

a

a

a

n

m

w

g

t

w

b

n Fig. 3 , since the decrease in system utility is maximum when there
re similar number of workers and tasks, which indicates that a larger
umber of users’ happiness will have to be sacrificed in order to reach
he maximum system utility, in general.

Next, we look at the scalability results using both a Maximum to Sta-

le algorithm and Stable to Maximum algorithm. More specifically, we
ave used Ph 1 -Hop 1 algorithm in local case (as it performs better than
table to Maximum as shown in Fig. 9) and Stable to Maximum algorithm
n random case. Fig. 14 shows the ratio of the unhappiness index to
he total number of workers/tasks (N) for different but equal number
f workers and tasks with Ph 1 -Hop 1 and Stable to Maximum algorithms.
he results show that the proposed algorithms scale very well and pro-
uce only a few additional unhappy pairs per user for larger networks,
nd that they greatly outperform the Max System Utility matching by
chieving up to more than 300 less unhappy pairs per user. Moreover,
s shown in Fig. 15 when we calculate the percentage of the unhappi-
ess index compared to the unhappiness index in the Max System Utility
atching, we obtain a similar percentage regardless of the number of
orkers and tasks with Stable to Maximum algorithm. With Ph 1 -Hop 1 al-
orithm, the percentage shifts a bit with increasing user count, however
he peak stays similar. It is also worth noting that as the average eligible
orker/task set size, ||, increases, we achieve a better performance in
oth scenarios.

F. Yucel and E. Bulut Computer Networks 172 (2020) 107156

Fig. 16. The running time comparison of serial and parallel Ph 1 -Hop 1 algo-

rithms and the Stable to Max algorithm. The running time of the parallel Ph1-

Hop1 is a few orders of magnitude shorter than its serial counterpart.

i

w

f

V

H

S

a

w

a

(

S

6

o

t

a

f

r

u

a

i

a

f

M

i

b

i

t

t

m

a

t

p

D

i

t

C

I

&

o

S

A

S

S

t

R

[

[

[

[

[

[

[

[

[

[

[

[

[

In order to show the impact of parallelizing the first phase of Max-

mum to Stable reduction algorithm (which is expected to reduce the
orst case complexity from  (𝑁

5) to  (𝑁

3)), we obtain results with dif-
erent number of workers and tasks in a GPU server with NVIDIA Tesla
100 PCIe 32GB. Fig. 16 shows the comparison of running times of Ph 1 -

op 1 algorithm in both serial and parallel as well as the running time of
table to Maximum algorithm (when all workers are eligible for all tasks
nd in random setting as it takes the longest). The results show that
e can obtain two orders of magnitude saving with parallelization. Par-
llelized Ph 1 -Hop 1 algorithm scales similar to Stable to Max algorithm
slightly higher due to the larger constant factor), however Maximum to

table algorithms in general perform better in local setting.

. Conclusion

In this paper, we study the problem of maximizing the system utility
f task assignment between workers and tasks in MCS while considering
he satisfaction and preferences of workers and task requesters as much
s possible. We propose two different heuristic based algorithms. In the
ormer, we first obtain the maximum system utility matching and try to
educe the unhappy pairs iteratively through a process we call happify
ntil it cannot do more. In the latter, we first obtain a stable matching
nd converge the graph to maximum system utility matching by find-
ng beneficial paths and reassigning the workers and tasks on this path
ccordingly. The results show that the proposed algorithms run very
ast compared to ILP solution and can achieve close to optimal results.
oreover, while Maximum to Stable reduction algorithm performs better

n local setting, the Stable to Maximum convergence algorithm performs
etter in random setting, complementing each other. Note that the find-
ngs in this paper can be applied to any matching problem in which
he overall system utility has a higher priority than the happiness of
he users but both are targeted. In our future work, we will study the
any-to-one assignment scenario, in which multiple workers could be

ssigned to a single task while staying in the budget constraints of the
ask. Note that this will require redefinition of stability and the happy
airs; thus, it will require new solutions.

eclaration of Competing Interests

The authors declare that they have no known competing financial
nterests or personal relationships that could have appeared to influence
he work reported in this paper.
RediT authorship contribution statement

Fatih Yucel: Conceptualization, Methodology, Software, Validation,
nvestigation, Data curation, Writing - original draft, Writing - review
 editing, Visualization. Eyuphan Bulut: Conceptualization, Methodol-
gy, Investigation, Writing - original draft, Writing - review & editing,
upervision, Funding acquisition.

cknowledgment

This material is based upon work supported by the U.S. National
cience Foundation (NSF) under Grant CNS1647217 .

upplementary material

Supplementary material associated with this article can be found, in
he online version, at doi: 10.1016/j.comnet.2020.107156 .

eferences

[1] F. Khan , A.U. Rehman , J. Zheng , M.A. Jan , M. Alam , Mobile crowdsensing: a sur-
vey on privacy-preservation, task management, assignment models, and incentives
mechanisms, Future Gener. Comput. Syst. 100 (2019) 456–472 .

[2] S. Hu , L. Su , H. Liu , H. Wang , T.F. Abdelzaher , Smartroad: smartphone-based crowd
sensing for traffic regulator detection and identification, ACM Trans. Sensor Netw.
(TOSN) 11 (4) (2015) 55 .

[3] Y. Cheng , X. Li , Z. Li , S. Jiang , Y. Li , J. Jia , X. Jiang , Aircloud: a cloud-based air-qual-
ity monitoring system for everyone, in: Proceedings of the 12th ACM Conference on
Embedded Network Sensor Systems, ACM, 2014, pp. 251–265 .

[4] M. Xiao , J. Wu , L. Huang , Y. Wang , C. Liu , Multi-task assignment for crowdsensing
in mobile social networks, in: IEEE INFOCOM, IEEE, 2015, pp. 2227–2235 .

[5] L. Wang , D. Yang , X. Han , T. Wang , D. Zhang , X. Ma , Location privacy-preserving
task allocation for mobile crowdsensing with differential geo-obfuscation, in: Pro-
ceedings of the 26th International Conference on World Wide Web, International
World Wide Web Conferences Steering Committee, 2017, pp. 627–636 .

[6] J. Li , Z. Cai , J. Wang , M. Han , Y. Li , Truthful incentive mechanisms for geographical
position conflicting mobile crowdsensing systems, IEEE Trans. Comput. Soc. Syst. 5
(2) (2018) 324–334 .

[7] X. Wang , R. Jia , X. Tian , X. Gan , Dynamic task assignment in crowdsensing with
location awareness and location diversity, in: Proc. of IEEE INFOCOM, 2018,
pp. 2420–2428 .

[8] S. He , D. Shin , J. Zhang , J. Chen , Near-optimal allocation algorithms for location-de-
pendent tasks in crowdsensing, IEEE Trans. Veh. Technol. 66 (4) (2017) 3392–3405 .

[9] Y. Liu , B. Guo , Y. Wang , W. Wu , Z. Yu , D. Zhang , Taskme: multi-task allocation in
mobile crowd sensing, in: Proceedings of the 2016 ACM International Joint Confer-
ence on Pervasive and Ubiquitous Computing, ACM, 2016, pp. 403–414 .

10] J. Wang , Y. Wang , D. Zhang , F. Wang , H. Xiong , C. Chen , Q. Lv , Z. Qiu , Multi-task al-
location in mobile crowd sensing with individual task quality assurance, IEEE Trans.
Mob. Comput. 17 (9) (2018) 2101–2113 .

11] M. Abououf , R. Mizouni , S. Singh , H. Otrok , A. Ouali , Multi-worker multi-task se-
lection framework in mobile crowd sourcing, J. Netw. Comput. Appl. 130 (2019)
52–62 .

12] T. Liu , Y. Zhu , L. Huang , Tgba: a two-phase group buying based auction mechanism
for recruiting workers in mobile crowd sensing, Comput. Netw. 149 (2019) 56–75 .

13] J. Nie , J. Luo , Z. Xiong , D. Niyato , P. Wang , A stackelberg game approach toward
socially-aware incentive mechanisms for mobile crowdsensing, IEEE Trans. Wirel.
Commun. 18 (1) (2018) 724–738 .

14] W. Gong , B. Zhang , C. Li , Location-based online task assignment and path planning
for mobile crowdsensing, IEEE Trans. Veh. Technol. 68 (2) (2018) 1772–1783 .

15] J. Wang , J. Tang , G. Xue , D. Yang , Towards energy-efficient task scheduling on
smartphones in mobile crowd sensing systems, Comput. Netw. 115 (2017) 100–109 .

16] T. Hu , M. Xiao , C. Hu , G. Gao , B. Wang , A QoS-sensitive task assignment algorithm
for mobile crowdsensing, Pervasive Mob. Comput. 41 (2017) 333–342 .

17] W. Li , L. Wang , Y. Gu , R. Li , M. Song , Z. Han , Stable multiple activity matching
based content sharing for mobile crowd sensing, in: IEEE International Conference
on Comm. (ICC), 2018, pp. 1–6 .

18] Y. Chen , X. Yin , Stable job assignment for crowdsourcing, in: GLOBECOM 2017-2017
IEEE Global Communications Conference, IEEE, 2017, pp. 1–6 .

19] X. Yin , Y. Chen , B. Li , Task assignment with guaranteed quality for crowdsourc-
ing platforms, in: Quality of Service (IWQoS), 2017 IEEE/ACM 25th International
Symposium on, IEEE, 2017, pp. 1–10 .

20] M. Abououf , S. Singh , H. Otrok , R. Mizouni , A. Ouali , Gale–Shapley matching game
selection —A framework for user satisfaction, IEEE Access 7 (2019) 3694–3703 .

21] D. Gale , L. Shapley , College admissions and stability of marriage, Am. Math. Mon.
69 (1962) 9–15 .

22] F. Yucel, E. Bulut, Joint optimization of system and user ori-
ented task assignment in mobile crowdsensing, 2019, (in Global
Telecommunications Conference (Globecom), 2019. [Online] Available:
http://www.people.vcu.edu/~ebulut/Globecom2019-matching.pdf).

https://doi.org/10.13039/501100001809
https://doi.org/10.1016/j.comnet.2020.107156
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0001
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0001
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0001
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0001
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0001
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0001
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0002
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0002
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0002
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0002
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0002
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0002
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0003
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0003
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0003
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0003
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0003
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0003
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0003
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0003
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0004
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0004
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0004
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0004
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0004
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0004
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0005
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0005
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0005
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0005
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0005
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0005
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0005
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0006
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0006
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0006
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0006
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0006
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0006
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0007
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0007
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0007
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0007
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0007
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0008
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0008
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0008
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0008
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0008
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0009
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0009
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0009
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0009
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0009
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0009
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0009
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0010
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0010
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0010
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0010
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0010
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0010
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0010
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0010
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0010
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0011
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0011
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0011
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0011
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0011
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0011
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0012
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0012
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0012
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0012
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0013
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0013
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0013
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0013
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0013
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0013
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0014
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0014
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0014
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0014
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0015
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0015
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0015
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0015
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0015
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0016
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0016
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0016
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0016
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0016
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0016
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0017
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0017
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0017
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0017
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0017
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0017
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0017
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0018
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0018
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0018
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0019
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0019
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0019
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0019
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0020
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0020
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0020
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0020
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0020
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0020
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0021
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0021
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0021
http://www.people.vcu.edu/~ebulut/Globecom2019-matching.pdf

F. Yucel and E. Bulut Computer Networks 172 (2020) 107156

[

[

[

[

[

[

[

[

[

[

[

[
[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

23] K. Tuite , N. Snavely , D. Hsiao , N. Tabing , Z. Popovic , PhotoCity: training experts
at large-scale image acquisition through a competitive game, in: Proceedings of the
International Conference on Human Factors in Computing Systems, CHI 2011, Van-
couver, BC, Canada, May 7–12, 2011, 2011, pp. 1383–1392 .

24] P. Mohan , V.N. Padmanabhan , R. Ramjee , Nericell: rich monitoring of road and
traffic conditions using mobile smartphones, in: Proceedings of the 6th International
Conference on Embedded Networked Sensor Systems, SenSys 2008, Raleigh, NC,
USA, November 5–7, 2008, 2008, pp. 323–336 .

25] T. Luo , S.S. Kanhere , J. Huang , S.K. Das , F. Wu , Sustainable incentives for mobile
crowdsensing: auctions, lotteries, and trust and reputation systems, IEEE Commun.
Mag. 55 (3) (2017) 68–74 .

26] Z. Duan , W. Li , Z. Cai , Distributed auctions for task assignment and scheduling
in mobile crowdsensing systems, in: 37th IEEE International Conference on Dis-
tributed Computing Systems, ICDCS 2017, Atlanta, GA, USA, June 5–8, 2017, 2017,
pp. 635–644 .

27] Y. Wen , J. Shi , Q. Zhang , X. Tian , Z. Huang , H. Yu , Y. Cheng , X. Shen , Quality–
driven auction-based incentive mechanism for mobile crowd sensing, IEEE Trans.
Veh. Technol. 64 (9) (2015) 4203–4214 .

28] S. Chen , M. Liu , X. Chen , A truthful double auction for two-sided heterogeneous
mobile crowdsensing markets, Comput. Commun. 81 (2016) 31–42 .

29] Z. Zheng , F. Wu , X. Gao , H. Zhu , S. Tang , G. Chen , A budget feasible incentive mecha-
nism for weighted coverage maximization in mobile crowdsensing, IEEE Trans. Mob.
Comput. 16 (9) (2016) 2392–2407 .

30] M. Xiao , J. Wu , S. Zhang , J. Yu , Secret-sharing-based secure user recruitment proto-
col for mobile crowdsensing, in: IEEE INFOCOM 2017-IEEE Conference on Computer
Communications, 2017, pp. 1–9 .

31] L. Wang , D. Yang , X. Han , T. Wang , D. Zhang , X. Ma , Location privacy-preserving
task allocation for mobile crowdsensing with differential geo-obfuscation, in: Pro-
ceedings of the 26th International Conference on World Wide Web, International
World Wide Web Conferences Steering Committee, 2017, pp. 627–636 .

32] Z. Wang , J. Hu , R. Lv , J. Wei , Q. Wang , D. Yang , H. Qi , Personalized privacy-pre-
serving task allocation for mobile crowdsensing, IEEE Trans. Mob. Comput. 18 (6)
(2018) 1330–1341 .

33] H. Cai , Y. Zhu , Z. Feng , H. Zhu , J. Yu , J. Cao , Truthful incentive mechanisms for
mobile crowd sensing with dynamic smartphones, Comput. Netw. 141 (2018) 1–16 .

34] National resident matching program, 2018, http://www.nrmp.org .
35] Z. Zhou , C. Gao , C. Xu , T. Chen , D. Zhang , S. Mumtaz , Energy-efficient stable match-

ing for resource allocation in energy harvesting-based device-to-device communica-
tions, IEEE Access 5 (2017) 15184–15196 .

36] T. Wang , F. Liu , J. Guo , H. Xu , Dynamic SDN controller assignment in data center
networks: stable matching with transfers, in: INFOCOM 2016-The 35th Annual IEEE
International Conference on Computer Communications, 2016, pp. 1–9 .

37] R. Zhang, X. Cheng, L. Yang, Flexible energy management protocol for coopera-
tive EV-to-EV charging, IEEE Trans. Intell. Transp. Syst. 20 (1) (2019) 172–184,
doi: 10.1109/TITS.2018.2807184 .

38] D. Gale , M. Sotomayor , Some remarks on the stable matching problem, Discrete
Appl. Math. 11 (3) (1985) 223–232 .

39] K. Iwama , S. Miyazaki , H. Yanagisawa , Approximation algorithms for the sex-equal
stable marriage problem, ACM Trans. Algorithms 7 (1) (2010) 2:1–2:17 .

40] R.W. Irving , P. Leather , D. Gusfield , An efficient algorithm for the “optimal ” stable
marriage, J. ACM 34 (3) (1987) 532–543 .

41] D. Gusfield , Three fast algorithms for four problems in stable marriage, SIAM J.
Comput. 16 (1) (1987) 111–128 .

42] R.W. Irving , P. Leather , The Complexity of Counting Stable Marriages, SIAM J. Com-
put. 15 (3) (1986) 655–667 .
43] P. Biró, D. Manlove, S. Mittal, Size versus stability in the marriage problem, Theor.
Comput. Sci. 411 (16-18) (2010) 1828–1841, doi: 10.1016/j.tcs.2010.02.003 .

44] P. Floréen, P. Kaski, V. Polishchuk, J. Suomela, Almost stable matchings by
truncating the Gale-Shapley algorithm, Algorithmica 58 (1) (2010) 102–118,
doi: 10.1007/s00453-009-9353-9 .

45] R. Ostrovsky, W. Rosenbaum, Fast distributed almost stable matchings, in: Pro-
ceedings of the 2015 ACM Symposium on Principles of Distributed Computing,
PODC 2015, Donostia-San Sebastián, Spain, July 21–23, 2015, 2015, pp. 101–108,
doi: 10.1145/2767386.2767424 .

46] C. Fiandrino , B. Kantarci , F. Anjomshoa , D. Kliazovich , P. Bouvry , J. Matthews ,
Sociability-driven user recruitment in mobile crowdsensing internet of things plat-
forms, in: 2016 IEEE Global Communications Conference (GLOBECOM), IEEE, 2016,
pp. 1–6 .

47] H.W. Kuhn, The hungarian method for the assignment problem, in: 50 Years of In-
teger Programming 1958–2008 - From the Early Years to the State-of-the-Art, 2010,
pp. 29–47, doi: 10.1007/978-3-540-68279-0_2 .

48] T.H. Cormen , C.E. Leiserson , R.L. Rivest , C. Stein , Introduction to Algorithms, third
ed., MIT Press, 2009 .

49] Taxi and limousine commission (tlc) trip record data., 2019, (NYC Taxi Limousine
Commission), https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data .

50] E. Wang , Y. Yang , J. Wu , W. Liu , X. Wang , An efficient prediction-based user recruit-
ment for mobile crowdsensing, IEEE Trans. Mob. Comput. 17 (1) (2017) 16–28 .

51] Y. Yang, W. Liu, E. Wang, J. Wu, A prediction-based user selection framework for het-
erogeneous mobile crowdsensing, IEEE Trans. Mob. Comput. 18 (11) (2019) 2460–
2473, doi: 10.1109/TMC.2018.2879098 .

52] G. Gao , M. Xiao , J. Wu , L. Huang , C. Hu , Truthful incentive mechanism for nonde-
terministic crowdsensing with vehicles, IEEE Trans. Mob. Comput. 17 (12) (2018)
2982–2997 .

Fatih Yucel (M’17) received B.S. degree in Gazi University in
Turkey in 2017. He is now doing Ph.D. in the Computer Sci-
ence Department of Virginia Commonwealth University under
the supervision of Dr. Eyuphan Bulut. He joined MoWiNG lab
in Fall 2017. He is working on the development of efficient
algorithms for Internet of Things (IoT) and mobile crowdsens-
ing. He is a student member of IEEE.

Eyuphan Bulut (M’08) received the Ph.D. degree in the Com-
puter Science department of Rensselaer Polytechnic Institute
(RPI), Troy, NY, in 2011. He then worked as a senior engi-
neer in Mobile Internet Technology Group (MITG) group of
Cisco Systems in Richardson, TX for 4.5 years. He is now an
Assistant Professor with the Department of Computer Science,
Virginia Commonwealth University (VCU), Richmond, VA. His
research interests include mobile and wireless computing, net-
work security and privacy, mobile social networks and crowd-
sensing. Dr. Bulut is an Associate Editor in IEEE Access. He has
been also serving in the organizing committee of the LCN and
in the technical program committee of several conferences. He
is a member of IEEE and ACM.

http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0022
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0022
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0022
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0022
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0022
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0022
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0023
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0023
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0023
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0023
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0024
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0024
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0024
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0024
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0024
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0024
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0025
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0025
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0025
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0025
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0026
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0026
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0026
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0026
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0026
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0026
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0026
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0026
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0026
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0027
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0027
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0027
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0027
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0028
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0028
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0028
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0028
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0028
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0028
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0028
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0029
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0029
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0029
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0029
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0029
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0030
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0030
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0030
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0030
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0030
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0030
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0030
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0031
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0031
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0031
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0031
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0031
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0031
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0031
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0031
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0032
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0032
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0032
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0032
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0032
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0032
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0032
http://www.nrmp.org
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0033
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0033
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0033
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0033
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0033
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0033
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0033
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0034
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0034
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0034
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0034
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0034
https://doi.org/10.1109/TITS.2018.2807184
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0036
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0036
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0036
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0037
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0037
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0037
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0037
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0038
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0038
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0038
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0038
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0039
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0039
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0040
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0040
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0040
https://doi.org/10.1016/j.tcs.2010.02.003
https://doi.org/10.1007/s00453-009-9353-9
https://doi.org/10.1145/2767386.2767424
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0044
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0044
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0044
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0044
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0044
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0044
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0044
https://doi.org/10.1007/978-3-540-68279-0_2
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0046
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0046
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0046
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0046
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0046
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0047
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0047
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0047
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0047
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0047
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0047
https://doi.org/10.1109/TMC.2018.2879098
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0049
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0049
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0049
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0049
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0049
http://refhub.elsevier.com/S1389-1286(19)31169-7/sbref0049

	User satisfaction aware maximum utility task assignment in mobile crowdsensing
	1 Introduction
	2 Related work
	2.1 Mobile crowdsensing
	2.2 Stable matching

	3 System model
	3.1 Assumptions
	3.2 Trade-off analysis

	4 User satisfaction aware maximum utility task assignment
	4.1 ILP design
	4.2 Maximum to stable reduction algorithm
	4.2.1 Happify procedure
	4.2.2 The algorithm
	4.2.3 A toy example

	4.3 Stable to maximum convergence algorithm

	5 Simulation results
	5.1 Settings
	5.2 Results

	6 Conclusion
	Declaration of Competing Interests
	CRediT authorship contribution statement
	Acknowledgment
	Supplementary material
	References

