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Abstract—Sensing the temperature of liquids in containers
is a critical process in various applications such as food
safety, healthcare and environmental monitoring. Traditional
approaches usually require a physical contact with the liquid,
which may not be suitable for the liquids in sealed containers,
and may also pose a risk for contamination in particular for
the products used in healthcare. The contactless temperature
sensing approaches that mainly rely on optical or laser based
solutions, however, can only detect the temperature of a certain
point or only the surface temperature of the liquid. Sensing
through thermal cameras can provide scalability, however,
they come with high costs. In this study, leveraging the
ubiquitous availability of low-cost devices integrated with WiFi
interfaces, we explore the feasibility of measuring the liquid
temperature using fine-grained WiFi features. The proposed
approach utilizes the amplitude variations across WiFi channel
subcarriers extracted from Channel State Information (CSI)
to detect the liquid temperature. In order to enhance the
prediction accuracy, we also integrate principles from Newton’s
Law of Cooling for regularization during the training of
the neural network and propose a physics-guided machine
learning framework (PMLF). Through our experiments with
different liquids, temperature ranges and containers, we have
demonstrated that the proposed cost-effective and scalable
solution provides promising results in predicting the liquid
temperatures.

Index Terms—Non-contact thermometry, WiFi signals, CSI,
liquids.

I. INTRODUCTION

The ubiquity of WiFi devices and signals, along with
recent tools [1]–[4] that enable access to the fine-grained
WiFi features such as Channel State Information (CSI), has
provided a tremendous low-cost and scalable sensing oppor-
tunity. By leveraging the signal propagation characteristics
embedded in CSI data, researchers have demonstrated the
ability to identify individuals [5], track their movements [6],
and even distinguish them from pets [7]. Moreover, other
studies have utilized this rich data to recognize materials [8]
and liquid types [9], and to support indoor security applica-
tions [10]–[12].

In this paper, we leverage this CSI-based sensing method
for another significant application. Measuring the temper-
ature of liquids in containers without physical contact can
have a vital importance in various domains, as shown in
Fig. 1. For example, for the fluids used in healthcare,
contact-based temperature measuring devices can pose a

Fig. 1: Sensing the temperature of the liquids using wireless
signals can provide significant benefits in various domains
such as food safety, healthcare, and smart homes.

potential risk of contamination, requiring a non-contact
solution. Similarly, non-contact thermometry can allow real-
time temperature monitoring of beverages (e.g., milk, water,
juice) during storage and transportation without opening
containers which can help ensure the safety and compli-
ance with standards. It can also provide an opportunity to
sense the temperature of liquids stored in large containers
(e.g., water tanks). Finally, by leveraging the WiFi signals
available in most of the houses, this can also add another
capability to smart home setups.

Existing non-contact temperature sensing methods include
optical or laser-based solutions or thermal cameras [13].
These approaches detect the radiation emitted from the
object to recognize the associated temperature. One of the
issues with these solutions is that they can only measure
the temperature of the surface of an object. However, the
true temperature of a fluid within a pipe or container can
be different. Moreover, the high cost of these solutions can
hinder their scalable usage. On the other hand, there are also
acoustic or ultrasonic sensing solutions [14], [15]. However,
these methods come with limitations. For example, in [15],
the microphones of a smartphone are used to estimate the
ambient temperature from the sound propagation speed.
Since a single device is used to transmit and receive the
acoustic signals, the temperature only around the device can
be measured. RFIDs are also used for wireless temperature
sensing [16], [17]. While they can help reach long ranges
and have low-cost, they can only measure temperature at a
single location.

Different from these studies, we propose using WiFi CSI
data and its fingerprints associated with the liquid medium at
different temperature states to develop a novel non-contact
thermometry solution. The main contributions of this study
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are the following:

• We explore the feasibility of measuring the temperature
of a liquid in a container through the utilization of fine-
grained WiFi signal information, i.e., CSI. To the best
of our knowledge, this is the first work that uses WiFi
signals to measure liquid temperature.

• We present a hybrid regression-based approach that
leverages both WiFi CSI data and Newton’s Law of
Cooling to extract physical features characterizing tem-
poral temperature changes.

• We conduct experiments across various settings and
obtain promising results, demonstrating the potential
of this method for non-contact liquid temperature mea-
surement.

The rest of the paper is structured as follows. In Section II,
we provide an overview of related studies in the literature.
In Section III, we discuss some preliminary background
information related to the proposed solution, followed by
the details of the proposed WiFi CSI-based liquid temper-
ature sensing approach in Section IV. We then provide our
experimental evaluation in Section V. Finally, we conclude
the study and discuss future directions in Section VI.

II. RELATED WORK

WiFi CSI-based sensing has seen growing interest with
applications ranging from human activity and gesture recog-
nition [6], to occupancy monitoring [18], [19], and interest-
ing applications such as fruit ripeness detection [20], and
rehabilitation tracking [21], [22].

Sensing environmental features such as air humidity [23],
textile wetness [24], soil moisture [25], and the surrounding
temperature [26] has also been studied, leveraging the effects
on CSI amplitude and phase information in changing envi-
ronmental settings. This is achieved through various machine
learning approaches. For example, [23] uses a KNN classifier
to detect humidity in the air, while [24] uses a linear SVM
classifier to sense the wetness level in a towel located in
a room. In [25], a separate DNN classifier is trained for
sensing the soil moisture and texture. In [27], sensing the
moisture amounts in wheat crops is explored using an SVM-
based classification approach.

The closest work to this study is presented in [26], where
the correlation between the temperature of the air and the
amplitude of signals is explored. However, no prediction
model has been developed or presented in that study. In a
related study [28], the detection of indoor fires is studied
based on the observation that when the fire starts, the flames
affect the transmission of WiFi signals due to additional
scattering. A random forest based classifier is used there,
producing high accuracy in the detection of fires. Regarding
liquids, there are some other studies that aim to detect liquid
types [29], or liquid level in a container [9]. However, to the
best of our knowledge, there is no other study that leverages
WiFi CSI data for measuring the liquid temperature.
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Fig. 2: Temperature evolution over time based on Newton’s
Cooling Law

Besides WiFi sensing, other techniques are also used for
non-contact thermometry solutions. These include optical or
laser based solutions [13], acoustic or ultrasonic sensing
solutions [14], [15] and RFID based solutions [16], [17].
These solutions can either sense the temperature in a specific
point or have high costs. The proposed WiFi CSI based
solution can alternatively provide a low-cost and potentially
a scalable solution.

III. PRELIMINARIES

A. Newton’s Cooling Law

Newton’s Cooling Law (NCL) describes how an object
exchanges heat with its surrounding environment, assuming
the ambient temperature remains constant. The law is ex-
pressed by the heat exchange rate defined as,

dT (t)

dt
= −k(T (t)− Tenv), (1)

where T (t) is the temperature of the object (e.g., liquid in
our case) at time t, Tenv is the ambient (environmental)
temperature, k > 0 is the cooling constant (which will
depend on the properties of the liquid and the container),
characterizing the rate of heat dissipation. The solution of
this differential equation gives the temperature value at a
given time t by [30]:

T (t) = Tenv + (T0 − Tenv)e
−kt, (2)

where T0 is the initial temperature of the liquid and e−kt

term represents the exponential decay of the temperature
difference over time.

The exponential decay e−kt implies that the temperature
difference |T (t) − Tenv| decreases at a rate proportional
to the current difference. Over time, T (t) asymptotically
approaches Tenv representing thermal equilibrium.

The cooling constant k encapsulates the system’s thermo-
dynamic properties, including the medium’s thermal con-
ductivity, the object’s surface area-to-volume ratio, and the
heat transfer coefficient. This makes k a critical parameter
in characterizing the cooling behavior of liquids or solids.

Fig. 2 illustrates the temperature evolution over time as
described by Eq. 2. Starting from an initial temperature
T0, the object’s temperature decreases exponentially as it
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Fig. 3: System Overview

approaches the ambient temperature Tenv. The red dashed
line emphasizes the equilibrium position, at which the tem-
perature variation is minimal. This phenomenon highlights
the importance of the exponential decay factor e−kt in
defining the cooling process.

In this study, NCL provides the theoretical basis for
modeling temperature changes in liquids during the cooling
process. As the liquid’s temperature drops, it follows an
exponential decay pattern, which we describe with Eq. 2. At
the same time, the CSI from WiFi signals interacting with
the liquid also changes in a way that correlates with these
temperature shifts.

By applying the principles of NCL, we can refine the rela-
tionship between the liquid’s temperature and the variations
in CSI data. Key factors to consider are the cooling constant
k and the temperature at a given time T (t), as they help link
the physical cooling process to the behavior of the signals
observed.

This theoretical foundation enables the integration of
temperature dynamics into WiFi sensing, facilitating the use
of CSI for non-contact temperature estimation.

B. WiFi Channel State Information

Channel state information provides insight into how the
signal propagates between a transmitter (TX) and a receiver
(RX). This includes the reflections and scattering from the
environment and surrounding objects over multiple paths.
The channel is usually described using,

y = Hx + η,

where y and x represent the received and transmitted signals,
respectively; η denotes the noise in the channel; and H
denotes the CSI matrix. H[t] matrix over a time frame t
can be represented by

H[t] =


h1[1] h1[2] . . . h1[t]
h2[1] h2[2] . . . h2[t]

...
...

. . .
...

hS [1] hS [2] . . . hS [t]

 ,

where S denotes the number of subcarriers. Here, each
hi[j] value is a complex number and denotes the channel
frequency response (CFR) at subcarrier i at time j over
multiple paths and is defined by

H[t] =

N∑
i=1

αi(t)e
−j2πf

di(t)

c ,

Symbol Description
PM Physical model integration stage
PL Parameter learning stage
X CSI feature vector
θ Parameters of NCL
Tt Actual temperature at time t from PM stage

TPM (t) Predicted temperature at time t from PM stage
LPM Loss function of physical model
θiw Estimated parameters for each window
θ̂i Predicted parameters from PL stage

TPL(t) Predicted temperature at time t from PL stage
T̂final(t) Final predicted temperature at time t from the

PMLF
R(t) Difference between the predictions of PL and

PM: TPL(t)− TPM (t)
λcool(t) Rate of temperature change
ϕtime(t) Temporal features

I Interaction features between CSI features and
physical features

W Window size for parameter learning
w(t) Cooling phase weight at time t

LXGBfinal Weighted loss function used for training the
final XGBoost model

XGBparam XGBoost model used to predict NCL parame-
ters from CSI

XGBfinal Final XGBoost model used for temperature
prediction

TABLE I: Notations and descriptions.

where N represents the number of paths, di(t) denotes the
length of the i-th path, αi(t) is the complex variable that
consists of the phase and amplitude attenuation information,
f is the carrier frequency, and c is the speed of light.

WiFi sensing methods use a set of CSI values and
apply some signal preprocessing steps to remove anomalies
and smooth the data. Then, this data is used for different
types of machine learning approaches [31], [32] to achieve
application-specific goals.

In this study, we collect the CSI frames using ESP32 mi-
crocontrollers and the ESP32-based CSI extraction tool [3].
Out of the total 64 subcarriers, only 52 of them contain
actual CSI data that is not static or zero, and thus, we use
only the data of these subcarriers.

IV. PROPOSED METHOD

We propose a contact-free system that can measure the
temperature of a liquid inside a container using WiFi signals.
Our methodology depends on our empirical observations
showing the relationship between the amplitude of the signal
with the temperature of the medium the signal propagates.

A. System Overview

Fig. 3 depicts a high level overview of the proposed
system, which consists of three stages. It starts with data
collection. After that, we preprocess the collected data
and introduce it to our proposed Physics-Guided Machine
Learning Framework (PMLF).
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Fig. 4: Physics-Guided Machine Learning Framework (PMLF)

In this study, we use only amplitude values, as our
empirical analysis showed that phase information did not
offer additional insights. After denoising and normalizing the
amplitudes, we apply Principal Component Analysis (PCA)
to extract key subcarrier combinations most correlated with
the liquid’s temperature. These components are then fed into
our proposed physics-guided machine learning approach.

B. Physics-Guided Machine Learning Framework (PMLF)

Fig. 4 illustrates the proposed PMLF, which operates in
five main stages, each comprising multiple internal com-
ponents. We next describe each stage in detail. Table I
summarizes all notations used throughout the paper.

1) Physical Model (PM) Integration: Our physical model
integration begins with applying NCL to approximate the
behavior of liquid over time. This law provides a theoret-
ical foundation for predicting how a liquid’s temperature
approaches the ambient temperature over time. We construct
a cooling model based on this law, which will be referred
as physical model or PM throughout this work. To align
this physical model with experimental data, we employ a
curve fitting approach to estimate the parameters of NCL,
θ = {T0, Tenv, k}, where θ represents the parameter set to
be optimized. Using the temperature data (Tt), which is
the actual ground truth temperature, and the corresponding
time indices (t) with total time N , parameters are estimated
by minimizing the squared error loss between the actual
temperature and predicted temperature using,

LPM =

N∑
t=1

(Tt − TPM (t, θ))
2
, (3)

where TPM represents the physical model based estimation
of the temperature.

2) Parameter Learning (PL): We build the parameter
learning (PL) stage from the output of the physical model
by leveraging machine learning to improve the model’s
predictive capabilities. In this stage, we employ a window-
based approach to divide the data into smaller time seg-
ments, enabling localized learning of cooling behaviors. We
segment the data into fixed-sized non-overlapping windows
of length W . For each window, we extract the CSI features
at time t (Xt, which refers to PCA components obtained
from amplitude values) and the corresponding ground truth
temperature values (Tt). The time indices within each win-
dow are adjusted relative to the window’s start to ensure that
the model captures localized cooling behaviors. We define
the ith window by:

Wi = {(Xt, Tt) | t ∈ [iW, (i+ 1)W )}. (4)

Each window consists of the CSI feature vectors at each time
step and corresponding ground-truth temperature values.

We reconstruct the cooling curve for each window us-
ing the parameters predicted by the XGBoost model with
the output as predicted temperature TPL. For each of the
windows, we take the initial temperature, T i

w0, and the
ending temperature of the window T i

wx. This is compared
to the initial and ambient temperature of NCL. This is like
a mini PM stage for all the windows. Within each window,
we then fit NCL based curve to estimate the parameters,
θiw = {T i

w0, T
i
wx, k

i}. Once the parameters are estimated
for all windows, we train an XGBoost model XGBparam to
predict these parameters directly from the mean CSI features
of each window. Let X̄i denote the mean CSI feature vector
for window i,

X̄i =
1

W

∑
t∈Wi

Xt. (5)



We define the parameter prediction as,

θ̂i = XGBparam(X̄i, θ
i
w). (6)

where θ̂i = {T̂ i
0, T̂

i
env, k̂

i} is the set of the predicted
parameters for Wi.

3) Feature Engineering: At this point, we combine out-
puts from the PM and PL stages to generate a rich set of
features that encode both physical and data-driven insights.
These predictions refine the cooling curve by incorporating
CSI-based insights. We also consider temporal dynamics
of the cooling process, capturing the exponential decay
behavior and normalized time progression. We compute it
by

ϕtime(t) =

[
e−

t
max(t) ,

t

max(t)

]
, (7)

where e−
t

max(t) captures the decay over time, and t
max(t)

computes the normalized time index to reflect the relative
stage of cooling. We also introduce some cooling features
derived from the rate and magnitude to temperature change.
The first feature we use is the rate of change of the
temperature, defined and approximated as

λcool(t) = −∂T (t)

∂t
≈ −T (t+ 1)− T (t)

∆t
. (8)

Next, we use the normalized deviation of the current tem-
perature from the ambient temperature, which is defined by

Tnorm(t) =
Tt − Tenv

T0 − Tenv
. (9)

We also employ physics residual feature, which measures the
difference between the predictions of the physical model and
the parameter learning model:

R(t) = TPL(t)− TPM (t). (10)

This feature highlights regions where the parameter learning
model corrects the physical model, emphasizing deviations
caused by environmental or experimental variations. To
investigate the interplay between CSI features and physical
insights, we also adopt interaction features. For a given CSI
feature vector X and the comprehensive physical feature
vector Fphy, we compute pairwise interactions as:

I(i, j) = Xi · Fphy,j , (11)

where Xi and Fphy,j are the i-th and j-th components of X
and Fphy, respectively. The physical feature vector Fphy is
constructed as:

Fphy =

[
TPM (t), TPL(t), λcool(t),

Tnorm(t),R(t), ϕtime(t)
] (12)

These interaction features are then defined as:

I = {XiFphy,j | i ∈ [1, nX ], j ∈ [1, nphy]} , (13)

where nX and nphy represent the dimensions of the CSI
feature vector X and the physical feature vector Fphy,
respectively.

Finally, the resulting feature set is formed by combining
all the above features,

F(t) = [Fphy, I(t)]. (14)

This consolidated feature set ensures that the model has
access to a comprehensive representation of the cooling
dynamics from NCL as well as the CSI fingerprints from
the signal propagation.

4) Cooling Phase-Weighted Learning: In this process, we
construct a weighted loss function to enhance the training
process by incorporating phase-specific weights to prioritize
different cooling phases. These weights are derived from
the cooling rate, highlighting quick cooling stages where
temperature fluctuations are more significant.

In early stages of cooling, the temperature difference
between the liquid and the environment is larger. According
to NCL, this results in faster cooling rate, λcool(t). When the
temperature of the liquid approaches ambient temperature,
λcool(t) slows down. Thus, faster cooling is responsible for
a higher absolute value of λcool(t). By normalizing this
value, we scale the values to a consistent range. Then we
customize the weight values w(t), using an exponential
function eλnorm(t). This ensures that higher cooling rates
are assigned a higher weight and slower rates are assigned
smaller weights.

By introducing these weights during training, we ensure
the model effectively adjusts to both rapid and gradual
cooling behaviors. We calculate the cooling phase weights
based on the normalized cooling rate of the temperature.
In practice, we approximate this rate as described in Eq. 8.
Then we normalize the cooling rate, denoted by λnorm, and
compute the weights from it as,

w(t) = e−λnorm(t). (15)

This weight is used in the next stage when we train the
final XGBoost model. Using the engineered feature set at
time t, i.e., F(t), and the predicted and actual temperatures,
T̂ (t) and T (t), respectively, we define a mean squared error
(MSE) based weighted loss function as follows,

LXGBfinal
=

∑
t

w(t)
(
T (t)− T̂ (t)

)2

, (16)

where w(t) modulates the contribution of each time step t
to the total loss. By using this weighted loss function, the
model learns to balance the importance of rapid and slow
cooling phases.

5) Final Prediction: This is the final stage of our pro-
posed PMLF. In this stage, the insights from the feature
engineering process are used to deliver temperature predic-
tions. Here, we use a gradient boosting regressor (XGBoost)
as our final predictive model. The model is trained on the
comprehensive feature set generated in the Feature Engineer-
ing stage and evaluated on unseen test data.

For the final prediction, we pass the dataset through the
PM and PL stages of PMLF. With the predictions of PM
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Fig. 5: Experimental setups for different scenarios (a) Water in a glass container, (b) Milk in a glass container, (c) Water in
a larger plastic container.

Component Specification Purpose
ESP32 WiFi-enabled

Micro-controller
TX and RX for CSI
collection

DS18B20 Digital temperature
sensor

Ground truth
temperature
measurement

Raspberry Pi Model 4B with 2GB
RAM

Time synchroniza-
tion and data man-
agement

TABLE II: Hardware used during experiments.

and PL, the test data undergoes the same feature engineering
steps as the training data. The trained XGBoost model takes
the engineered features Ftest(t) as input to predict the final
temperature values:

T̂final(t) = XGBfinal(Ftest(t)), (17)

where XGBfinal represents the trained XGBoost regressor.

V. EVALUATION

In this section, we first describe our experiments and
discuss feature analysis results. After that we present the
evaluation results of the proposed approach.

A. Experimental Setup and Data Collection

We designed the experiments to collect WiFi CSI in a
controlled environment, with focus on sensing the tempera-
ture of liquid through signal variations. The setup consists of
two ESP32 microcontrollers, a DS18B20 liquid temperature
sensor [33], and a Raspberry Pi.

We collected data for three different scenarios, as shown
in Fig. 5.

• Scenario 1: Hot water in a glass bottle which is the
primary data collected for testing the system.

• Scenario 2: Hot milk in a glass bottle which is used to
introduce liquid variation.

• Scenario 3: Hot water in a plastic bowl which is larger
than glass bottle. This case is considered to introduce
liquid container variation.
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Fig. 6: Temporal evolution of mean CSI amplitude and water
temperature during the cooling process in Scenario 1.
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Fig. 7: Correlation between CSI amplitude and temperature
for each subcarrier across four experimental trials in Sce-
nario 1.

The hardware used during experimental setups is summa-
rized in Table II. We used the ESP32-CSI-Toolkit [3], [34]
to collect CSI using a pair of ESP32 WiFi-enabled micro-
controllers as a TX and RX, respectively. The DS18B20
sensor measured the liquid’s temperature during cooling.
The selection of channel can be crucial in data collection
[35]. Here, the ESP32 devices captured CSI data from WiFi
signals transmitted over channel 1 at a packet rate of 100Hz.



0 1 2 3 4 5 6 7 8 9 10

Time (ms) 10 5

0

0.2

0.4

0.6

0.8

1

M
ea

n
 C

S
I 

A
m

p
li

tu
d

e

45

50

55

60

65

T
em

p
er

at
u

re
 (

°C
)

Scenario 2

Mean CSI Amplitude

Temperature

Fig. 8: Temporal evolution of mean CSI amplitude and milk
temperature during the cooling process in Scenario 2.

0 10 20 30 40 50 60

Subcarrier Index

-0.2

0

0.2

0.4

0.6

0.8

C
o
rr

e
la

ti
o
n
 C

o
e
ff

ic
ie

n
t

Scenario 2

Trial 1

Trial 2

Trial 3

Fig. 9: Correlation between CSI amplitude and temperature
for each subcarrier across three experimental trials in Sce-
nario 2.

The ESP32 devices and the DS18B20 sensor are connected
to a Raspberry Pi to ensure precise time synchronization and
continuous logging of both CSI and temperature data. Note
that, the liquid container is in the Line-of-Sight (LOS) of
the TX-RX pair.

For the first scenario, we conducted four trials, each one
of them lasting for one hour. At the start of each trial, the
water was heated to approximately 80◦C and allowed to
cool naturally for one hour. During this cooling process,
the DS18B20 sensor recorded the liquid temperature at one-
minute intervals for the ground truth. The ESP32 devices
captured CSI frames continuously, focusing on signal vari-
ations across 64 subcarriers. As for the second and third
scenarios, data was collected in an identical fashion as before
for three trials.

B. Feature Analysis and Selection

The relationship between the mean CSI amplitude over
all subcarriers and water temperature during the cooling
process in the first scenario is shown in Fig. 6. The red curve
represents the ground-truth temperature recorded from the
DS18B20 sensor, while the blue curve depicts the mean CSI

amplitude. The mean amplitude is computed by averaging
the amplitudes across all 52 active subcarriers for each CSI
frame, providing a single aggregated feature that captures
signal dynamics over time. The results highlight a strong
correlation between the mean CSI amplitude and the cooling
dynamics of the liquid. As the water cools naturally from
approximately 85◦C to 50◦C, the mean CSI amplitude
consistently decreases, mirroring the exponential decay of
the temperature. This relationship suggests that variations in
the WiFi CSI data are closely tied to the physical changes
in the liquid’s properties, such as refractive index, during
cooling.

Fig. 7 shows the correlation coefficient between CSI
amplitude and the temperature for each subcarrier across all
four trials. The results show a high correlation for most of
the subcarriers, with even the lowest coefficient being above
0.5, and only a few subcarriers are showing differences from
the rest of them. This suggests that we can consider CSI
amplitude from all the subcarriers for the proposed liquid
temperature sensing system.

For the second scenario, the mean CSI amplitude also
aligns with the liquid temperature as shown in Fig. 8, but
the CSI amplitude exhibits higher noise and irregularities
compared to the water dataset in the first scenario. This may
be due to the higher viscosity and density of milk, which can
introduce additional scattering effects or changes in signal
propagation. Milk’s higher refractive index and absorption
properties (due to its composition of fats, proteins, and
suspended particles) [36] could contribute to greater signal
attenuation and scattering [37], resulting in the observed
differences in CSI amplitude behavior. Fig. 9 demonstrates
the correlation coefficient of amplitude for each of the active
subcarriers. While some subcarriers are not well correlated,
there is still a good subset of subcarriers (e.g., 20-30) that
can be leveraged for accurate predictions. We expect that
PCA can help identify these highly correlated subcarrier data
within the top PCA components.

In the dataset collected with a larger container, the larger
exposed surface area accelerates heat transfer via convec-
tion [38] and evaporation [39]. These may cause potential
issues during data collection; thus, in this scenario, we used
data from the earlier stages of this experimental setup. The
mean amplitude values as well as correlation results are
similar to the second scenario, thus we did not add the
corresponding figures.

C. Evaluation Metrics

To evaluate the performance of the proposed system, we
compute commonly used regression metrics. Let Ttest(t)
represent the actual temperature at time t, T̂final(t) represent
the predicted temperature at time t, Ns denote the total
number of test samples, and T̄test denote the mean of the
observed temperatures. Then, the evaluation metrics we use
are computed as:
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(a) Scenario 1: Water (glass bottle)
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0 1 2 3 4 5 6 7 8

Time (ms) 10
4

60

65

70

75

80

85

T
em

p
er

at
u

re
 (

°C
)

Scenario 3

Actual

Predicted

(c) Scenario 3: Water (plastic bowl)

Fig. 10: Actual and predicted temperature for PMLF in different scenarios.

• Mean Absolute Error (MAE):

MAE =
1

Ns

Ns∑
t=1

|Ttest(t)− T̂final(t)|. (18)

The MAE score measures the average absolute differ-
ence between predicted and observed temperatures.

• Root Mean Squared Error (RMSE):

RMSE =

√√√√ 1

Ns

Ns∑
t=1

(
Ttest(t)− T̂final(t)

)2

. (19)

The RMSE score penalizes larger errors more heavily.
• R2 Score:

R2 = 1−

∑Ns

t=1

(
Ttest(t)− T̂final(t)

)2

∑Ns

t=1

(
Ttest(t)− T̄test

)2 . (20)

The R2 score quantifies the proportion of variance
explained by the model.

D. Results

In this section, we discuss the results of our experimental
evaluation. For comparative evaluation, we use the XGBoost
regression model to compare with PMLF. The model is con-
figured with a squared error objective function and trained
using a learning rate of 0.05, a maximum tree depth of 6,
and 1400 estimators, with subsampling and column sampling
rates set to 0.7. We also employ two XGBoost models in
PMLF. The first model, XGBparam, is trained to predict
the parameters of Newton’s Cooling Law from the mean
CSI features within each window, enhancing the parameter
learning stage. The second model, XGBfinal, serves as the
final prediction model, utilizing the engineered features from
the feature engineering stage to predict the temperature. Both
models use a learning rate of 0.01, a maximum tree depth
of 6, and 2000 estimators. These parameters are obtained
through an empirical search and trial based optimization
for both approaches. Table III presents the summary of per-
formance comparison of PMLF and the baseline XGBoost
model across the three experimented scenarios.

Scenario Model MAE RMSE R2 Score

1 XGBoost 3.55 4.37 0.83
PMLF 1.59 1.69 0.97

2 XGBoost 1.75 2.18 0.89
PMLF 0.22 0.27 0.99

3 XGBoost 2.95 4.18 0.75
PMLF 1.58 2.07 0.94

TABLE III: Prediction results for different scenarios.

1) Scenario 1: In the first scenario with water in a glass
bottle, PMLF shows lower MAE and RMSE of 1.59◦C and
1.69◦C, respectively, compared to the XGBoost model that
provides an MAE of 3.55◦C and an RMSE of 4.37◦C.
PMLF also shows great R2 score compared to XGBoost
model. Fig. 10a depicts the PMLF predictions compared to
the ground truth values, which shows a close alignment.

2) Scenario 2: With the milk dataset collected in a
glass bottle, despite more variations and less alignment of
amplitude values with temperature (Fig. 8), we obtained
surprisingly better results. In this case, PMLF outperforms
XGBoost with an MAE of 0.22◦C and an RMSE of 0.27◦C,
achieving a near-perfect R2 score of 0.99. This indicates that
nearly all variation in the temperature data is captured by the
model. Predictions for this case are given in Fig. 10b.

3) Scenario 3: In the last scenario, where the cooling
dynamics are more complex due to a larger surface area
and faster initial cooling, PMLF still shows considerable im-
provement over XGBoost with the available data. It achieves
RMSE of 2.07◦C compared to 4.18◦C of XGBoost, and an
R2 score of 0.94 against 0.75. Fig. 10c shows the predictions
for this scenario, where we observe more variation in results.

VI. CONCLUSION

In this work, we have explored the liquid temperature
measurement problem using fine-grained WiFi signals. We
have utilized amplitude data from the CSI values over
multiple subcarriers together with the principles defined
in Newton’s Law of Cooling to develop a physics-guided
machine learning solution. Through experiments performed
with two different liquids (i.e., water, milk) and two different
containers (i.e., glass, plastic) with different sizes, we have
shown promising results that can achieve 0.22-1.59 MAE.
These results are better than the machine learning only



approach, showing the benefit of the proposed novel physics-
guided machine learning approach. In our future work, we
will be exploring new liquids and containers, as well as
consider longer distances between TX-RX devices.
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