
Three-dimensional Stable Task Assignment in

Semi-opportunistic Mobile Crowdsensing

Fatih Yucel and Eyuphan Bulut

Department of Computer Science, Virginia Commonwealth University

401 West Main St. Richmond, VA 23284, USA

{yucelf, ebulut}@vcu.edu

Abstract—In semi-opportunistic mobile crowdsensing (SO-
MCS), workers are asked to provide the matching platform
with multiple paths they find acceptable between their starting
locations and destinations in order to alleviate the problem of
poor coverage in opportunistic MCS without forcing them to
take potentially much costly and hence undesirable paths as in
participatory MCS. While these alternative paths open up new
assignment possibilities between workers and tasks, they also make
it more challenging to find a stable or preference-aware task
assignment (TA), as they bring a new dimension to the TA problem
(i.e., workers/paths/tasks instead of workers/tasks as in previous
work), and introduce complex requirements to achieve stability by
satisfying user preferences. In this paper, we formally define the
stability conditions for three-dimensional task assignments in SO-
MCS, and propose two polynomial-time TA algorithms: an exact
algorithm for SO-MCS systems with uniform worker qualities, and
a c-approximate algorithm for general SO-MCS systems, where
c is the number of the acceptable paths of the worker with the
largest set of acceptable paths. Through extensive simulations, we
demonstrate that the proposed algorithms significantly outperform
the state-of-the-art TA algorithms in terms of stability (or user
happiness) in most scenarios.

Index Terms—Semi-opportunistic mobile crowdsensing, task
assignment, preference-awareness, stable matching.

I. INTRODUCTION

Mobile crowdsensing (MCS) aims to leverage the portable

devices of mobile users to cooperatively perform sensing

tasks [1]. There are two main sensing modes in MCS: (i)

participatory, and (ii) opportunistic. In the former, the MCS

platform assigns a path and some set of tasks on this path to

each worker in a way that maximizes the system utility. In the

latter, on the other hand, workers move on the paths of their

choosing, and can be assigned to perform a task only if the task

region resides on their paths. The key issue in the participatory

mode is that the paths assigned to workers are likely to disturb

their daily schedules and introduce significant additional travel

costs, whereas the opportunistic mode mainly suffers from the

issue of poor coverage, as a task cannot be carried out if its

region will not be visited in time by any worker in the system

during their self-defined trips.

To address these issues and find a middle ground between

the participatory and opportunistic modes, a new sensing mode,

namely semi-opportunistic, has been proposed recently [2]. In

this novel mode, workers provide the matching platform with

alternative paths (e.g., dashed lines in Fig. 1) they would be

willing to take within their comfort zones in addition to the

Opportunistic

Semi-Opportunistic

Participatory

Task

Fig. 1: Example paths of a user for different sensing modes.

path they would normally take. This yields a wider range of

task assignment options for both workers and tasks, and hence

not only improves the task coverage, but also expands the set

of tasks that workers can carry out, allowing them to increase

their profits by performing more tasks.

Besides the sensing mode, the performance metric used to

optimize the task assignments and the actual quality of the

assignments according to this metric have a major impact on

the success of the MCS campaign. Most of the existing studies

in the MCS literature adopt a system-level performance metric

(e.g., the number of completed tasks, the overall task quality).

However, the individual preferences of the users (i.e., workers

and task requesters) are generally not aligned with such system-

level metrics, thus the resulting task assignments may deter

their continuous participation in the MCS campaign. To resolve

this problem, some recent studies [3], [4] adopt a user-centric

approach, and seek to maximize the happiness of each user with

their assignment according to their preferences. This is typically

accomplished by producing a task assignment that ensures the

absence of worker-task requester pairs that prefer to be matched

with each other rather than their current partners.

This study is the first to examine the user-centric task as-

signment problem in a semi-opportunistic mobile crowdsensing

(SO-MCS) setting. The key challenge in this problem is to sat-

isfy the preferences of all users in a three-dimensional matching

setting, where each worker is to be matched with one of his

acceptable paths, and then with a set of tasks on this path. Thus,

the path and task assignments are strongly interdependent, and

must be compatible with each other. Besides, various factors

such as task rewards, worker qualities and the number of

tasks that workers can carry out on each of their paths (a

worker may choose to perform fewer tasks on a longer path)

need to be considered together to achieve a preference-aware

task assignment. Our main contributions in this paper can be

summarized as follows:

accepted to appear in Proceedings of 23rd IEEE International Symposium on a World of
Wireless, Mobile and Multimedia Networks (WoWMoM), Belfast, June, 2022.

• We provide a formal definition of the preference-aware

task assignment problem in an SO-MCS system.

• We show that a task assignment that satisfies all user

preferences does not exist in some instances.

• We design two different task assignment algorithms, and

prove their (near-)optimality for different settings.

• We carry out extensive simulations, and demonstrate the

superiority of our algorithms over the existing solutions.

The rest of the paper is structured as follows. In Section II,

we provide a summary of the related work. In Section III, we

describe the system model and formally define the preference-

aware task assignment problem. Then, we present our algo-

rithms along with their theoretical analysis in Section IV, and

their empirical analysis in Section V. Finally, in Section VI,

we provide our conclusions.

II. RELATED WORK

A. Task Assignment in MCS

In participatory MCS, since workers need to travel between

the task regions to perform the assigned tasks, a key factor

that shapes the task assignment process is the travel costs of

the workers. Thus, in most of the studies minimization of the

travel costs is aimed together with a second objective such

as maximizing the number of completed tasks with minimal

rewards [5], maximizing the total task quality [6], maintaining

a maximum traveling distance for workers [7], preserving the

privacy of users [8], and achieving an on-time arrival of the

workers to their own destinations [9].

On the other hand, in opportunistic MCS, the main objectives

are to maximize the coverage and to minimize the completion

times of the tasks due to the uncontrolled mobility (i.e., a

task can only be performed if its region resides on the route

of a worker). In [10], the authors introduce the problem of

maximizing the total task quality by recruiting workers with

high QoS scores within the budget constraint of the platform.

They prove the problem to be NP-hard, and propose an efficient

algorithm with an approximation ratio of 1 − (1/e). In [11],

the authors study the same problem, and present a heuristic

algorithm that outperforms the approximation algorithm in [10].

In [12]–[14], not only the completion of tasks but also the

delivery of sensed data is assumed to be carried out in an

opportunistic manner, and the optimization of both has been

studied considering various aspects. Uncertainty in worker tra-

jectories due to environmental (e.g., road/traffic conditions) and

personal factors (e.g., the trajectory of a taxi driver) have also

been considered in some studies, and solutions that maximize

task coverage [15] and minimize task completion times [16]

have been proposed.

There are a few very recent studies [2], [17] that look at the

task assignment problem in a hybrid system model to integrate

the advantages of participatory and opportunistic MCS. In [17],

the authors propose a two-phased task allocation process, where

opportunistic task assignment is followed by participatory task

assignment. The objective behind this design is to maximize the

number of tasks that are performed in an opportunistic manner,

which is much less costly compared to participatory MCS,

and then to ensure that the tasks that cannot be completed by

opportunistic workers are assigned to workers that are willing to

perform tasks in a participatory manner to alleviate the coverage

problem in opportunistic MCS. On the other hand, in [2], the

workers carry out the sensing tasks only in opportunistic mode,

but they provide the matching platform with multiple paths

that they would take if requested, instead of a single path as in

classic opportunistic MCS [10], [11]. This enables the platform

to find a matching with a high task coverage as illustrated

in Fig. 1. However, none of the studies mentioned thus far

considers the preferences of the workers and task requesters

in the assignment process, which may impair their long-term

participation in the MCS campaign.

B. Preference-aware Matching

Since its introduction by Gale and Shapley [18], stable or

preference-aware matching has been utilized in various real

world applications such as residency matching [19], channel

assignments in device-to-device [20] and V2X communica-

tions [21], and taxi dispatching [22]. A comprehensive list of

stable matching problems can be found in [23].

Three dimensional version of stable matching was introduced

by Knuth [24] by considering three sets of agents (e.g., woman,

man, dogs) and their preferences on the others. Later, several

variants that consider cyclic preference relations [25] as well

as one-dimensional preference lists over all individuals from

the other two sets [26] have also been studied. The three-

dimensional stable matching has also been considered in several

applications such as server-data source-user matching [27] in

video streaming services under restricted preference settings.

Since workers and task requesters in a typical MCS system

have preferences over each other to maximize their profits and

to have their tasks completed with the highest quality possible,

respectively, some recent studies have explored the issue of

preference-awareness in MCS as well. [28] and [4] study the

budget-constrained many-to-one and many-to-many stable task

assignment problems, which are proven to be NP-hard, and

propose efficient approximation algorithms. In [3], the authors

study the former problem under a weaker stability criteria con-

sidering minimum task quality requirements. [29] studies the

capacity-constrained many-to-many stable matching problem.

[30] considers the stability and the profit of the platform si-

multaneously, and aims to find maximum size task assignments

with minimum instability. Some other studies also consider

online [31] and coverage-aware stability [32]. However, all

of these studies focus on either participatory or opportunistic

sensing, thus have the aforementioned disadvantages of that

sensing mode. Moreover, they only consider a two-dimensional

(bipartite) stable matching between workers and task requesters.

There are some recent studies that consider three-

dimensional stability in spatial-crowdsourcing, however these

studies have a limited understanding of user preferences and

stability. For example, [33] only considers the preferences of

users on the potential places (where the task will be completed)

based on their proximity (i.e., workers and task requesters do

not have preferences over each other). On the other hand,

there are also studies [34], [35] that consider trichromatic

matching (i.e., matching of three items such as tasks, workers

and workplaces/PoIs) with some stability definitions. However,

these studies mainly focus on task scheduling within a deadline

without considering the matching stability based on user prefer-

ences, and aim to maximize the number of matched items. Our

problem is totally different from these studies as it is a many-

to-one, capacity-constrained three-dimensional stable matching

problem where only the nodes in two (i.e., workers, tasks) of

the three sets have preferences over each other depending on

the features of the nodes in the third set (i.e., acceptable paths

of workers) as explained in the next section.

III. SYSTEM MODEL

A. Assumptions

We assume a system model with a set of location-dependent

sensing tasks T = {t1, t2, . . . , tn} and a set of workers

W = {w1, w2, . . . , wm} that accept to perform tasks in a

semi-opportunistic setting. Each worker wi provides the service

provider (SP) with a set of paths Pi = {pi,1, pi,2, . . . , pi,ai
} that

he finds acceptable from his current location to his destination.

In each assignment period, it is the responsibility of SP to find a

satisfactory assignment between workers and tasks by matching

workers to one of their acceptable paths, and assigning a subset

of tasks on their selected paths.

Each path pi,j has a capacity ci,j associated with it, which

indicates the maximum number of tasks that worker wi is

willing to perform if he is assigned to path pi,j . The ability

to specify a capacity for each path enables workers to avoid

any unacceptable delays in their daily schedule by controlling

their sensing activity. Since acceptable paths of a worker

may have different conditions (e.g., traffic, security) that can

affect the comfort level of the worker for sensing, or may be

of different lengths, it is crucial to allow workers to assign

different capacities to their paths. For simplicity, we let the

path set Pi of each worker wi be in non-increasing order of

path capacities. That is, we have ci,j ≥ ci,j+1 for all j values

between 1 and ai − 1. Besides, if the region of task tk resides

on path pi,j (i.e., worker wi can perform task tk if he takes

path pi,j), we say tk is on pi,j and let

Ti,j = {tk : tk ∈ T and tk is on pi,j}. (1)

Our system model is also QoS-aware. That is, each worker

wi has a QoS score qi,j for each task tj , which specifies

the level of competence of worker wi for task tj , and can

be determined based on various factors such as quality of

the sensing equipment and trustworthiness or seniority of the

worker. Moreover, we look at the task assignment problem in

both uniform and general QoS settings [28]. In the uniform QoS

setting, each worker has a universal QoS score that applies for

all tasks, i.e., qi,j = qi,k for all 1 ≤ j, k ≤ n. On the other hand,

in the general QoS setting, a worker may have different QoS

scores for different tasks. For convenience, we simply call MCS

instances with uniform and general QoS settings as uniform and

general MCS instances, respectively.

Another important feature of our system model is that the

task assignments are optimized with respect to the preferences

of workers and tasks, which is called preference-awareness.

Each task (requester) tj would like to be matched with a worker

with a high QoS score, thus prefers worker wi to all workers

with a QoS score smaller than qi,j . Then, we can define the

preference list Lt
j of task tj for the general QoS setting as

follows:

Lt
j = wσ1

, wσ2
, . . . , wσk

where qσi,j ≥ qσi+1,j . (2)

Note that Lt
j may not contain all workers if tj finds some

workers unacceptable (e.g., workers with a QoS score smaller

than a certain value). In the uniform QoS setting, assuming L̂t
j

is the preference list formed for task tj according to (2) without

leaving out any worker (i.e., |L̂t
j | = m), we can define a global

preference list LT for tasks as follows:

LT = L̂t
1 = L̂t

2 = · · · = L̂t
n. (3)

On the other hand, the requester of each task tj offers a

monetary reward of rj,i to each worker wi to encourage worker

participation. As rational individuals, the workers in our system

aim to maximize their profits. Thus, the preference list Lw
i of

worker wi can be formed as:

Lw
i = tσ1

, tσ2
, . . . , tσk

where rσi,i ≥ rσi+1,i. (4)

The preference list of a worker also does not need to contain

all tasks in the system. Given a worker-task pair (wi, tj), if

wi ̸∈ Lt
j and tj ∈ Lw

i , we remove tj from Lw
i as worker wi is

not an acceptable partner for task tj . Similarly, if tj ̸∈ Lw
i and

wi ∈ Lt
j , we remove wi from Lt

j .

We let M denote a feasible three-dimensional matching

(task assignment) in our system model. For each worker wi,

M(wi) = (A, pi,j) denotes the assignment of worker wi in this

matching, where pi,j is the path selected for worker wi and A
is the set of tasks that are assigned to worker wi through path

pi,j . To be a feasible assignment, A and pi,j must satisfy the

following conditions:

• capacity constraint: |A| ≤ ci,j ,

• acceptability constraint: A ⊆ Lw
i ,

• regional constraint: A ⊆ Ti,j .

On the other hand, the assignment of each task tk in this

matching is denoted by M(tk) = (wi, pi,j), where wi is the

worker that is assigned to perform task tk and pi,j is the path

that is selected for worker wi. The following conditions must

be satisfied for feasibility:

• acceptability constraint: wi ∈ Lt
k.

• regional constraint: tk ∈ Ti,j ,

If a user (worker or task) v is left unmatched in M, we let

M(v) = (∅,−). Also, given the assignment M(v) = (X,Y)
of user v, we let Mu(v) and Mp(v) denote X and Y ,

respectively.

𝑤1
𝑤2

𝑝1,1
𝑝1,2𝑝2,1
𝑝2,2

𝑡1
𝑡2
𝑡3𝑐1,1 = 𝑐1,2 = 𝑐2,1=𝑐2,2 = 2

𝑟1,1 = 4𝑟1,2 = 4
𝑟2,1 = 3𝑟2,2 = 3
𝑟3,1 = 2𝑟3,2 = 2

𝑞1,1 = 2𝑞1,2 = 2𝑞1,3 = 1
𝑞2,1 = 1𝑞2,2 = 1𝑞2,3 = 2

∅𝑤1, 𝑝1,1, 𝑡1𝑤1, 𝑝1,2, 𝑡2𝑤1, 𝑝1,2, 𝑡3𝑤2, 𝑝2,1, 𝑡2𝑤2, 𝑝2,2, 𝑡3

Fig. 2: An MCS instance for which no stable matching exists.

There is an edge from a path pi,j to a task tk if tk ∈ Ti,j .

B. Problem Statement

Our main objective in this study is to find a preference-aware,

feasible matching according to our system model where the

users are happy with their assignments according to their pref-

erences. Below, we give the necessary definitions to formally

evaluate the happiness of the users with a matching.

Definition 1 (Unhappy triad). Given a matchingM, worker wi,

path pi,j and a set S of tasks form an unhappy triad denoted

by ⟨wi, pi,j , S⟩ if

• S is an acceptable assignment for wi, i.e.,

1 ≤ |S| ≤ ci,j , S ⊆ Lw
i , and S ⊆ Ti,j , (5)

• wi is an acceptable assignment for each tk ∈ S, i.e.,

wi ∈ Lt
k and tk ∈ Ti,j , (6)

• each task tk ∈ S either prefers worker wi to their current

assignment wh in M, i.e.,

qi,k > qh,k where qh,k = 0 if wh = ∅, (7)

or is already assigned to worker wi, i.e., Mu(tk) = wi.

• worker wi prefers the task set S to his current assignment

in M, i.e.,
∑

th∈S

rh,i >
∑

tk∈Mu(wi)

rk,i, (8)

Thus, given an unhappy triad ⟨wi, pi,j , S⟩, we see from the

first two conditions that it is possible to assign the tasks in

the set S to worker wi through path pi,j without violating any

feasibility constraints, and see from the last two conditions that

this would make at least one task in S and worker wi strictly

better off without making any task in S worse off.

Definition 2 (3D-Stable matching). A matching is said to be

stable if it does not contain any unhappy triads.

In order for a matching to be perfect in terms of preference-

awareness, it should be stable. However, as we prove in the

following theorem, it is not possible to construct a stable

matching in all MCS instances.

𝑤1
𝑤2

𝑝1,1
𝑝1,2𝑝2,1
𝑝2,2

𝑡1
𝑡2
𝑡3𝑐1,1 = 𝑐1,2 = 𝑐2,1=𝑐2,2 = 2

𝑟1,1 = 4𝑟1,2 = 4
𝑟2,1 = 3𝑟2,2 = 3
𝑟3,1 = 2𝑟3,2 = 2

𝑞1,1 = 2𝑞1,2 = 2𝑞1,3 = 1
𝑞1,1 = 1𝑞1,2 = 1𝑞1,3 = 2

a

∅
a: 𝑤1, 𝑝1,1, 𝑡1
b: 𝑤1, 𝑝1,2, 𝑡2
c: 𝑤1, 𝑝1,2, 𝑡3
d: 𝑤2, 𝑝2,1, 𝑡2
e: 𝑤2, 𝑝2,2, 𝑡3

b

c

d e

a,e

a,d

b,cc,d

b,e

a e

a

d

c

d

(b,c)

e b

a

a

M1

M2

M4

M3

M5

M6

M7

M8

M9

M10

M11

Fig. 3: Proof of Theorem 2. All possible matchings for the

instance in Fig. 2 are shown with boxes. There is an edge k
from matching (box) Mi to matching Mj , if k is an unhappy

triad in Mi due to a more favorable assignment in Mj .

Theorem 1. There exist MCS instances with a general QoS

setting, in which all feasible matchings are unstable (i.e.,

contain at least one unhappy triad).

Proof. We prove it by showing such an instance, which is

illustrated in Fig. 2. There are 11 possible task assignments

in this instance, and, as shown in Fig. 3, every one of them

contains at least one unhappy triad. Thus, no stable matching

exists for this instance, which completes our proof.

On the other hand, a stable matching always exists in the

uniform MCS instances, which we will prove in the following

section by giving an algorithm that produces a stable matching

for such instances.

Due to the nonexistence of stable matchings in general MCS

systems, we formulate our objective function as:

maximize min
x∈U(M)

1

δx
, (9)

where U(M) denotes the set of unhappy triads in the produced

matchingM, and δx denotes the dissatisfaction ratio of a given

unhappy triad x = ⟨wi, pi,j , S⟩, which is computed by

δx =

∑
th∈S rh,i∑

tk∈Mu(wi)
rk,i

, (10)

(where δx = ∞ if Mu(wi) = ∅). So, the dissatisfaction

ratio of x quantifies the utility difference between the current

matching and the matching, in which worker w and the unhappy

tasks in S are matched with each other, and do not form an

unhappy triad. Consequently, our goal is to optimize the worst-

case performance by minimizing the maximum dissatisfaction

ratio in the final matching.

Definition 3 (α-stable matching). A matching M is said to be

α-stable if

max
x∈U(M)

δx ≤ α. (11)

Note that a perfectly stable matching is 1-stable, and larger

α values indicate worse task assignments in terms of user

happiness. For the α-stability, we have the following lower

bound, which may not be tight.

TABLE I: Key notations.

Notation Description

W , T Set of workers and tasks, respectively

m, n Number of workers and tasks, respectively

Pi Set of acceptable paths of worker wi

ai Number of acceptable paths of worker wi

ci,j Capacity of path pi,j
Ti,j Set of tasks that reside on path pi,j
qi,j QoS of worker wi for task tj
rj,i Reward offered to worker wi for task tj
Lt
j Preference list of task tj

LT Global preference list of tasks in uniform systems

Lw
i Preference list of worker wi

M A feasible matching (task assignment)

M(v) Assignment of worker/task v in M

Mu(wi) Set of tasks assigned to worker wi in M

Mp(wi) Path selected for worker wi in M

Mu(tj) Worker assigned to task tj in M

Mp(tj) Path selected for the partner of task tj in M

δx Dissatisfaction ratio of unhappy triad x

U(M) Set of unhappy triads in M

Theorem 2. There exist MCS instances with a general QoS

setting, which do not admit any α-stable matching for α < p̂,

where p̂ ≈ 1.325 is the plastic number [36].

Proof. We prove this on a slightly modified version of the MCS

instance given in Fig. 2, in which the task rewards are set as

r1,1 = r1,2 = p̂2, r2,1 = r2,2 = p̂, and r3,1 = r3,2 = 1. This

instance has exactly the same set of possible matchings and

unhappy triads as the original instance, which are illustrated

in Fig. 3. Since the powers of the plastic number satisfy the

equation p̂k+3 = p̂k+1 + p̂k, the ratio between the total reward

of any feasible two task sets for both workers is guaranteed

to be at least p̂, which means if a worker is unhappy, his

dissatisfaction ratio will be at least p̂. In fact, the maximum

dissatisfaction ratio in these matchings are as follows: ∞ for

M[1..5],M9,M10; p̂3 for M6; and p̂ for M7,M8,M11. This

completes our proof, as the α-stability of all possible matchings

in this instance is at least p̂.

A summary of the notations used throughout the paper is

presented in Table I.

IV. PROPOSED SOLUTION

In this section, we first present an algorithm that finds

stable matchings in uniform MCS instances. Then, we consider

general MCS instances where stable matchings may not exist,

and propose an approximation algorithm that finds near-optimal

matchings in terms of stability.

A. Stable Task Assignment in Uniform MCS Systems

In Algorithm 1, we describe our algorithm that finds stable

matchings in uniform systems. In line 1, we initialize the

matchingM. Then, we form the global preference list of tasks

according to (3) in line 2. In the for loop starting at line 3, we

iterate the workers in LT from beginning to end, and find an

assignment for the ith worker (wh) in LT in the ith iteration.

To this end, we first form the preference list Lw
h of worker wh

in line 5. Then, in the for loop starting at line 7, we find the

Algorithm 1: UniformSTA (W , T)

Input: W: Set of workers, T : Set of tasks

1 let M(u) = (∅,−) for all u ∈ W ∪ T
2 form LT by (3)

3 for i← 1 to m do

4 let wh be the ith worker in LT

5 form Lw
h by (4)

6 A← {}, s← 0, r ← 0
7 for j ← 1 to ah do

8 A′ ← {}, s′ ← 0
9 for l← 1 to |Lw

h | do

10 let tk be the lth task in Lw
h

11 if tk ∈ Th,j and Mu(tk) = ∅ then

12 append tk to A′

13 s′ ← s′ + rk,h

14 if |A′| = ch,j then

15 break

16 if s′ > s then

17 A← A′, s← s′, r ← j

18 M(wh)← (A, ph,r)
19 foreach t ∈ A do

20 M(t)← (wh, ph,r)

21 return M

best feasible task set A′ for each of his acceptable paths ph,j
among the tasks that have not been matched yet. To find the

best task set for ph,j , we iterate the preference list of worker

wh in the for loop in lines 9-15, and add the tasks that are

on path ph,j and currently unmatched (line 11) to A′ until we

reach the capacity limit ch,j of path ph,j (line 14). We keep the

best task set found so far in A, the index of the corresponding

path in r, and the sum of the rewards offered to worker wh by

the tasks in A in s (line 17). Finally, we match the tasks in A
and worker wh with each other (lines 18-20).

Theorem 3. Algorithm 1 always produces a stable matching

for uniform MCS instances.

Proof. We prove this by contradiction. Assume the final match-

ing contains an unhappy triad ⟨wh, ph,j , S⟩. Let T ′
i denote the

set of tasks that are unmatched in the beginning of the ith
iteration of the for loop starting at line 3, so we have T ′

1 = T .

Also, let wh be the kth worker in LT , i.e., the worker that is

considered in the kth iteration. We first note that T \ T ′
k is the

set of tasks that have been matched before the kth iteration,

and

S ∩ (T \ T ′
k) = ∅. (12)

That is, S cannot contain any task that was matched before

the kth iteration, because all tasks that were matched before

the kth iteration were matched to a worker that precedes the

worker wh in LT . Therefore, the QoS scores of their partners

must be equal to or greater than the QoS score of wh due to

(2) and (3), which contradicts the unhappy triad definition due

to (7). Then, by (12), we have S ⊆ T ′
k, i.e., all tasks in S were

unmatched in the beginning of the kth iteration. However, we

match worker wh with the best feasible task set in T ′
k, thus we

have
∑

tx∈Mu(wh)

rx,h ≥
∑

ty∈S

ry,h. (13)

This also contradicts the unhappy triad definition due to (8),

hence we conclude that such an unhappy triad cannot exist in

the matching produced by Algorithm 1.

As a result of Theorem 3, we obtain the following corollary.

Corollary 1. A stable matching always exists in all MCS

instances with a uniform QoS setting.

Running time. Forming the global preference list of tasks LT

in line 2 takes O(m logm) time. In each iteration of the for

loop starting at line 3, we form the preference list of a worker

(line 5) and iterate it once for each of his acceptable paths (lines

7-17), which respectively take O(n log n) and O(namax) time,

where amax = max1≤i≤m ai. Thus, the overall time complexity

of Algorithm 1 is O(mnamax +mn log n+m logm).

B. Stable Task Assignment in General MCS Systems

In Algorithm 2, we present a pseudo-code description of

our approximation algorithm for general MCS systems. In

this algorithm, we attempt to match the tasks with their best

preferences, but when we need to choose between the tasks

that want to be matched with a worker due to the capacity or

regional constraint (i.e., when we reach the capacity limit, or

have tasks that are on different acceptable paths of the worker

and hence cannot be matched to the worker at the same time),

we choose a subset of these tasks that, though may not be

optimal locally, have the best potential to yield the maximum

total reward for the worker in the end based on the rewards

they individually provide to the worker and the capacity of the

corresponding path of the worker. Below, we first describe the

steps of the algorithm, and then prove that it produces near-

optimal matchings in terms of stability.

The algorithm begins by initializing the matchingM in line

1, and three key variables xi, σi and indexk for each worker

wi and task tk in lines 2-3. The variable σi keeps the value

of the total reward to be obtained by worker wi in the current

matching, and xi keeps the value of rk,i× ci,j for each worker

wi, where rk,i is the reward offered to worker wi by the task

(tk) that has the maximum reward among the tasks that are

currently matched to worker wi, and ci,j is the capacity of the

path pi,j currently selected for worker wi. Thus, both xi and

σi are initialized to 0 in line 2. The variable indexk keeps the

index of the first worker in Lt
k that was not yet attempted to

be matched to task tk, so it is initially set to 1 for all tasks.

During execution of the algorithm, all tasks that are currently

unmatched and are not yet attempted to be matched to all

workers in their preference lists, i.e.,

∀tk ∈ T :Mu(tk) = ∅ and indexk ≤ |L
t
k|, (14)

Algorithm 2: GeneralSTA (W , T)

Input: W: Set of workers, T : Set of tasks

1 let M(u) = (∅,−) for all u ∈ W ∪ T
2 let xi = σi = 0 for all 1 ≤ i ≤ m
3 let indexk = 1 for all 1 ≤ k ≤ n
4 Stack.push(T)

5 while Stack is not empty do

6 tk ← Stack.pop()

7 if indexk ≤ |L
t
k| then

8 let wi be the (indexk)th worker in Lk

9 indexk ← indexk + 1
10 A← {}, R← {}, r ← 0
11 for j ← 1 to ai do

12 if tk ̸∈ Ti,j then

13 continue

14 A′ ← {}, R′ ← {}, σ′ ← 0
15 for l← 1 to |Mu(wi)| do

16 let th be the lth task in Mu(wi)
17 if th ∈ Ti,j and |A′| < ci,j then

18 append th to A′

19 σ′ ← σ′ + rh,i
20 else

21 append th to R′

22 insert tk into A′ by maintaining

non-increasing order of task rewards

23 σ′ ← σ′ + rk,i
24 if |A′| > ci,j then

25 let th be the last task in A
26 remove th from A′

27 append th to R′

28 σ′ ← σ′ − rh,i

29 let th be the first task in A′

30 if rh,i × ci,j > xi then

31 xi ← rh,i × ci,j
32 A← A′, R← R′, σi ← σ′, r ← j
33 else if rh,i × ci,j = xi and σ′ > σi then

34 A← A′, R← R′, σi ← σ′, r ← j

35 if |A| > 0 then

36 M(wi)← (A, pi,r)
37 foreach t ∈ A do

38 M(t)← (wi, pi,r)

39 foreach t ∈ R do

40 M(t)← (∅,−)
41 Stack.push(t)

42 else

43 Stack.push(tk)

44 return M

reside in a stack that is initialized in line 4. In the while loop

starting in line 5, we attempt to match one (tk) of the tasks in

the stack with the next worker (wi) in its preference list (Lt
k)

until there is no task left in the stack. When we attempt to

match task tk to worker wi, we check each of the acceptable

paths of worker wi in non-increasing order of path capacities

(i.e., pi,1, pi,2, .., pi,ai
) in the for loop starting in line 11. During

this process, we respectively maintain the task set and the path

that we would like to assign to worker wi after checking each

path in the variables A and r, and maintain the set of tasks that

are currently matched to worker wi, but need to be removed

from his assignment set for worker wi to be able to match

with A in the variable R. For each path pi,j : tk ∈ Ti,j (lines

12-13), we first find the best task set A′ among the tasks in

Mu(wi)∪{tk} within the capacity constraint of pi,j (lines 14-

28), and then choose the task set A′ over the task set A (and

update the variables A,R, σi and r accordingly) if one of the

following two conditions is satisfied:

• (lines 30-32) xi increases (regardless of the change in the

total reward σi to be collected by worker wi),

• (lines 33-34) xi remains unchanged, but the value of σi

increases.

Finally, in lines 35-43, if A is non-empty, we match worker wi

and the tasks in A with each other, set the tasks in R free, and

push them back onto the stack. Otherwise, we only push task

tk onto the stack.

Theorem 4. Algorithm 2 always produces a κ-stable matching

for a general MCS instance, where κ is the maximum path

capacity in the instance, i.e.,

κ = max
1≤i≤m
1≤j≤ai

ci,j . (15)

Proof. We prove this by contradiction as well. Assume that

there is a unhappy triad ⟨wi, pi,j , S⟩ in the final matching M
produced by the algorithm, which breaks the κ-stability of the

matching. Thus, we must have

∑

tx∈Mu(wi)

rx,i × κ <
∑

ty∈S

ry,i. (16)

We first note that all tasks in S must have been attempted to

be matched to worker wi at some point during the execution

of the algorithm, because, by definition of unhappy triad (7),

they must either currently be matched to worker wi, or prefer

worker wi to their current assignments in M. The latter case

indicates that worker wi precedes their current assignments in

their preference lists (line 8), thus they have been attempted to

matched worker wi before they ended up getting matched with

their current assignments.

We then note that every time a task that would increase the

value of xi (line 30) is being attempted to match to worker

wi, it will certainly be matched to worker wi in that iteration,

and increase xi (line 31), which will have the maximum value

possible in the end. Thus, we have

∀te ∈ E : xi ≥ re,i × max
1≤h≤ai

ci,h, (17)

where E is the set of tasks that were attempted to matched to

worker wi during the execution of the algorithm. Since S ⊆ E,

we have
∀ts ∈ S : xi ≥ rs,i × max

1≤h≤ai

ci,h,

≥ rs,i × ci,j .
(18)

Recall that xi = rm,i × ci,g , where (i) rm,i is the reward of

task tm ∈ Mu(wi), which has the highest reward among the

tasks in Mu(wi), and ci,g is the capacity of pi,g =Mp(wi).
Then, by (18), we get

∀ts ∈ S : rm,i × ci,g ≥ rs,i × ci,j . (19)

For the condition in (16) to hold, we must have
∑

tx∈Mu(wi)

rx,i ×max{ci,g, ci,j} <
∑

ty∈S

ry,i, (20)

because max{ci,g, ci,j} ≤ κ. If ci,g > ci,j , we would have
∑

tx∈Mu(wi)

rx,i × ci,g <
∑

ty∈S

ry,i (21a)

rm,i × ci,g <
∑

ty∈S

ry,i (by (i)) (21b)

∀ts ∈ S : rs,i × ci,j <
∑

ty∈S

ry,i (by (19)). (21c)

For the task ts′ with the highest reward in S, (21c) yields

rs′,i × ci,j <
∑

ty∈S

ry,i, (22)

which is a contradiction as S cannot contain more than ci,j
tasks due to the capacity constraint of path pi,j .

On the other hand, if (ii) ci,g ≤ ci,j , we would have
∑

tx∈Mu(wi)

rx,i × ci,j <
∑

ty∈S

ry,i (23a)

rm,i × ci,j <
∑

ty∈S

ry,i (by (i)) (23b)

rm,i × ci,g <
∑

ty∈S

ry,i (by (ii)) (23c)

which also leads to a contradiction as (23c) is identical to (21b).

Therefore, we conclude that there cannot exist any unhappy

triad that violates κ-stability in the matching produced by

Algorithm 2, and it is always κ-stable.

Running time. Algorithm 2 requires to form only the prefer-

ence lists of the tasks, which takes O(nm logm) time. During

the execution of the algorithm, each task tk can be pushed on

the stack at most |Lt
k| ≤ m times, so the while loop starting

in line 5 will iterate O(mn) times. The for loop starting in

line 11 will iterate at most amax = max1≤i≤m ai times, and the

most expensive operation in it is the for loop starting in line

15, which can iterate at most cmax = max1≤i≤m,1≤j≤ai
ci,j

times, as the size of the assignment set of a worker cannot

be larger than the maximum path capacity cmax in the in-

stance. Thus, the worst-case running time of Algorithm 2 is

O(nm logm+ nmcmaxamax).

40 60 80 100 120 140 160

of tasks (n)

75

80

85

90

95

100

U
s
e
r

h
a
p
p
in

e
s
s
 r

a
ti
o
 (

%
)

UniformSTA

OprtSTA

LPR-QoS

(a)

40 60 80 100 120 140 160

of tasks (n)

0

20

40

60

80

100

W
o
rs

t-
c
a
s
e
 u

s
e
r

h
a
p
p
in

e
s
s
 (

%
)

UniformSTA

OprtSTA

LPR-QoS

(b)

40 60 80 100 120 140 160

of tasks (n)

20

40

60

80

100

A
v
e
ra

g
e
-c

a
s
e
 u

s
e
r

h
a
p
p
in

e
s
s
 (

%
)

UniformSTA

OprtSTA

LPR-QoS

(c)

40 60 80 100 120 140 160

of tasks (n)

20

40

60

80

A
v
e
ra

g
e
 q

u
a
lit

y
 o

f
s
e
n
s
in

g

UniformSTA

OprtSTA

LPR-QoS

(d)

Fig. 4: Performance of algorithms with varying task counts in uniform MCS (m=30).

20 30 40 50 60

of workers (m)

75

80

85

90

95

100

U
s
e
r

h
a
p
p
in

e
s
s
 r

a
ti
o
 (

%
)

UniformSTA

OprtSTA

LPR-QoS

(a)

20 30 40 50 60

of workers (m)

0

20

40

60

80

100

W
o
rs

t-
c
a
s
e
 u

s
e
r

h
a
p
p
in

e
s
s
 (

%
)

UniformSTA

OprtSTA

LPR-QoS

(b)

20 30 40 50 60

of workers (m)

20

40

60

80

100

A
v
e
ra

g
e
-c

a
s
e
 u

s
e
r

h
a
p
p
in

e
s
s
 (

%
)

UniformSTA

OprtSTA

LPR-QoS

(c)

20 30 40 50 60

of workers (m)

30

40

50

60

70

A
v
e
ra

g
e
 q

u
a
lit

y
 o

f
s
e
n
s
in

g

UniformSTA

OprtSTA

LPR-QoS

(d)

Fig. 5: Performance of algorithms with varying worker counts in uniform MCS (n=100).

V. SIMULATION RESULTS

In this section, we present the empirical evaluation of the

proposed algorithms.

A. Data set

For our simulations, we generate an SO-MCS instance in

a real environment as follows. We randomly select n places

of interest (PoI) in Lower Manhattan from the PoI list [37]

provided by the City of New York, and create a task at each of

these places. For each (wi) of m workers in the instance, we

randomly select two PoIs that are [2-4] kilometers away from

each other from the same PoI set, and use these as their starting

points and destinations. We then get ai ∼ U{4, 6} different

routes between these two PoIs using the Google’s Directions

API [38]. We obtain the best (shortest) path of wi, which has

the maximum capacity ci,1 ∼ U{3, 5}, by requesting a direct

route, and obtain the remaining paths by requesting a route

with a waypoint at one of the PoIs located in the smallest circle

that encloses the bird-eye route between the starting point and

destination. The capacity of each pi,j of the latter paths is set

as ci,1 − ⌊d/300⌋, where d is the route length difference (in

meters) between pi,1 and pi,j . For each task-path pair (tk, pi,j),
we add tk to Ti,j if and only if tk is within 50 meters of any

point on pi,j . Lastly, to create a uniform instance, we assign

a global QoS score qi ∼ U{50, 100} to each worker, and let

qi,j = qi, ∀tj ∈ T . On the other hand, to create a general

(non-uniform) instance, we simply let qi,j ∼ U{50, 100} for

all worker-task pairs (wi, tj). Task requesters are assumed to

be offering rewards proportional to the QoS they will get from

each worker, thus we let rj,i = qi,j × bj , where bj ∼ U(0.2, 1)
is the reward to QoS ratio of task tj .

B. Benchmark algorithms

We compare the proposed algorithms (i.e., UniformSTA and

GeneralSTA) with the following algorithms.

• OprtSTA: This algorithm finds the optimal solution in

terms of stability in opportunistic MCS systems. We

transform our semi-opportunistic instances to opportunistic

ones by only considering the shortest path of each worker

(which has the largest capacity). In the resulting instance,

a stable matching can be found by the classic Gale-

Shapley [18] algorithm in O(mn) time.

• LPR-QoS [2]: This algorithm uses the linear programming

relaxation (LPR) technique, and finds a task assignment

for SO-MCS systems based on the solution of the relaxed

version of the integer program that maximizes the total

QoS of the workers assigned to the tasks. We use Google

OR-Tools1 to implement this algorithm.

C. Performance metrics

• User happiness ratio: The ratio of the number of triads

that are not unhappy to the total number of triads that can

be matched in any feasible matching.

• Worst-case user happiness: This is the value of the ob-

jective function defined in (9), i.e., the α-stability of the

produced matching.

• Average-case user happiness: This is computed by∑
wi∈W(1/δimax)/m, where δimax is the dissatisfaction ratio

of the unhappy triad that causes the largest utility loss for

worker wi (δimax = 1 if wi does not form any unhappy

triads).

We also analyze the average QoS provided to task requesters

and the running times of the algorithms.

1https://developers.google.com/optimization

40 60 80 100 120 140 160

of tasks (n)

75

80

85

90

95

100

U
s
e
r

h
a
p
p
in

e
s
s
 r

a
ti
o
 (

%
)

GeneralSTA

OprtSTA

LPR-QoS

(a)

40 60 80 100 120 140 160

of tasks (n)

0

20

40

60

W
o
rs

t-
c
a
s
e
 u

s
e
r

h
a
p
p
in

e
s
s
 (

%
)

GeneralSTA

OprtSTA

LPR-QoS

(b)

40 60 80 100 120 140 160

of tasks (n)

20

40

60

80

100

A
v
e
ra

g
e
-c

a
s
e
 u

s
e
r

h
a
p
p
in

e
s
s
 (

%
)

GeneralSTA

OprtSTA

LPR-QoS

(c)

40 60 80 100 120 140 160

of tasks (n)

20

40

60

80

A
v
e
ra

g
e
 q

u
a
lit

y
 o

f
s
e
n
s
in

g

GeneralSTA

OprtSTA

LPR-QoS

(d)

Fig. 6: Performance of algorithms with varying task counts in general MCS (m=30).

20 30 40 50 60

of workers (m)

75

80

85

90

95

100

U
s
e
r

h
a
p
p
in

e
s
s
 r

a
ti
o
 (

%
)

GeneralSTA

OprtSTA

LPR-QoS

(a)

20 30 40 50 60

of workers (m)

0

10

20

30

40

50

W
o
rs

t-
c
a
s
e
 u

s
e
r

h
a
p
p
in

e
s
s
 (

%
)

GeneralSTA

OprtSTA

LPR-QoS

(b)

20 30 40 50 60

of workers (m)

20

40

60

80

100

A
v
e
ra

g
e
-c

a
s
e
 u

s
e
r

h
a
p
p
in

e
s
s
 (

%
)

GeneralSTA

OprtSTA

LPR-QoS

(c)

20 30 40 50 60

of workers (m)

30

40

50

60

70

80

A
v
e
ra

g
e
 q

u
a
lit

y
 o

f
s
e
n
s
in

g

GeneralSTA

OprtSTA

LPR-QoS

(d)

Fig. 7: Performance of algorithms with varying worker counts in general MCS (n=100).

2 3 4 5 6

Alternative path count ~ U{1-x}

75

80

85

90

95

100

U
s
e
r

h
a
p
p
in

e
s
s
 r

a
ti
o
 (

%
)

GeneralSTA

OprtSTA

LPR-QoS

(a)

3 4 5 6 7

Max path capacity ~ U{1-x}

75

80

85

90

95

100

U
s
e
r

h
a
p
p
in

e
s
s
 r

a
ti
o
 (

%
)

GeneralSTA

OprtSTA

LPR-QoS

(b)

(30, 60) (30, 80) (30, 100) (40, 100) (50, 100)

(# of workers, # of tasks)

0

20

40

60

80

100

R
u

n
n

in
g

 t
im

e
 (

s
)

UniformSTA

GeneralSTA

OprtSTA

LPR-QoS

(30,60) (30,80) (30,100) (40,100) (50,100)
0

2

4

6

R
u

n
n

in
g

 t
im

e
 (

m
s
)

(c)

Fig. 8: User happiness (n=80, m=30) with varying path counts (a) and capacities (b), and running times of algorithms (c).

D. Results

We first look at the performance of the algorithms in the

uniform instances with varying numbers of tasks (Fig. 4) and

workers (Fig. 5). As expected (due to Theorem 3), our Uniform-

STA algorithm always achieves perfect user happiness scores,

and greatly outperforms the benchmark algorithms. Moreover,

it achieves to deliver a comparable average QoS score with

the LPR-QoS algorithm. On the other hand, the OprtSTA

algorithm mostly produces task assignments with the lowest

user happiness scores, despite considering the user preferences

during the matching process. This is because it disregards the

alternative paths of workers along with the additional matching

options they provide, and thus demonstrates the advantage of

semi-opportunistic sensing over opportunistic sensing.

In Fig. 6 & 7, we look at the results on the general (non-

uniform) MCS instances, which clearly show the superiority

of our GeneralSTA algorithm over the other algorithms in

terms of user happiness, particularly in terms of worst-case user

happiness. On the other hand, in this setting, our algorithm pro-

vides slightly lower average quality of sensing than LPR-QoS

algorithm. Also, in both uniform and general MCS instances,

the QoS scores of all algorithms generally grow with increasing

worker density, as tasks are more likely to get assigned to a

worker when there is a larger number of workers in the instance.

Next, we analyze the performance of the algorithms with

varying ranges of alternative path counts (ai − 1) and path

capacities (ci,1) in Fig. 8a and Fig. 8b, respectively. We observe

that our GeneralSTA algorithm generally has a stable perfor-

mance, and maintains its superiority in terms of user happiness

regardless of the changes in these parameters. The performance

of the OprtSTA algorithm is usually worse when workers have

more alternative paths (and a higher task performing capacity

on these paths), because, in these scenarios, the OprtSTA

algorithm ends up failing to take advantage of a larger number

of assignment possibilities created by alternative paths.

Finally, in Fig. 8c, we present the running times of the

algorithms on uniform instances (this is to show the results for

all four algorithms) with different worker-task counts. We note

that the LPR-QoS algorithm has an excessive running time,

which is a few orders of magnitude larger than that of the

other algorithms. On the other hand, the OprtSTA algorithm

has the shortest running time despite its poor performance in

terms of user happiness and average QoS in most settings.

Lastly, our algorithms have a comparable running time, with

the GeneralSTA algorithm being slightly faster.

VI. CONCLUSION

In this paper, we have introduced the preference-aware task

assignment problem in a semi-opportunistic mobile crowdsens-

ing setting. We have formally defined the requirements for

preference-awareness (or user happiness) and shown that it

is not possible to generate a perfectly preference-aware task

assignment that satisfies all users in some instances. We have

studied the problem in a system model with uniform worker

qualities as well as in a non-restricted model, and presented

an exact and an approximation task assignment algorithm,

both with a polynomial-time complexity, for these models,

respectively. Results of the simulations have shown that the

proposed algorithms achieve to produce task assignments with

significantly larger user happiness scores compared to the

benchmark algorithms. In future work, we will investigate the

user-centric task assignment problem in a system model that

allows different workers to adopt different sensing modes.

REFERENCES

[1] A. Capponi, C. Fiandrino, B. Kantarci, L. Foschini, D. Kliazovich,
and P. Bouvry, “A survey on mobile crowdsensing systems: Challenges,
solutions, and opportunities,” IEEE communications surveys & tutorials,
vol. 21, no. 3, pp. 2419–2465, 2019.

[2] W. Gong, B. Zhang, C. Li, and Z. Yao, “Task allocation in semi-
opportunistic mobile crowdsensing: Paradigm and algorithms,” Mobile

Networks and Applications, pp. 1–11, 2019.

[3] X. Yin, Y. Chen, C. Xu, S. Yu, and B. Li, “Matchmaker: Stable task
assignment with bounded constraints for crowdsourcing platforms,” IEEE

Internet of Things Journal, 2020.

[4] C. Dai, X. Wang, K. Liu, D. Qi, W. Lin, and P. Zhou, “Stable task assign-
ment for mobile crowdsensing with budget constraint,” IEEE Transactions

on Mobile Computing, pp. 1–1, 2020.

[5] Y. Liu, B. Guo, Y. Wang, W. Wu, Z. Yu, and D. Zhang, “TaskMe: Multi-
task allocation in mobile crowd sensing,” in ACM international joint

conference on pervasive and ubiquitous computing, 2016, pp. 403–414.

[6] W. Gong, B. Zhang, and C. Li, “Location-based online task assignment
and path planning for mobile crowdsensing,” IEEE Transactions on

Vehicular Technology, vol. 68, no. 2, pp. 1772–1783, 2018.

[7] X. Tao and W. Song, “Task allocation for mobile crowdsensing with
deep reinforcement learning,” in IEEE Wireless Communications and

Networking Conference (WCNC), 2020, pp. 1–7.

[8] B. Zhao, S. Tang, X. Liu, X. Zhang, and W.-N. Chen, “itam: Bilat-
eral privacy-preserving task assignment for mobile crowdsensing,” IEEE

Transactions on Mobile Computing, 2020.

[9] Y. Zhao, K. Zheng, Y. Li, H. Su, J. Liu, and X. Zhou, “Destination-
aware task assignment in spatial crowdsourcing: A worker decomposition
approach,” IEEE Transactions on Knowledge and Data Engineering,
vol. 32, no. 12, pp. 2336–2350, 2019.

[10] M. Zhang, P. Yang, C. Tian, S. Tang, X. Gao, B. Wang, and F. Xiao,
“Quality-aware sensing coverage in budget-constrained mobile crowd-
sensing networks,” IEEE Transactions on Vehicular Technology, vol. 65,
no. 9, pp. 7698–7707, 2015.

[11] J. Chen and J. Yang, “Maximizing coverage quality with budget con-
strained in mobile crowd-sensing network for environmental monitoring
applications,” Sensors, vol. 19, no. 10, p. 2399, 2019.

[12] M. Karaliopoulos, O. Telelis, and I. Koutsopoulos, “User recruitment for
mobile crowdsensing over opportunistic networks,” in IEEE Conference

on Computer Communications (INFOCOM), 2015, pp. 2254–2262.

[13] Y. Zhan, Y. Xia, Y. Liu, F. Li, and Y. Wang, “Incentive-aware time-
sensitive data collection in mobile opportunistic crowdsensing,” IEEE

Trans. on Vehicular Technology, vol. 66, no. 9, pp. 7849–7861, 2017.

[14] F. Yucel and E. Bulut, “Location-dependent task assignment for oppor-
tunistic mobile crowdsensing,” in IEEE 17th Annual Consumer Commu-

nications & Networking Conference (CCNC), 2020, pp. 1–6.
[15] Z. He, J. Cao, and X. Liu, “High quality participant recruitment in vehicle-

based crowdsourcing using predictable mobility,” in IEEE Conference on

Computer Communications (INFOCOM), 2015, pp. 2542–2550.
[16] M. Xiao, J. Wu, L. Huang, R. Cheng, and Y. Wang, “Online task

assignment for crowdsensing in predictable mobile social networks,”
IEEE Trans. on Mobile Computing, vol. 16, no. 8, pp. 2306–2320, 2016.

[17] J. Wang, F. Wang, Y. Wang, L. Wang, Z. Qiu, D. Zhang, B. Guo, and
Q. Lv, “Hytasker: Hybrid task allocation in mobile crowd sensing,” IEEE

Transactions on Mobile Computing, vol. 19, no. 3, pp. 598–611, 2019.
[18] D. Gale and L. Shapley, “College admissions and stability of marriage.

american mathematicas monthly, 69, 9-15,” 1962.
[19] “National resident matching program,” 2020. [Online]. Available:

https://www.nrmp.org/matching-algorithm/
[20] S. Shamaei, S. Bayat, and A. M. A. Hemmatyar, “Interference manage-

ment in D2D-enabled heterogeneous cellular networks using matching
theory,” IEEE Trans. on Mobile Computing, vol. 18, no. 9, pp. 2091–
2102, 2018.

[21] F. Yucel, A. Bhuyan, and E. Bulut, “Secure, Resilient and Stable Resource
Allocation for D2D-based V2X Communication,” in IEEE Resilience

Week (RWS), 2020, pp. 71–77.
[22] H. Zheng and J. Wu, “Online to offline business: urban taxi dispatching

with passenger-driver matching stability,” in IEEE 37th International

Conf. on Distributed Computing Systems (ICDCS), 2017, pp. 816–825.
[23] D. Manlove, Algorithmics of matching under preferences. World

Scientific, 2013, vol. 2.
[24] D. Knuth, “Mariages stables,” Les Presses de l’Universit de Montral,

1976.
[25] C. Ng and D. S. Hirschberg, “Three-dimensional stabl matching prob-

lems,” SIAM Journal on Discrete Mathematics, vol. 4, no. 2, pp. 245–252,
1991.

[26] J. Wu, “Stable matching beyond bipartite graphs,” in IEEE International

Parallel and Distributed Processing Symposium Workshops (IPDPSW),
2016, pp. 480–488.

[27] L. Cui and W. Jia, “Cyclic stable matching for three-sided networking
services,” Computer Networks, vol. 57, no. 1, pp. 351–363, 2013.

[28] F. Yucel, M. Yuksel, and E. Bulut, “QoS-based Budget Constrained Stable
Task Assignment in Mobile Crowdsensing,” IEEE Transactions on Mobile

Computing, pp. 1–1, 2020.
[29] M. Abououf, S. Singh, H. Otrok, R. Mizouni, and A. Ouali, “Gale-

shapley matching game selection—a framework for user satisfaction,”
IEEE Access, vol. 7, pp. 3694–3703, 2018.

[30] F. Yucel and E. Bulut, “User satisfaction aware maximum utility task
assignment in mobile crowdsensing,” Computer Networks, vol. 172, p.
107156, 2020.

[31] F. Yucel and E. Bulut, “Online stable task assignment in opportunistic
mobile crowdsensing with uncertain trajectories,” IEEE Internet of Things

Journal, 2021.
[32] F. Yucel, M. Yuksel, and E. Bulut, “Coverage-aware stable task as-

signment in opportunistic mobile crowdsensing,” IEEE Transactions on

Vehicular Technology, vol. 70, no. 4, pp. 3831–3845, 2021.
[33] B. Li, Y. Cheng, Y. Yuan, G. Wang, and L. Chen, “Three-dimensional

stable matching problem for spatial crowdsourcing platforms,” in 25th

ACM SIGKDD International Conference on Knowledge Discovery &

Data Mining, 2019, pp. 1643–1653.
[34] T. Song, Y. Tong, L. Wang, J. She, B. Yao, L. Chen, and K. Xu,

“Trichromatic online matching in real-time spatial crowdsourcing,” in
IEEE 33rd International Conf. on Data Engineering (ICDE), 2017, pp.
1009–1020.

[35] B. Zheng, C. Huang, C. S. Jensen, L. Chen, N. Q. V. Hung, G. Liu, G. Li,
and K. Zheng, “Online trichromatic pickup and delivery scheduling in
spatial crowdsourcing,” in IEEE 36th International Conference on Data

Engineering (ICDE), 2020, pp. 973–984.
[36] Wikipedia contributors, “Plastic number - Wikipedia, the free

encyclopedia,” 2021. [Online]. Available: https://en.wikipedia.org/w/
index.php?title=Plastic number&oldid=1053611441

[37] “NYC Points of Interest,” Department of Information Technology &
Telecommunications (DOITT), 2021. [Online]. Available: https://data.
cityofnewyork.us/City-Government/Points-Of-Interest/rxuy-2muj#revert

[38] “Google Directions API,” 2021. [Online]. Available: https://developers.
google.com/maps/documentation/directions/overview

