
Computer Networks 172 (2020) 107098 

Contents lists available at ScienceDirect 

Computer Networks 

journal homepage: www.elsevier.com/locate/comnet 

A Bitcoin payment network with re duce d transaction fees and 

confirmation times 

Enes Erdin 

a , ∗, Mumin Cebe 

a , Kemal Akkaya 

a , Senay Solak 

b , Eyuphan Bulut c , 
Selcuk Uluagac 

a 

a Florida International University, Miami, FL 33172, United States 
b University of Massachusets Amherst, Amherst, MA 01003 United States 
c Virginia Commonwealth University, Richmond, VA 23284 United States 

a r t i c l e i n f o 

Article history: 

Received 10 July 2019 

Revised 10 December 2019 

Accepted 2 January 2020 

Available online 9 January 2020 

Keywords: 

Bitcoin 

Lightning network 

Integer programming 

Network formation 

a b s t r a c t 

The high transaction fees and confirmation times made Bitcoin unfeasible for many applications when 

the payments are in small amounts and require instant approval. As a result, many other cryptocurren- 

cies were introduced for addressing these issues, but the Bitcoin network is still the most widely used 

payment system. Without doubt, to benefit from its network of users, there is a need for novel solutions 

that can successfully address the problems about high transaction fees and transaction verification times. 

Recently, payment network ideas have been introduced including the Lightning Network (LN) which ex- 

ploits off-chain bidirectional payment channels between parties. As off-chain links can be configured to 

perform aggregated transactions at certain intervals without writing to blockchain, this would not only 

reduce the transaction fees but also decrease the verification times significantly. Nevertheless, LN still 

deploys relay nodes which charge fees and its growth leads certain nodes to become monopolies which 

defeat the very purpose of decentralization. Despite the thought that LN will provide a “scale-free net- 

work mechanism” along with high decentralization, how to form such a network among multiple parties 

is never studied before. Therefore, in this paper, by exploiting the LN, we offer to form a purely decen- 

tralized payment network which will allow Bitcoin to handle a lot of transactions with enough capacity. 

The idea is to form a network of retailers (i.e., nodes) which do business with Bitcoin by connecting 

them through off-chain links (i.e., payment channels) based on the business needs. The problem is ini- 

tially modeled as a network optimization but since scalability would be a concern the next steps follow 

a heuristic approach where certain links are pruned to force evenly distributed payment flows while 

minimizing the total investments made to create initial off-chain links. The evaluations demonstrate the 

extent of scalability of the network along with the trade-offs between the distribution of flows and the 

initial flow capacities of the nodes. 

© 2020 Published by Elsevier B.V. 
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. Introduction 

Since its introduction, Bitcoin has not only revolutionized the

ay payment systems can be designed in a purely distributed

anner but it has also offered the novel Blockchain data structure

hat can be adapted in many other applications for data storage

nd bookkeeping. Thanks to such data structure, Blockchain is now

outed as an innovative solution that can be used in many areas

uch as healthcare, finance, government operations, logistics, etc.

1–3] . 
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While Bitcoin has opened new opportunities such as pure peer-

o-peer (P2P) money transaction and transparency against censor-

hip, it has been long criticized for its slow transaction confir-

ation times and high transaction fees [4,5] . The transactions in

itcoin are written within a block and these blocks are typically

erified by nodes that are referred to as miners. In Bitcoin, a block

reation time is, by design, around 10 min, and the general heuris-

ic for accepting a transaction to be valid is when the transaction

s 6 blocks-old which yields 60 min on average. However, as the

iners are inclined to give priority to the transactions which of-

er higher fees, a typical transaction will take longer to be ap-

roved during congested times. In that case, either the sender

hould agree to pay a high fee or s/he should wait until the trans-

ction request is accepted by a miner. During once of such an ex-

reme case, in 2017 Bitcoin boom, the payees had to pay more than

https://doi.org/10.1016/j.comnet.2020.107098
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2020.107098&domain=pdf
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$20 for transaction fees or they had to wait 1188 min on average

[6] . Therefore, such transaction confirmation times are not suitable

for applications where timely payment evidence is critical. In ad-

dition, the transaction fees are not proportional to the transaction

amounts and this makes Bitcoin ineligible for many daily micro-

payments such as buying coffee or paying for car charging service

via smart apps, etc. The transaction fee in Bitcoin is directly re-

lated to the hard-coded block size limit, and it will not change in

the foreseeable future. 

As Bitcoin is still the most widely used digital currency, and its

market cap is above 50% among all digital currencies, it makes per-

fect sense to exploit this market cap and try to alleviate the above

problems of Bitcoin. To this end, recently the concept of Light-

ning Network (LN) is introduced [7] . The idea in this concept relies

on payment channels that enable off-chain transactions through

multi-signature (escrow) accounts. In this way, for an agreed term

two parties can perform regular transactions in real-time without

a need to write it back to the Blockchain. The total net transac-

tions can be computed at the end of the agreed term and the final

net transaction can be committed in the Blockchain at that time

(i.e., on-chain ). In this way, one can avoid most of the transaction

fees that are conducted within the agreed term because off-chain

payment channel requires typically two on-chain transactions; one

for opening the channel and one for closing. Also, as transactions

are not always written to the Blockchain, no party will experience

slow verification times. Current LN applies the off-chain concept

widely such that a network of retailers and off-chain links can be

created just like an Internet backbone to link every retailer and

customer and allow multi-channel/multi-hop payments. This is es-

sentially a payment network which currently serves more than

70 0 0 nodes. 

However, instead of connecting retailers and customers directly,

LN relies on relay nodes which act as bridges between parties.

Eventually, these relay nodes become powerful hubs which for-

ward most of the payments and hence may charge high forwarding

fees. Obviously, this is against the very idea of reducing the trans-

action fees for creating such a payment network. Furthermore, al-

lowing the relay nodes to become monopolies in forwarding poses

vulnerabilities for denial of service (DoS) attacks and privacy anal-

ysis of customers’ transactions. For instance, there was a recent

DDoS attack on LN which took 20% of the nodes down and gave

hard times to the transactions [8] . In addition to these issues with

the structure, there are also issues with routing of payments. Any

payment made in the current LN has a chance of less than 1% to

make it to its destination if the transaction amount is greater than

$200 [9] . This would obviously be a big problem for a retailer that

needs to collect payments without having any issues on time. 

Hence, there is a need for a highly decentralized topol-

ogy not only for attack/privacy protection but also minimiza-

tion/elimination of possible unfair transaction costs while also

guaranteeing routing of the payments. To this end, we advocate

creating a private payment channel network that will bring together

retailers under a consortium to contribute to this payment network

as opposed to relying on the unreliable public LN. In this way,

micropayments will be available for customers along with certain

guarantees to retailers in terms of reliability, privacy, and monop-

olies. 

In this paper, we propose to build such a private payment chan-

nel network topology from scratch using the off-chain concept of

Bitcoin. Our objective is to distribute the forwarding loads evenly

among all the nodes while minimizing the number of their off-

chain channels to decrease the total fee cost of the network forma-

tion. By inspiring from the multi-commodity flow problem [10] in

real-life, we start with an optimization model that will optimally

distribute the flow within an initial network topology. However,

since the multi-commodity flow problem is NP-complete [11] , the
olution will not scale if all potential channel establishments are

one on the initial network. 

We thus start pruning this network’s links so that we can pick

he right network topology by monitoring certain metrics instead

f following a brute force approach. In addition, we also minimize

he number of channels to reduce network formation costs. How-

ver, pruning needs to be done carefully as it may favor some of

he channels or paths that will create an unfair distribution (i.e.,

reate hub nodes and put a burden on these hubs). Therefore, we

onsider several criteria in pruning and continue such a process

ntil we achieve a certain standard deviation among the capaci-

ies of the channels. We also consider the trade-offs between the

apacity and standard deviation. 

Our contributions in this paper are as follows: 

• We developed a linear programming model to fairly distribute

the money flow in the payment network among the nodes. 

• We developed a mixed-integer programming model which de-

cides to establish channels between nodes and hence a P2P

topology at the end. 

• We further developed a heuristic approach to overcome the

performance bottleneck in the mixed-integer programming

model. 

The evaluations using Python and Gurobi solver indicated that

ur proposed heuristics can provide comparable performance to

hat of the optimal solution while allowing scalability. In addition,

he heuristic creates purely distributed topologies that are resilient

owards DDoS attacks and potential privacy leakages. 

This paper is organized as follows: Next section summarizes

he related work and in Section 3 , we give the Background and

reliminaries for understanding the related concepts. Section 4 ex-

lains the proposed optimization approach and Section 5 presents

 heuristic for improving the running time of the optimization ap-

roach. Section 6 discusses the experiment results. Paper is con-

luded in Section 7 . 

. Related work 

.1. Payment channel networks 

There are several recent efforts in both industry and academic

ommunity to address high transaction fees and slow confirmation

imes and scalability issues of cryptocurrencies especially Bitcoin.

ne of these effort s is building a Payment Channel Network (PCN)

s done in this study. Off-chain payment channel method was ini-

ially introduced by the Bitcoin community [12] , and LN is the first

idely deployed implementation utilizing off-chain payment chan-

el concept to establish a PCN. The community is actively enhanc-

ng the idea, and they are introducing new concepts in order to in-

rease the efficiency of the network like channel factories, watch-

owers, macaroons, etc. [13] . 

PCNs can be classified into two categories. The first category

elies on building a PCN for intra-blockchain operations. LN and

aiden are examples that fall into this category [7,14] . LN allows

ransferring Bitcoin between parties over already existing off-chain

inks without any confirmation delay but with some forwarding

ees. The similar idea is followed by Raiden to build a PCN for

thereum [14] . The second category of works relies on building

nter-blockchain operations to allow transfers between different

ryptocurrencies without expensive on-chain confirmation. Exam-

les include Inter-Ledger [15] and Atomic-CrossChain [16] . 

Our work in this paper is within the first category but it is a

pecial one where the members are not public as in the case of

N or Raiden. We advocate the need for a private PCN which will

erve the need of the members of a business consortium based on

he application domain. 
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Alice

Multisig-wallet

Bob

Alice Multisig-wallet: 5 BTC

Bob

Multisig-wallet

Bob

1 BTC

Multisig-wallet

Bob

2 BTC

Multisig-wallet

Bob

1 BTC

5 BTC

0 BTC

1 BTC
4 BTC

On-Chain
Transactions

Off-Chain
Transactions

Fig. 1. Off-chain mechanism between two Blockchain nodes. 
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.2. Lightning network 

Lightning network is a (layer-2) PCN using Bitcoin Network as

 foundation. The previous section included privacy related stud-

es on LN. In addition to that, studies carried on other properties

f the LN are relatively new. This is due to the fact that code-

ase for LN is still being developed and transition from an idea

nto practice has not finished. Research on topological observa-

ions on LN is not seen frequently due to the fast-changing be-

avior of the network, but effort s are being observed. For instance,

n [17] the authors make a topological analysis of a snapshot of

he LN taken in March 2018. They provide a brief mathematical in-

estigation on the robustness of the LN by looking at its reaction

gainst random failures and targeted attacks. They claim that LN

s formed around a very small number of central nodes where pe-

iphery nodes are loosely connected to the center. The author of

18] statistically looks at the development of the LN in the course

f 12 months since its establishment. With an interesting finding,

e suggests the capacity development of LN is not strongly cor-

elated with the development of the size of the network where

apacity grows more slowly. 

We would like to note that our work in this paper does not

ffer any changes/improvements to LN. It utilizes LN’s features to

uild a new and separate payment network similar to LN but have

pecific desirable characteristics that will serve its members needs.

or instance, our proposed payment network will enable connec-

ivity among any customer and retailer where retailers share the

hannel creation costs fairly and thus eventually forwarding fees

ay be opted out by the retailers (except the opening and clos-

ng fees for off-chain channels). We also provide guarantees for a

onnected network be created among every retailer which enables

ccess to customers as long as they have a channel with one of

hese retailers. 

The flow portion of our problem is very similar to multi-

ommodity flow problem which deals with the assignment of com-

odity flows from sources to destinations in a given network

here the problem has applications in various domains including

ransportation, logistics, and telecommunications. The problem has

een shown to be NP-Complete [11] even if the number of com-

odities is two. When the flows in the solution to the problem

ecome fractional, a linear programming model can be designed

hich can be solved in polynomial time [19] . However, our prob-

em is different as we not only optimize the flows in the network

ut also decide the existence of channels between peers. 
. Background and preliminaries 

.1. Background on off-chain transaction channels 

The main motivation of this work comes from the concept of

ff-chain transaction channels mechanism [20,21] that is used for

aving transaction fees in the current Bitcoin system as shown

n Fig. 1 . Specifically, an in-advance payment is provided to the

lockchain via establishing a 2-of-2 multi-signature (escrow) ac-

ount, but future successive transactions are kept mutual with-

ut being written to Bitcoin’s public ledger. The amount put in

he escrow account is contributed by both parties and unless that

mount is reached, the transactions can continue. In this way, the

articipants typically pay fees for two on-chain transactions: one

o open the channel and one to close it. 

The example shown in Fig. 1 illustrates this concept in more de-

ail. Specifically, Alice opens an off-chain channel by instantiating

n escrow account with Bob, and they both sign this new account

eparately. Alice then deposits 5 Bitcoins to the escrow account by

erforming an on-chain transaction. This determines the channel

apacity from Alice to Bob as 5 Bitcoins. Now, Alice can make many

ayments to Bob by transferring Bitcoins from the escrow account

o Bob until the capacity of the channel is exhausted. In the fig-

re, we see 3 transactions at different times: 1, 2, and 1 Bitcoins.

ventually, when the channel is closed, only the remaining Bitcoins

e.g., 1 Bitcoin) and the total transferred Bitcoins (4 Bitcoins) are

ommitted respectively to Alice and Bob and written to the public

edger. There is no way to accomplish a transaction volume more

han 5 between Alice and Bob without depositing more Bitcoins to

he escrow account. The payment channel provides guarantees to

he peers to refund the balance in the escrow account at any time

r at a mutually agreed channel expiration time. This guarantee is

atisfied by a special smart contract called “Hashed Timelock Con-

racts (HTLC) ” [22] . 

PCNs such as LN exploit the off-chain mechanism to create

ulti-hop payment paths between participants. These paths are

sed for accomplishing the Bitcoin transfer between arbitrary par-

ies. To enable this idea in practice, users are supposed to route

heir payments to any destination through a series of payment

hannels. If such a channel/link series exist among the nodes,

hen a user can utilize one or more of these links (i.e., multi-

op links) to reach another node for making a payment. For in-

tance, in Fig. 2 , Alice can make a transfer to Bob via Carol using

he off-chain links which are already established. Assuming already
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Can you please forward this
money to Bob? You have 3

hours to answer the
following question ...

... and 0.1 BTC is yours if
you can answer this:

6260392e1c0bb1d93202a
85631c079435e9c7a0ffd3e

822fd18f85586bf553ce

Hey Bob, 0.1 BTC is yours
if you can answer this in 2

hours:
6260392e1c0bb1d93202a
85631c079435e9c7a0ffd3e

822fd18f85586bf553ce

Easy, the answer is
or@nge$

Alice Carol Bob

Let's check the answer. SHA-256(or@nge$)=6260392e1c0bb1d93202a85631c079435e9c7a0ffd3e822fd18f85586bf553ce
So, Bob answers the riddle correctly. With that correct answer Carol, as promised, has to give the ownership of some of her
money to Bob. But, as Carol also learns the answer, now, Alice has to give the ownership of some of her money to Carol.

Fig. 2. Sample payment network using off-chain links. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

RTT measurements for various number of hops. 

Number of Hops Min (s) Avg (s) Max (s) 

2 2.3 2.7 4.3 

3 2.3 2.9 5.4 
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established and funded channels, Alice-to-Carol and Carol-to-Bob,

the payment between Alice and Bob is accomplished in the fol-

lowing way: Bob sends a hash of a secret (i.e., a disposable key) to

Alice. First, Alice signs a commitment transaction destined to Bob

and forwards it to Carol. Here HTLC comes to the scene. When Al-

ice is forwarding the money to Carol, she locks the payment with

the secret she received from Bob. Hence, unless Carol has the key

in hand, she will not be able to unlock the payment. In the second

hop, Carol commits a new transaction locked by the same secret

and forwards it to Bob. To receive the payment, Bob has to reveal

the secret which he generated at the very first stage of the pay-

ment. When Bob reveals the secret (a.k.a. pre-image), he unlocks

the contract and gets his payment from Carol. As Bob revealed the

secret, now, Carol knows it and by revealing the secret to Alice,

she unlocks her share and gets her money from Alice. After every

transaction, the peers update the state of the channel with new

secrets in a trustless manner. 

The senders also attach a deadline to the Hash-Lock that is

agreed while establishing the channel which is the “Time Lock”

part of the HTLC. With the Time-Lock feature, the sender can en-

force the receiver to reveal the secret within a certain amount of

time. Otherwise, the transaction fails and the sender can claim

his/her money back. The process is depicted in Fig. 2 . The state

of the channel between the peers is kept current by mutual sig-

natures. The final claim of the remaining funds are done on the

on-chain Bitcoin network. In HTLC mechanism, whenever a peer

claims funds with fabricated channel usage or claims funds with

a more previous channel state there will be enough time for the

other peer to open a dispute on the blockchain. If the complainant

brings evidences forward to prove her case all of the channel ca-

pacity will be funded to the complainant. This mechanism is of-

fered to prevent double spending or forging of the channels as a

disincentive. The discovery of intermediate nodes between Alice

and Bob is accomplished via running node and channel discovery

mechanism within LN. This basically allows nodes to obtain a local

view of the network’s topology so that Alice can discover a route

to Bob. 

3.2. Suitability of LN for real-time payments 

As LN is geared for micropayments, the urgency of payments

could sometime be important to be used in real life applications

such as buying a cup of coffee. Therefore, before moving to the

problem definition we instantiated real LN nodes on the test net-
ork to measure the round trip time (RTT) for a payment. We

easured the RTT in seconds for various number of hops and

howed the results in Table 1 . 2-hop payments are done to htlc.me ,

-hop payments are done to starblocks.acinq.co . Entrance node is

onnected to the LN via Tor network so that it introduces ad-

itional delays to the communication. The length of an LN pay-

ent packet is 1366 Bytes and the permissible number of hops is

0 [23] . The connection between the nodes can be of any type,

.e., wired, wireless, optical or combination of any of those. The

TT measurements suggest that even though the number of hops

rows, the delay only increases slightly in seconds and thus LN is

 viable network architecture proposal for instant cryptocurrency

ayments. We would like to also note that a longer RTT does

ot constitute to double spending problem as it does in the Bit-

oin network. This is because the transactions are not immediately

ritten to the blockchain but the state of the channel is always

racked by the peers, whenever one peer tries to forge the channel

he other can open a dispute on Bitcoin network and get all of the

oney in the channel with a valid proof which is a disincentive

gainst forging. 

.3. Privacy in Lightning Network 

LN, as in Bitcoin network, operates with the pseudonym ad-

resses. Although the addresses are pseudonyms, there are still

rivacy concerns and solutions are being introduced. First of all,

hen the nodes join LN, with a public advertisement, they ad-

ertise some properties of the channels they establish. The IP ad-

ress is one of those properties. The nodes need to know the IP

ddresses of other nodes in order to route the payments. The LN

ommunity offers using Tor Network in order to further anonymize

he identities. The second one is the channel capacity. For a suc-

essful routing, the sender needs to know the capacities of the

hannels that the payment will be routed through so that the

ransaction can be successful. However, in LN in order to keep the

irectional capacities of the nodes secret, the channel capacity of a

hannel is expressed as sum of all fundings provided by the peers.
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hird is the possible privacy leakage in the transactions, namely,

nalyzing the source node, destination node, and the amount be-

ng transferred. In LN, source-routing is utilized which makes a

ayer node to decide on the route of transaction. Source-routing

dea comes with additional extensions where onion based routing

s utilized in addition to a mix-net approach inspired from Sphinx
rotocol. With these properties, in a multi-hop payment, an in-

ermediary node only knows the predecessor and the successor

odes. 

.4. Problem motivation and definition 

Even though the concept of LN is very attractive to introduce

itcoin in micropayment-market, its current structure requires the

eployment of relay nodes which will act as bridges between cus-

omers and retailers. This brings two major issues: First, these re-

ay nodes charge forwarding fees and thus the goal of minimiz-

ng transaction fees through the payment network will be violated.

econd, eventually, these relay nodes will become major hubs in

he network creating the risk of having DDoS attacks against these

odes to stop the payments in the network at any time. The

hird risk here is regarding customer privacy. If these relay nodes

re compromised, they can easily analyze the payments passing

hrough them which will expose the privacy of the customers us-

ng them as relays. 

These risks may deter any business to adapt the current LN

or its payments. In this paper, we argue that a planned approach

or creating a network topology from scratch is needed for form-

ng a private payment network because of the following obser-

ations/issues on the current LN topology: suggests that this sim-

le payment scheme, shown in Fig. 2 , would eventually lead to an

ntire payment network when customers and retailers start estab-

ishing payment channels randomly as time passes. This would al-

ow all the payments to be made within LN. The main argument

f this paper is that this assumption would not be realistic for a

ignificant network size without a properly planned approach due

o the following challenges: 

• Network connectivity: LN had a basic assumption that a pay-

ment network can be formed by mostly random connections

without a topology plan. This assumption is not valid since

there will be a certain probability of connectivity success which

means that the final payment network may not be connected

or some of the nodes can be loosely connected to the net-

work. As a result, payment options for a customer will be
Fig. 3. An overview of the envisioned P
limited. To solve this issue the developers of lnd (Lightning

Network Daemon) introduced the optional ‘ Autopilot ’ fea-

ture to help a node to initialize connections to other nodes

in the network. Autopilot uses constrained Barabasi-Albert

(BA) method which is being used to model connections in so-

cial networks [24] . However, we believe this approach, which

relies on “network influencers” (i.e., hubs). 

• Investment need for each channel: Forming a connected net-

work will not be free. Each channel establishment results

in two mandatory on-chain transactions. Hence, the number

of channels established by a node should be kept optimum,

namely, high enough to keep the needed transactions flowing

but low enough to decrease the on-chain fees. 

• Partial usage of available payment capacity: A node may as-

sume that it needs 100 Bitcoins worth of total transaction vol-

ume for its own business. However, most of the times that ca-

pacity will be used by other nodes which use this node as a re-

lay. Thus, at a given time, only a portion of the capacity will be

available for the node itself to accept transactions from its own

customers. This implies that one should invest much more than

its planned transaction volume when a consortium of business

come together to form a private payment network. 

• Diminishing channel capacity over time: An important and

unique property of LN is that the capacity of channels dimin-

ishes over time. At the initial creation of a channel, it will be

set to have a maximum forwarding capacity. When nodes use

this channel for payment forwarding, its capacity degrades each

time. For resolving this issue, either more investment should be

done for the channel or there should be a reverse payment for-

warding to balance the capacity. This feature needs to be incor-

porated into the design of a new topology. 

We propose to utilize the idea of creating payment channels

mong the retailers of a consortium assuming that every node in

his network will create in-advance payment channels (i.e., links

ith certain transaction capacities) with some other nodes as

hown in Fig. 3 . The network of the participants is an overlay net-

ork on top of the Bitcoin network where rather than the physi-

al proximity of the nodes, the existence of channel establishment

greements between the nodes is of importance. However, due

o the pointed challenges, forming such a network requires care-

ul design to both establish fairness between cooperating nodes to

hare the associated costs and achieve asserted scalability, micro-

ayment, and instant confirmation features. 
ayment Network among retailers. 
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Based on these discussions, our problem can be formally de-

fined as follows: “Let us assume M retailers and N customers. Let

us also assume that a payment channel network (PCN) can be repre-

sented as a graph G = (V, E) , where V represents all Bitcoin accounts

(of M retailers) and E represents all payment channels among M re-

tailers. Every edge between retailers has a capacity that denotes the

amount of depositable Bitcoins (i.e., the actual investment put in the

escrow account by a retailer). We assume that every vertex (retailer)

v ∈ V will make an initial total investment that represents the max-

imum Bitcoins that can be transmitted or forwarded over it. In other

words, we are considering the maximum possible instantaneous pay-

ments that can be made from a retailer or forwarded by it. This can

also be described as the maximum possible business capacity of a re-

tailer within a certain time. Based on these inputs, how can we create

a virtual topology PCN among the retailers in such a way that 1) the

average transaction fee for a customer will be minimized; 2) the total

investment made by a retailer for creating channels with its neighbors

will be minimized; 3) the standard deviation of total investment costs

among the retailers will be minimized. ”

4. Flow and network optimization model 

4.1. Overview 

The proposed PCN in this paper will form a virtual topology on

top of the on-chain operations, thus providing a valuable infras-

tructure which is able to guarantee P2P payment service without

requiring any on-chain transactions. While designing the network,

the payment channels between retailers should have enough ca-

pacity for both routing the payments of others and for receiving

the payments intended for themselves. Moreover, the channel ca-

pacity between the retailers should be created in such a way that

retailers with similar intent and opportunity (i.e., in terms of busi-

ness capacity) should contribute to the network in a similar way. 

Our approach considers all these issues by proposing a mixed

integer programming model inspired by multi-commodity network

flow problems [11] . The model minimizes the PCN design cost ac-

cording to different cost-sharing scenarios. These costs are the net-

work flow cost, link establishment cost, and unfairness in channel

capacity distribution among the retailers. 

4.2. Formulation of the network optimization model 

Let us assume that there are N users in the network with I

defining the set of the customers where I = { C u 1 , C u 2 , . . . , C u N } and

N = | I| . Similarly, let us assume that there are M retailers (denoted

as “RT”) in the payment system and P is the set of the retailers and

P = { RT 1 , RT 2 , . . . , RT M 

} and M = | P | . From now on, the term “node”

and “retailer” will be used interchangeably, and definition of each

term is given in Table 2 . Each customer will be registered to a re-

tailer. The payment of a customer will be initiated from the reg-
Table 2 

Notations and their explanations. 

Symbol Meaning 

u j j ′ Channel capacity from node j to j ′ 
z j j ′ Binary decision variable, equals 1 if u j
c v 

j j ′ Cost multiplier for capacity from node

c f 
j j ′ Cost multiplier for channel establishm

γ Parameter to control unfairness betwe

x k 
i j 

Flow originated from customer i, flowi

y ik 
j j ′ Flow originated from customer i destin

a ik Total amount of intended payment ori

totFlows j Sum of all flows originating from node

� Total cost of unfairness among nodes 

IUBpN Investment upper bound per node 
stered retailer to the payee retailer. Since there will be a money

raversal the problem can be formulated with graph representa-

ion where vertices are the retailers and edges are the links be-

ween retailers. Let the graph G ( V, E ) be defined such that V = I ∪ P 

nd E = { [(i, j) : i ∈ I, j ∈ P ] ∪ [( j, j ′ ) : j, j ′ ∈ P ] } . Each customer, Cu i ,

s assumed to be making payments to a set of retailers, J i , during

he payment period. This time period can be of any length. Hence,

 J i | is the expected total number of payments that will be made

y Cu i . Let a ij be the expected payment amount by Cu i ∈ I to the

etailer j ∈ J i during the planning period. 

Let decision variable u j j ′ denote the capacity of the payment

hannel (i.e., Bitcoins put on the escrow account) on edge ( j, j ′ ) to
e established between j, j ′ ∈ P , where each unit of capacity in-

urs a variable cost of c v 
j j ′ (i.e., the opportunity cost for keeping

itcoins in reserve since this money will stay there untouched and

hus there will be no way to use it in other profitable investments).

n our model, to represent a real-time scenario, we assume that

etting up a payment channel will carry a fixed “channel estab-

ishment fee (i.e., on-chain transaction fee)”. So, a fixed cost of c 
f 

j j ′ 
s assumed if a payment channel is established between j, j ′ ∈ P . 

Suppose that the optimization objective involves the minimiza-

ion of a function of the total cost of establishing payment chan-

els across the entire network ensuring that all payments by cus-

omers are processed following some path on the network where

he termination node is the recipient of a given payment. 

To allow for a multi-commodity flow type integer programming

ormulation, which is known to be NP-Complete [25] , we further

efine the following decision variables. We let x k 
i j 

define the pay-

ent flow on arc ( i, j ) for i ∈ I, j ∈ P intended for retailer k ∈ J i .

oreover, y ik 
j j ′ r efers t o the flow on ar c ( j, j ′ ) for j, j ′ ∈ P which

as originated from customer i ∈ I with destination k ∈ J i . In order

o indicate the channel ‘opening’ decision between any two retail-

rs, we define the binary variable z j j ′ such that z j j ′ = 1 , if there is

ositive flow on arc ( j, j ′ ) for j, j ′ ∈ P , and z j j ′ = 0 , otherwise. 

We then can formulate the optimization problem through

qs. (1)–(10) as follows: 

 j j ′ = 

{
1 , u j j ′ > 0 

0 , otherwise 
(1)

in 

∑ 

j∈ P 

∑ 

j ′ ∈ P 
c v j j ′ u j j ′ + c f 

j j ′ z j j ′ (2)

.t. 
∑ 

j∈ P 
x k i j = a ik ∀ i ∈ I, k ∈ J i (3)

nd Eq. (1) can be modeled as: 

 j j ′ ≤ εz j j ′ (4)

 j j ′ ≥ δz j j ′ (5)
j ′ > 0 , equals 0 else 

 j to j ′ 

ent from node j to j ′ 
en the nodes 

ng from j destined to k 

ed to node k, flowing from j to j ′ 
ginating from customer i destined to node k 

 j 
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here ε is the upper bound for the decision variable u j j ′ and δ is

 positive small number close to the lower bound (e.g. 0.001). That

onstraints will force the solver to find a suitable z either 0 or 1 as

 is defined to be a binary number which takes the possible solu-

ions for z from linear range to integer range. Eq. (2) is the objec-

ive function and Eq. (3) states that for Cu i sum of all money sup-

lied to the network through any node for RT k equals to a ik . It basi-

ally means that a customer can register to more than one retailer.

We need to have the node transaction conservation equations

s: 
 

i ∈ I 

∑ 

k ∈ J i 

∑ 

j ′ ∈ P 
y ik j ′ j + 

∑ 

i ∈ I 

∑ 

k ∈ J i 
x k i j −

∑ 

i ∈ I 

∑ 

k ∈ J i 

∑ 

j ′ ∈ P 
y ik j j ′ = d j ∀ j ∈ P (6)

here d j defines the total ‘ demand ’ of retailer j as d j = 

∑ 

i ∈ I a i j for

ll j ∈ P . Eq. (4) states that for a node j , i.e. RT j , sum of all of the

ows coming to RT j minus sum of all of the flows leaving RT j must

e equal to the demand of RT j . 

In addition, the capacity of the links should be large enough to

ccommodate the flows on the arcs and the fixed cost structure

hould be defined. As the established channel can be bidirectional,

e further assume that “channel capacity” from one node to the

ther is symmetric. Note that the amount that will be put into the

scrow accounts can be decided by the peers at the time of agree-

ent: 
 

i ∈ I 

∑ 

k ∈ J i 
y ik j j ′ ≤ u j j ′ ∀ j, j ′ ∈ P (7)

 

i ∈ I 

∑ 

k ∈ J i 
y ik j j ′ ≤ C ′ z j j ′ ∀ j, j ′ ∈ P (8)

u ( j, j ′ ) = u ( j ′ , j) ∀ j, j ′ ∈ P 

x, y, u ∈ R 

+ , z ∈ { 0 , 1 } (9) 

here C ′ is some upper bound for the capacity on a given channel.

his C ′ can also be chosen different for each possible arc. For this

tudy C ′ is set to a constant high value for every edge. 

Finally, in order to assign a customer to a single predefined re-

ailer, we include the following equation: 

 

k 
i j = a ik ∀ i ∈ I, k ∈ J i and j = RT k i j (10)

or that equation to hold RT k 
i j 

is a retailer chosen randomly for de-

ivering a payment from customer i to retailer k starting at retailer

 . 

.3. Fair distribution of network design costs among nodes 

A member retailer of the PCN should open payment channels

ith other peers more than its own demand so that it can relay

he payments for others. However, these payment channels have

n associated cost due to keeping Bitcoin in escrow and related

ransaction fees. Therefore, the members of PCN strive to keep

heir investment costs at a minimum while participating in the for-

ation of a PCN. 

Thus, in the optimization, a new cost, namely, unfairness cost

epresented by �, is introduced in order to provide a mechanism

or sharing network formation costs fairly. For that purpose, capac-

ty difference between nodes with maximum and minimum out-

ound flows are multiplied by the parameter γ as follows: 

otF lows j = 

∑ 

i ∈ I 

∑ 

k ∈ J i 

∑ 

j ′ ∈ P 
y ik j j ′ ∀ j ∈ P (11) 

axF low ≥ totF lows j , ∀ j ∈ P (12) 

inF low ≤ totF lows j , ∀ j ∈ P (13) 

= γ (maxF low − minF low ) (14) 
Note that maxFlow, minFlow , and totFlows j are non-negative de-

ision variables. Given the minimization objective, the optimiza-

ion should ensure that the maxFlow is set equal to the highest of

otFlows j values, and minFlow is set equal to the lowest of totFlows j 
alues. 

The final objective function becomes 

in ( 
∑ 

j∈ P 

∑ 

j ′ ∈ P 
c v j j ′ u j j ′ + c f 

j j ′ z j j ′ + γ (maxF low − minF low )) (15) 

hroughout the rest of the paper, the model described in

ections 4.2 and 4.3 , combined, will be referred to as mixed-

nteger optimization (MIOP) model. 

. Pruning-based heuristic 

As the presented MIOP model falls under the category of NP-

ard problems in general, the computational complexity would be

igh and thus the model will not scale. Therefore, in this section,

e present a heuristic approach to improve the scalability of the

IOP model. 

.1. Simplifying the MIOP model 

In our heuristic approach, MIOP model is modified in such a

ay that the solver will not decide on the links to be established

nd the unfairness among nodes. Specifically, z j j ′ and � variables

re removed from the model. Hence, the model turns into linear

rogramming (LP) one. Throughout the rest of the paper, this mod-

fied model will be called the LP model . LP model basically only

ptimizes the flows in the network. 

Furthermore, in our heuristic, the standard deviation among

ows (i.e., unfairness) is controlled by assigning an investment up-

er bound per node (IUBpN) for all the flows passing through a

hannel as shown in Eq. (17) . This approach not only removes the

omputational overhead in the model but also decreases the possi-

le solution domain of the model and intrinsically helps in short-

ning the computational time. 

otF lows j = 

∑ 

j ′ ∈ P 
u j j ′ ∀ j ∈ P (16) 

otF lows j ≤ IUBpN ∀ j ∈ P (17) 

.2. Algorithm for building the topology 

In order to keep the problem in the LP domain (with a poly-

omial time algorithm [26] ), we build the network manually and

et the LP model calculate the flows in the network in polyno-

ial time. Note that for network flow calculations there are many

ther alternative algorithms like Ford-Fulkerson [27] or Dinic’s al-

orithms [28] . However, in these greedy algorithms, the result at

ach step varies based on the nodes selected initially. In other

ords, the algorithm becomes order oriented and thus finding

he best order becomes a challenge. To prevent this challenge, we

pted to stick with the LP model to get rid of the order depen-

ency. 

Once the flows are determined by the LP, we start pruning cer-

ain edges of the initial network topology that carry the created

ows in an iterative fashion by applying the following procedure: 

The algorithm, pseudo-code of which is shown in Algorithm 1 ,

tarts with a fully connected network topology. Customer registra-

ion information, payment plan, and edge connections are fed to

he solver. The solver calculates the optimal transaction flow by

onsidering the availability of the connections between nodes and

pper bounds for the decision variables. When the flows are ob-

ained, the edge capacities and edge counts of the nodes are tem-

orarily saved. In order to start pruning, we create a table where
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1 2

3 4

5

          T(2)   T(1)
edge(1,2)= 30 | 2+2=4
edge(1,5)= 30 | 2+2=4
edge(2,3)= 30 | 2+2=4
edge(3,4)= 30 | 2+2=4
edge(4,5)= 30 | 2+2=4

          T(2)   T(1)
edge(1,2)= 30 | 2+2=4
edge(1,5)= 30 | 2+3=5
edge(3,4)= 20 | 3+2=5
edge(2,3)= 30 | 2+3=5
edge(3,5)= 10 | 3+3=6 <--
edge(4,5)= 20 | 2+3=5

1 2

3 4

5

(a) (b)

Fig. 4. A scene from the flow of the pruning heuristic. a) Initial table entries before pruning. b) Revised table entries and edges after pruning. 

Algorithm 1 Network Establishment. 

1: Input: G(V,E) =Fully connected undirected graph, V representing 

set of nodes, E representing set of edges, E j j ′ r epr esenting edg e 

between j and j ′ 
2: Input: Anticipated payment plan 

3: Using LP create flow model m using Edges and payment as- 

sumptions 

4: Create a 2-dimensional Table: T [][] 

5: Solve m 

6: while m is feasible do 

7: for E j j ′ in E do 

8: T [ E j j ′ ][1] = total number of edges j and j’ have 

9: T [ E j j ′ ][2] = capacity of E j j ′ 
10: end for 

11: Sort T in descending order w.r.t. T [ ∗][2] 

12: Sort T in ascending order w.r.t. T [ ∗][1] 

13: Remove the last edge in T 

14: Update m 

15: Solve m 

16: Reset T 

17: end while 

18: Output: G 
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every edge in the final flow diagram is tracked. Let us assume we

track an arbitrary edge ( j, j ′ ). The first column of the table would

represent the total number of connections that nodes j and j ′ has.

The second column of the table represents the established capacity

on edge ( j, j ′ ), i.e., u j j ′ . This is shown in an example in Fig. 4 . Fig. 4 a

is the resulting representation of a 5-node network after 5th itera-

tion. T [1] is the sum of connections of the peers of the correspond-

ing edges whereas T [2] represents capacities of the edges. The edge

which has the highest in T [1] and lowest in T [2] is pruned. For in-

stance, the 5th row in Fig. 4 shows that edge(3,5) has an edge ca-

pacity of 10, node 3 has 3 connections and node 5 has 3 connec-

tions. Hence, peers of edge(3,5) have 6 connections in total. Thus,

the edge(3,5) will be pruned. If there was another edge with the

same total edge count, our algorithm would pick the edge with

the minimum capacity. The idea behind aiming the edge with the

lower capacity is avoiding unnecessary on-chain transactions for a

channel that will not be used frequently as establishing a channel

between two nodes will incur on-chain transaction fees. It is not

desirable to have an edge for a small capacity, hence choosing the

edge with the minimum capacity is important. And similarly, the

nodes with more edges would have the potential to become hubs

and thus create unfairness. Therefore, some of their edges are also

pruned. Additionally, observing the total number of connections of

the nodes ensures that we do not end with a disconnected net-

work. Specifically, if a node has lower number of connections, it is
ighly probable that its edges will not be pruned. Fig. 4 b shows

he resulting representation after the 6th iteration. 

This procedure is an iterative and greedy process. When an it-

ration ends, the network graph is updated with the pruned edge

nd procedure restarts, until topology becomes infeasible for the

olver. We note that there are two reasons for a network to be-

ome infeasible, one reason is that the parameters are selected in

uch a way that it is impossible for the solver to come up with

 flow solution. Another reason is that the network becomes dis-

onnected after pruning so that flows cannot be forwarded to the

ntended destination. 

.3. Incorporation of privacy in the heuristic 

In order to increase the privacy on the flow of transactions in

he network, the best practice is forcing the transactions to make

ultiple hops. For doing so, we can introduce binary decision vari-

bles which will be set to one if there is a positive y ik 
j j ′ flow on an

dge. So, putting a constraint on these binary decision variables,

uch that sum of them will be greater than some number will suc-

essfully force the flow to make hops. However, introducing binary

ecision variables will push the flow optimization model from lin-

ar polynomial time domain to NP-complete domain as explained

reviously. 

To avoid this situation, we opted for another approach for sat-

sfying privacy by introducing Eq. (18) as a constraint in the flow

ptimization model: ∑ 

j∈ P 

∑ 

j ′ ∈ P 
y ik j j ′ ≥ Y ik ∀ i, k ∈ J i (18)

here Y ik is a lower bound for satisfying privacy. Eq. (18) states

hat, for a particular source and destination, the sum of all of the

ows carried out in the network particularly for these peers should

e larger than a lower bound. For example, if Y ik is set to be 3

imes of a ik the flow optimization solver will need to find addi-

ional routes in order to satisfy this constraint. 

. Experimental evaluation 

This section presents the experimental details in terms of setup,

ssumptions, metrics, benchmarks and performance analysis. 

.1. Experiment setup and assumptions 

The LP and MIOP optimizations were solved using Gurobi solver

ersion 7.2 with Intel Xeon E5-2630 v4 @ 2.20 GHz CPU and 64GB

f RAM PC running Ubuntu Linux Kernel version 4.15.0. 

We make the following assumptions: for the optimization im-

lementation, the available number of nodes may vary and it is ex-

lained in every figure and is denoted as N . For every node, there
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Fig. 5. 16 node torus topology. 
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s one customer registered to it. Single customer per node is cho-

en in order to decrease the number of equations in flow optimiza-

ion. Every customer sends transactions to every other node. This

ssumption is made in order to not end with a disconnected graph

fter pruning operations. Each transaction from each customer is

0 units. γ and c 
f 

j j ′ (linkcost) parameters should be thought as ad-

ustment parameters, they don’t directly imply monetary values.

 

v 
j j ′ in Eq. 3 is assumed to be 1. 

.2. Performance metrics and benchmarks 

The evaluation of the performance of the heuristic approach is

one according to the metrics below: 

• Total Investment Cost for the Network : This metric is the amount

of total investment put by the nodes (in escrow accounts) to

create a network composed of nodes establishing off-chain pay-

ment channels. 

• Total Number of Edges in the Network : This metric indicates the

total number of channels (i.e., edges or links) created in the

network. 

• Standard Deviation among the Nodes’ Actual Investment Costs :

This metric is to assess the fairness among the nodes in the re-

sultant network. It measures the standard deviation among the

investment costs for each node in the network. 

• Computational Time : This metric measures the computational

time elapsed for finding out the resultant payment network. 

• Betweenness Centrality of the network : Betweenness centrality is

one of the measures that show how the nodes are dominant in

a network. It simply defines how many times in total a node is

visited while traversing from one node to other with the short-

est path. This metric gives hints about a node in a network if it

becomes a hub. 

• Percentage of Cut Nodes in the network : Cut nodes set is the set

of nodes that break the connectivity of the network when they

are removed. 

Using those metrics, we compare the performance of these ap-

roaches: 

• MIOP approach : This solution is based on the MIOP formula-

tion discussed previously. The initial topology network assumed

to be a fully connected one. 

• Heuristic approach : This approach involves the pruning of the

edges. It is an iterative approach, and the flows are calculated

by the LP model, and edges are pruned until an infeasible setup

is reached. Note that for our heuristic there are two versions:

one without privacy guarantees (shown as “Our Heuristic” in

the figures) and one with the privacy guarantees (shown as “Pri-

vacy” in the figures). For privacy guarantee, we enforced all

transactions make at least 3-hops. For this heuristic, we con-

sidered various initial topologies as follows: 

– Fully connected Topology : The heuristic starts with a fully

connected topology where each node has a link to every

other node in the network. 

– Peer-to-Peer (P2P) Torus Topology : The heuristic starts with a

purely P2P topology that creates an equal number of edges

among the nodes by following the idea of a torus. Torus

topology is one of the most popular topologies in parallel

computing [29] so we wanted to adapt it in our study. Fig. 5

shows an example 16 node torus topology. 

– Barabasi-Albert (BA) Model Topology : Currently, a restricted

version of the Barabasi-Albert model is utilized in LN un-

der Autopilot tool. In our tests, the same heuristic is ap-

plied to a network with an initial topology created by the

Barabasi-Albert model. 
– P2P Hypercube Topology : Hypercube topology is a multidi-

mensional network which has 2 nodes in each dimension. In

every 2 dimension squares are generated. Due to this nature

number of nodes in a hypercube is 2 m , m being an integer. 

– P2P Star Topology : In star topology all of the nodes are con-

nected to a central node. This type of topology is very effi-

cient in low latency multi-hop communication. 

• Random topology : In this approach, we pick a random topol-

ogy which has a number of edges comparable to the results of

the heuristic that starts with the fully connected network. Only

the flows are calculated on this random topology without ap-

plying pruning. 

.3. Experiment results 

.3.1. Comparison of heuristic with MIOP model solution - 

xperiment 1 

In this experiment series, we compared the performance of our

euristic starting with an initial fully connected network with the

erformance of the MIOP model solution [30] . 

We utilized the same payment schedule used for the MIOP

odel solution and for the heuristic experiments. We created 10

etailers (nodes), a fully-connected network. We varied the IUBpN

or our heuristic experiments and varied γ and c 
f 

j j ′ (shown as

inkcost in the figures) for the MIOP experiments. Each retailer

as 48 registered customers, so in total there are 480 customers.

or the payment scenario, we assume that each customer initiates

 single transaction to a retailer other than its registerer retailer

hich is selected randomly with uniform distribution. Each trans-

ction has a monetary value of 10 units. Note that, in this setup,

very node -via customers- supplies an equal amount of money to

he network but demands of the nodes are not guaranteed to be

qual. Hence, total supply to the network by all of the customers

s of 4800 units. MIOP finds the optimum network topology based

n this scenario and it is being controlled by the γ and linkcost

arameters. 

Our heuristic algorithm stops execution when the LP model be-

omes infeasible after iterative edge pruning. The LP model can be-

ome infeasible mainly for 2 reasons. The first reason for infeasibil-

ty is that the connectivity in the network can be broken because

f excessive pruning. The second reason for the infeasibility is that

he IUBpN can be tight that LP can not distribute the flow with

he obtained connectivity of the network, hence a solution does

ot exist in that case. 

The results are given in Fig. 6 a–d for total number of edges,

tandard deviation among the nodes’ actual investments, to-

al actual investment of the nodes in the network and total

omputational time to run the experiments respectively. In the
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Fig. 6. Heuristic approach compared to MIOP solution. 
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experiments, we tried to adjust IUBpN in a way that the results

would be comparable in terms of number of edges. 

It is seen that the MIOP model gives only slightly better results

in terms of total investment. However, this comes with a drawback

of huge computational time requirement. Because of the previously

mentioned complexity of the MIOP model, the required running

time increases significantly. 

There are several other observations: First of all, the heuris-

tic produces less number of edges compared to the MIOP solution

when IUBpN increases. Because with a lower IUBpN the heuristic

terminates earlier, so that, it leaves a network with a higher num-

ber of connections. Hence, the heuristic can be adjusted for savings

from channel creations. 

Standard deviation results are interesting since we observe the

high impact of increasing the IUBpN. However, when the right

IUBpN is selected, such as 800 in our case, the flows become much

fairly distributed among the nodes and surpasses the MIOP (op-

timal) solution. This behavior makes sense because after IUBpN

is made tighter, the node capacities are kept the highest possi-

ble to fulfill the constraint, yielding a close outbound flow among

nodes. Similarly, when we look at the total actual investment cost

in the network, we see that the heuristic almost matches that of

the MIOP model. For instance, compared to the γ = 20 case, there

is only about 3% cost increase and yet the number of edges is equal

to the total number of edges for the same case which is matching

the heuristic. This means the heuristic can get very comparable re-

sults in terms of standard deviation and total actual investment

costs while achieving scalability. Also, the IUBpN parameter works

efficiently to have control over the standard deviation among the
nodes. i  
.3.2. Comparison of full connected topology with others: Torus 

opology, Barabasi-Albert Model topology, and Random topology - 

xperiment 2 

In these experiments, our goal is to show the scalability prop-

rties of our heuristic by trying it on a P2P Torus topology, on a

opology created by Barabasi-Albert (BA) method and also com-

are the results with a randomly connected network. To this end,

e created topologies of sizes 25, 30, and 35 nodes. The topology

reated by BA model has 4 edges per node on average. We then

ompared the performance of our heuristic starting with a fully

onnected network to that of a Torus network, and to that of a BA

odel network. We also created a random network topology with

he same number of nodes and same “final” number of edges, so

here is no heuristic applied to random topology, only the flows

re calculated with the same parameters. 

Fig. 7 a shows the resulting total number of edges in the net-

orks. Fig. 7 b shows the total computational time for the exper-

ments. Fig. 7 c shows the total actual investment of the nodes.

ig. 7 d shows the results of the standard deviations among the in-

estment costs of the nodes. Legend for the figures is tabulated in

able 3 . 

Our first observation after starting the experiments was that

orus and Barabasi-Albert model topologies were becoming infea-

ible in much earlier iterations when the same IUBpN is applied

ompared to the fully connected network. For instance, heuristic

or a fully connected network could be applied up to an accept-

ble number of iterations when IUBpN = 800 but the others could

ot be solved, namely, with those parameters and flow require-

ents, the networks seem infeasible to the solver. Keeping that

n mind, we decided to go with an increased IUBpN value for all
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Fig. 7. Comparison of results related to heuristic for Full Connected network, Barabasi-Albert model, Torus Topologies vs. Random Topologies. 

Table 3 

Legend for Fig. 7 . 

Abbreviation Legend 

A 25 Nodes, 1200 IUBpN, full connected 

B 30 Nodes, 1200 IUBpN, full connected 

C 35 Nodes, 1200 IUBpN, full connected 

D 25 Nodes, 1200 IUBpN, torus 

E 30 Nodes, 1200 IUBpN, torus 

F 35 Nodes, 1200 IUBpN, torus 

G 25 Nodes, 1200 IUBpN, BA Model 

H 30 Nodes, 1200 IUBpN, BA Model 

I 35 Nodes, 1200 IUBpN, BA Model 

J 25 Nodes, 10,000 IUBpN, Random 

K 30 Nodes, 10,000 IUBpN, Random 

L 35 Nodes, 10,000 IUBpN, Random 
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ases which is set to 1200 in the experiments. The random con-

ected graph was the worst among all in feasibility, so, for getting

 result we had to set IUBpN 10,0 0 0 for the random topology. 

Since the heuristic steps take place in an iterative fashion, Torus

nd the BA model topologies have the advantage of starting from

 pre-pruned state with much less number of edges. This prop-

rty is well seen in total time comparisons ( Fig. 7 b). Additionally,

ith lower number of edges, the LP model deals with less num-

er of equations which makes the equations solvable in much less

ime. For the random topology, as the network has less number of

dges and no further pruning is done, the solver only calculates

ows which is much faster compared to others. These results sug-

est that Torus and BA can scale much better. 

An interesting observation from the results is that both BA gen-

rated topologies and Torus topologies can perform as good as a
ully connected network for the total number of edges and total

ctual investment. For instance, for 35 nodes case, it is interesting

o observe that although Torus has more edges than the fully con-

ected topology, the total capacity of Torus network exceeds that

f the fully connected one ( Fig. 7 c). In general, a network with a

igher number of edges should have lower total capacity. This is

ecause, if the number of edges decreases, the transactions tend

o follow paths with more number of hops. High number of hops

ncurs additional investment requirement for other nodes, in turn,

ncreasing the total network capacity. Because of the strict connec-

ion in Torus, the flexibility of finding shorter paths decreases re-

ulting in higher investments. 

The standard deviations of nodes’ actual investments in Torus

nd BA are comparable to a fully connected network as seen in

ig. 7 d. For the random network, however, the standard deviations

re high since it has a very high IUBpN parameter. This hints that

ome of the nodes have higher loads, resulting in topologies more

imilar to a hub-and-spoke. The betweenness centralities of the

etworks shown in Fig. 8 a support this finding as random topolo-

ies have the highest scores. 

On top of statistical and computational calculations made on

dges and nodes, visiting the topological properties of the net-

orks gives us a better perspective on advantages and disadvan-

ages of resulting topologies. Fig. 8 a shows the betweenness cen-

rality of the networks and Fig. 8 b shows the percentage ratio of

ut nodes (articulation points) to all of the nodes in the network. 

With total capacity, total number of edges and total investment

osts of the topologies being close to each other, heuristic applied

o the initially fully connected network gives the best results in

erms of betweenness. Percentage of cut nodes shown in Fig. 8 b

hows that randomly connected network is very weak against
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Fig. 8. Betweenness centrality and Cut Node Results of full connected, Torus, BA model and random topologies after applying heuristic. 

Fig. 9. Comparison of Torus, BA model, Hypercube and Star topologies. 
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attacks as there are many nodes to attack which will highly im-

pact the operational success. BA model has similar vulnerabili-

ties but significantly lower than that of the randomly connected

network. Fully connected and Torus networks seem to be more

robust. 

Consequently, we can conclude that given the much more effi-

cient computational time for Torus, it can be a more viable option

in real-life as long as the right IUBpN is selected. Additionally, if

BA model is created with a higher average number of edges, the

results may come closer to the fully connected network results.
ecause there will be more room to fine tune the final topology

f the network, but, with an increase in computation time. 

.3.3. Comparison of others: Torus, Hypercube, BA, and Star 

opologies - Experiment 3 

In this experiment, we investigate how our approaches perform

ompared to other related topologies. We conducted experiments

o with an initially torus connected network, hypercube connected

etwork, BA model connected network, and star connected net-

ork topologies. As hypercube being combinations of squares in
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Fig. 10. Heuristic applied to topologies of BA and torus with and without privacy. 

X Y

A

B C

D

Fig. 11. Privacy-preserving flow from X to Y. 
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-dimensional space, for a hypercube topology, number of nodes

n the network is 2 n where n is an integer. Hence for this exper-

ment the number of nodes in the networks is selected to be 64.

ig. 9 a–d show total number of edges, standard deviation, total in-

estment cost, and total time spent in the final topologies. 

In star topology the central node has to forward all of the pay-

ent requests to corresponding nodes so IUBpN for central node is

xtremely high, 40,0 0 0. Otherwise, with a lower IUBpN the solver

an not optimize. Torus, hypercube and BA-model topologies give

omparable results in terms of total capacity and standard devia-

ion for the same IUBpN s. Hypercube topology starts with a higher

umber of nodes compared to Torus. That causes more edges to

e pruned and a higher total time for the method to finish for the

ame IUBpN . Additionally, initial higher number of edges means

ore equations and that makes the solver to take longer times

o calculate the flows. For the torus’ 40 0 0 IUBpN case it can be
aid that because torus has a larger diameter, (8) than the hy-

ercube (6), the average number of hops is higher. Thus, for a

mall IUBpN in torus, the solver will stop earlier because average

oad on the nodes increases. That explains why the solver stopped

hen the number of edges was 100. Although hypercube topol-

gy gives comparable results to the torus topology, for the remain-

ng experiment we will continue with the torus network since it is

uch more efficient in terms of total computation time and scales

etter. 

.3.4. Privacy-Guaranteed Heuristic experiments 

In these experiments, we looked at the impact of guaranteeing

rivacy by revising our heuristic and compared it with the case

hen privacy is not necessarily guaranteed (i.e., normal heuris-

ic). The initial topologies for the experiments are chosen as Torus

nd BA model generated topologies as they provide a close perfor-

ance to a fully connected network. For the privacy case, we set

he constraint (i.e. Y ik ) in Eq. (18) as 30 units. Since a transaction

ow is worth 10 units, we would like to observe 3 hops for a suc-

essful transaction in an ideal case. For this particular experiment,

he number of nodes in the networks is set to be 25, 30, and 35.

he IUBpN in the experiments is fixed and is 1200. As applied be-

ore, stopping criteria for the algorithm is reaching to an unfeasible

ow distribution solution. 

Fig. 10 a–d show the resulting final number of edges, the stan-

ard deviation among the final actual investment of the nodes, fi-

al total actual investment in the network and the total computa-

ional time for the experiments, respectively where the legend for

he figures are is in Table 4 . 
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Fig. 12. Further scalability tests for Torus and BA model generated topologies. 

Table 4 

Legend for Fig. 10 . 

Abbreviation Legend 

A 25 Nodes, 1200 IUBpN, torus 

B 30 Nodes, 1200 IUBpN, torus 

C 35 Nodes, 1200 IUBpN, torus 

D 25 Nodes, 1200 IUBpN, torus, with privacy 

E 30 Nodes, 1200 IUBpN, torus, with privacy 

F 35 Nodes, 1200 IUBpN, torus, with privacy 

G 25 Nodes, 1200 IUBpN, BA Model 

H 30 Nodes, 1200 IUBpN, BA Model 

I 35 Nodes, 1200 IUBpN, BA Model 

J 25 Nodes, 1200 IUBpN, BA Model, with privacy 

K 30 Nodes, 1200 IUBpN, BA Model, with privacy 

L 35 Nodes, 1200 IUBpN, BA Model, with privacy 
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One of the observations in these experiments was that when

the stress on the solver is increased by increasing the limit in

Eq. (18) , the solver starts to create bogus payments. For example,

in a case, we observed that the receiving node was making trans-

actions to other nodes just to fulfill the requirements of the con-

straint. We solved that problem by modifying the model such that

a node will not accept a transaction it makes. We either observe

multi-hop flows or flows similar to the ones shown in Fig. 11 . This

forwarding scheme is acceptable as an attacker with malicious in-

tent will not be able to learn full details about transactions. 

For this experimental setup, as expected, in order to satisfy the

privacy constraint the solver consumes more time, 3 to 4 folds,

compared to the normal heuristic for both topologies. Another ob-

servation is that for Torus topology, the solver converges to a so-
ution faster compared to the BA model topology, thanks to its

ore ordinate structure. Likewise, the tidier arrangement in Torus

opology results in a relatively higher number of edges. Since the

dges are connected in a strict array type, the possible solutions

re consumed rapidly. That’s why the standard deviation tends to

ecrease with given IUBpN. However, BA model topologies tend to

ave some degree of liberty in connections. 

We can see that the total number of edges and total investment

re only slightly higher in the privacy case while standard devia-

ion among the investment of the nodes is smaller. This can be at-

ributed to the fact that IUBpN upper limit in the experiment still

ives enough room for successful distribution of the transactions.

dditionally, in the case without privacy, some transactions are al-

eady satisfying the privacy requirement. So we do not observe a

rastic increase in total capacity. However, as the node flows are

loser to the IUBpN limit, we observe a lower standard deviation

ndicating a fair distribution of the flows which is good. 

.3.5. Scalability experiments 

In order to further evaluate the scalability property of our

euristic, we made several experiments with networks of 100

odes. As a benchmark, we compared the Torus and BA model

etworks with different IUBpN values. Fig. 12 a–d depicts the to-

al number of edges, standard deviation, total investment cost and

otal time in the final topologies. As discussed in the previous

ections, the more ordinate connection arrangement in the Torus

opology results in a higher number of edges and higher invest-

ent cost but a better control on the standard deviation among

ode capacities. However, in BA model topology there is more

oom to find shorter paths yielding in lower number of hops and
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works. 
onsequently lower investment cost throughout the network al-

hough the control on the standard deviation is harder. For the

ery same reason, Torus topologies terminate sooner than the BA

odel based topologies. Consequently, the computational time re-

uired in the Torus topology experiments is significantly lower

han that of the BA model topologies. Considering the final num-

er of edges, final total capacity, and comparable standard devi-

tion control BA model gave better solutions compared to Torus.

owever, when computation time is important Torus topology has

n undeniable advantage. 

. Conclusion 

In this paper, we designed a private payment network from

cratch for Bitcoin by exploiting LN technology for a marketplace

here retailers and customers are available. In developing this pay-

ent network, we achieved several objectives: First, we eliminated

he high transaction fees and confirmation times by using the off-

hain concept of LN. Second, we ensure forming a connected pay-

ent network which is capable of transferring any payments be-

ween customers and retailers while establishing fairness between

ooperating retailers to share the associated costs. Finally, we both

educed the success of DDoS attacks on the network and the pos-

ibility of privacy leaks by creating a pure P2P topology. The de-

elopment included an optimization model for flow maximization

hile performing pruning for the edges in order to reduce the

umber of channels to be opened. 

The evaluation with Python and Gurobi indicated that the per-

ormance of the heuristic approach is very close to the MIOP solu-

ion while allowing a certain scalability. The results also suggested

hat the topologies generated by Barabasi–Albert came as a favor-

ble initial topology that can scale much faster and still provides

omparable results as long as the upper bound for the channel ca-

acities are picked rightly. 
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