accepted to appear in Proceedings of 15th ACM Conference on Security and Privacy
in Wireless and Mobile Networks - ACM Workshop on Wireless Security and

Machine Learning (WiseML 2022)

Online Stream Sampling for Low-Memory On-Device Edge
Training for WiFi Sensing

Steven M. Hernandez
hernandezsm@vcu.edu
Department of Computer Science
Virginia Commonwealth University
Richmond, Virginia, USA

ABSTRACT

Deploying machine learning models on-board edge devices allows
for low latency model inference and data privacy by keeping sensor
data local to the computation rather than at a central server. How-
ever, typical TinyML systems train a single global model which
is duplicated across all edge devices. This leads to a model that is
generalized to the training data, but not specialized to the unique
physical environment where the device is deployed. In this work,
we evaluate how we can train machine learning models on-board
low-memory edge devices with streams of incoming data. When
using these low-memory devices, storage space is at a minimum
and as such, representative data samples from the data stream must
be captured to ensure that the models can improve even with a
limited set of available training samples. We propose the Variable
Low/High Loss sampling method for selecting representative data
samples from a data stream and demonstrate that our methods are
able to increase the accuracy of the machine learning model com-
pared to state-of-the-art methods. We demonstrate the applicability
of our proposed method for WiFi sensing based human activity
detection, where WiFi signals are used to predict human activities
in a given environment without requiring sensors on their bodies.

CCS CONCEPTS

« Computing methodologies — Online learning settings; -
Security and privacy — Privacy protections.

KEYWORDS

On-device machine learning, importance sampling, WiFi sensing,
edge learning, TinyML

ACM Reference Format:

Steven M. Hernandez and Eyuphan Bulut. 2022. Online Stream Sampling for
Low-Memory On-Device Edge Training for WiFi Sensing. In Proceedings of
the 2022 ACM Workshop on Wireless Security and Machine Learning (WiseML
"22), May 19, 2022, San Antonio, TX, USA. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3522783.3529521

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

WiseML 22, May 19, 2022, San Antonio, TX, USA

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9277-8/22/05.

https://doi.org/10.1145/3522783.3529521

Eyuphan Bulut
ebulut@vcu.edu
Department of Computer Science
Virginia Commonwealth University
Richmond, Virginia, USA

1 INTRODUCTION

TinyML [4] has appeared as a field combining machine learning
with embedded systems research where models are designed to
run on resource constrained devices at the edge rather than at
central servers. Performing model inference at the edge allows for
lower latency prediction making, removes the reliance on an in-
ternet connection, improves user privacy by keeping private data
on-location and finally enables new applications for smart homes,
smart workplaces, improved at-home healthcare, and more. While
TinyML is gaining further attention for allowing model inference
at the edge, the next natural extension is to allow model training to
be performed at the edge as well [12]. However, because of the con-
strained nature of the devices at the edge, training models on-device
and at the edge will provide additional challenges. Most notably,
edge devices have (i) small storage for retaining training samples,
(ii) low memory which means that machine learning models must
be shallow rather than deep, and (iii) slow computation speed which
means that each epoch of model training takes longer to perform
which thus limits the amount of training that can be performed at
these edge devices.

In this work, we focus on one of these steps towards making
on-device model training a reality. Specifically, we consider the case
where the edge device used for on-device training has only a small
amount of local storage for storing training samples. Additionally,
we assume that a stream of annotated training samples are made
available to the device which far exceed the available storage. Due
to the low storage available, the device must be selective in storing
a sub-sample of the stream for on-device training. Allowing for
on-device model training ensures that deployed models can adapt
to changes in sensor readings due to changes in the environment.
This is particularly important for WiFi sensing [9] where received
WiFi signals are directly affected by the physical environment due
to multipath signal propagation.

In this work we make the following contributions:

(1) We introduce a novel method for sampling streams of sensor
data on-device which we call Variable Low/High Loss (VLHL)
sampling.

(2) We evaluate our proposed method on a simulated data stream
for the novel task of WiFi-sensing human activity detection
(HAD) using low-cost edge devices.

(3) We demonstrate that VLHL achieves higher accuracy than
baseline methods as well as state-of-the-art methods: Most
Recent Lowest Loss (MRLL) and Most Recent Highest Loss
(MRHL).

https://doi.org/10.1145/3522783.3529521
https://doi.org/10.1145/3522783.3529521

WiseML ’22, May 19, 2022, San Antonio, TX, USA

The rest of the paper is organized as follows. In Section 2 we
discuss background information on WiFi sensing as well as tech-
niques used for machine learning at the edge. After this, we discuss
our streaming sample selection method as well as review model
training on-board edge devices in Section 3. We evaluate the re-
sults of our proposed algorithm compared to other state-of-the-art
sampling methods in Section 4. Finally, we make our concluding
remarks in Section 5.

2 BACKGROUND

2.1 WiFi Sensing

WiFi sensing [9] uses the radio-frequency (RF) signals found propa-
gating throughout our homes and offices to detect and sense physi-
cal properties of the environment. When RF signals are transmitted
from a transmitter (TX) to a receiver (RX), they propagate over mul-
tiple unique paths (signal multipath) which may propagate directly
to the RX or might reflect off surfaces in the environment such
as people, furniture and walls. Tracking the changes in the signal
multipath over time can allow us to identify physical changes in
the environment such as large furniture being moved, and can even
be used for human activity detection. WiFi RF signals offer many
benefits for sensing in indoor environments because RF signals: (i)
can propagate through walls which allows for one sensor to be used
over multiple rooms, (ii) are transmitted omnidirectionally rather
than in a single direction as would be found in a camera based
system, and (iii) are present on even the smallest smart devices
within our homes which means that we can gain additional sensing
coverage by leveraging these RF signals passively. Recent work
in [6] shows that WiFi sensing can be performed on the low-cost
ESP32 WiFi-enabled microcontroller (ESP32-MCU)!. We leverage
this ESP32-MCU in this work for collecting channel state infor-
mation (CSI) to achieve WiFi sensing in many physical locations
throughout our smart home environment.

Channel state information is captured in communication systems
such as 802.11 which use orthogonal frequency-division multiplex-
ing (OFDM), to allow for data to be encoded in multiple subcar-
rier frequency allowing for higher symbol throughput as well as
resilience to signal fading and shadowing caused by multipath
interference in the channel. CSI is modeled with

£+ = g, () 4 U(i) (1)

where i is the subcarrier index, x is the transmitted signal, x is the
received signal, 7 is a noise vector, H is a complex vector containing
the channel state information denoting the transformation change
required from the input x to the output x. The complex CSI vector
contains 64 subcarriers where 52 are data-subcarriers while 12
are null-subcarriers where the CSI value for each subcarrier is
defined as a complex number with a real component (H,") and an
imaginary component (H l(rz)) We can transform this raw CSI into
amplitude:

A0 = (H;’Q)z + (H,(”)z, ()
and phase:
¢7(i) = atan2 (Hi(rirz,Hr(i)) : ©)

Thttps://stevenmhernandez.github.io/ESP32-CSI-Tool/

Hernandez and Bulut

In this work, we solely look at the amplitude and do not take into
account the phase.

2.2 Machine Learning at the Edge (TinyML)

Recent work in the field of TinyML has pushed towards a number
of improvements for combining machine learning with embed-
ded edge systems. Research into TinyML can be split into three
categories: deep learning algorithm design, hardware design and ap-
plications of TinyML [13]. However, TinyML focuses on performing
model inference using models that were pretrained at some more
powerful system before being embedded into embedded MCUs.

While model inference is the primary concern of TinyML, there
are a few works that do consider methods for training models on
low resource embedded MCUs. For example, both TinyOL [13]
and TinyFedTL [10] take the approach that a pretrained TinyML
model can be personalized on-device at the edge by training a single
output layer for the given machine learning model. Specifically, all
layers before the final layer are stored on-board and run through
inference like a normal TinyML model. The output of this TinyML
model is then input into a separate single training layer which can
be trained much quicker and with a simpler training algorithm
than full backpropagation. TinyTL [3] takes a different approach
where each layer is still trained on-board but only a subset of model
parameters are trained while the others remain frozen. Specifically,
the model weights are frozen and only the biases are trained on-
device. This allows training to occur on all of the multiple layers
throughout the machine learning model while still being able to
performed in a timely manner.

2.3 Applications

Thus far, both WiFi sensing and TinyML have been applied in a
number of settings including health tracking [5, 19], smart vehicles
and traffic monitoring [2, 15], UAVs [11, 14], agriculture [1, 8] and
more. However, until now, it is rare that WiFi sensing is combined
together with TinyML or with on-device edge machine learning in
the research literature.

3 PROPOSED METHOD

3.1 Streaming Sample Selection

Assume that we are given a streaming dataset (X) and labels (y)
where X|[¢] is a single CSI sample and y[¢] is the corresponding
label at time t € 7 = {1,2,...,t,...,T — 1,T} where 1 is the
earliest possible time instance and T is some unreachable final time
instance. Our goal is to capture a buffer of CSI-samples (X C X),
along with a buffer of labels for each CSI sample (§ C y), such
that |X| = |j| < T. To simplify our notation in the following
sections, we assume that we have a buffer 8 C 7 such that |B| =
|X| = || which is used to store the time-index of the samples
captured in X and 7 such that X = {X[B[1]],..., X[B[|B|]]} and
7 = {y[B[1]].....y[B[|B|]]}. In this notation?, any operations
performed on B directly translate to similar updates to both X and
7. At each time instance ¢, we must decide:

2We note that while this simplifies our notation, real-world implementations would
not actually retain 8. Instead, all operations would automatically apply to both X and
7 directly.

https://stevenmhernandez.github.io/ESP32-CSI-Tool/

Online Stream Sampling for Low-Memory On-Device Edge Training for WiFi Sensing
@
\) >
T S
¢ O \
Step 1

Collect CSI
Stream Sampler

S T[T TRSER IR

Input CSl into Model

Machine Learning Model

Figure 1: Illustration of streaming sample selection. In step
1, CSI multipath signal data is captured from the transmitter
(TX) and the receiver (RX) for human activity detection. In
step 2, the stream sampler then selects which samples are
high quality. Step 3 places these quality samples into a buffer
(8B) which is then used for training the machine learning
model.

(1) Should we store this sample in the buffer or ignore it?
(2) If we store it, which sample in B should be replaced?

This process is illustrated in Fig. 1 where at the top, human partici-
pants perform some physical activities while WiFi signals are sent
from the transmitter (TX) to the receiver (RX). The CSI samples are
captured by the RX (step 1) at each time instance and then passed
to a stream sampler (step 2). The stream sampler automatically
determines whether the CSI sample should be retained or ignored.
If the sample is retained, then the stream sampler places the sample
within a buffer (8) (step 3). Finally, the buffer can be used to train
the machine learning model.

The following sections describe a number of possible stream

samplers which can be used to make these two decisions in real-
time.
Most Recent Lowest Loss (MRLL) [16]: When training the ma-
chine learning models, the loss (L) captures the overall average
error of the model given the available dataset. We use the binary
cross-entropy loss function:

N C

Ly.9) == > yijlog (i) + (1 - yij) log (1-§ij), (4)

i=1 j=1

where N is the number of samples in our dataset, C is the number of
classes that our model is able to predict, y is the set of true-classes
(target) for our model, y; is the i-th element in y and y;; € {0, 1} is
the value of the j-th class after being one-hot encoded. We can then
say that gj;; € [0, 1] is the probability prediction from our model
that the i-th sample is of class j.

WiseML ’22, May 19, 2022, San Antonio, TX, USA

In the most-recent lowest-loss (MRLL) method, we rank each
individual incoming sample based on the per-sample loss which
means that we can simplify Equation (4) down to a per-sample loss:

C
Llt]==) yjlog(g)+(1-yp)log(1-g). ()
j=1

Assuming that 8 is sorted such that
L[Bli]] < LIBli+1]], Vie{1,...,|8| -1}, (6)

then for each time-instance ¢, MRLL will ignore the sample if
L[t] > L[B[|B|]]. Otherwise, if L[t] < L[B[|B]]], then B[|B]]
is replaced with t and 8 is resorted. Due to 8 being presorted
at the beginning of this step, this sorting operation has O(|8])
time-complexity.

The idea to select samples for model training with the lowest loss
appears in [16] where the understanding is that samples with low-
loss are less likely to be outliers which will only cause degradation
in model accuracy.

Most Recent Highest Loss (MRHL) [18]: The most recent highest
loss (MRHL) takes the approach where if 8 is sorted as shown
in Equation (6), then if L[t] < L[B[1]], the sample is ignored.
Otherwise, when L[t] > L[B][1]], then B[1] isreplaced by t and is
sorted. As with MRLL, the time complexity for this sorting operation
is O(|8]). The intuition behind this method is that, if a sample has
a high loss value, then the model is unable to successfully recognize
the sample and thus, the model is able to gain novel knowledge
from training on the sample.

Proposed Approach: Variable Low/High Loss (VLHL): We
might notice that MRLL and MRHL have conflicting stories on
why a highest-loss approach or a lowest-loss approach is the best
option. We propose that a mixture of high-loss and low-loss sam-
ples should be retained for training the machine learning. Just as
the previous methods suggest, retaining high-loss samples allows
the model to learn new knowledge from samples it is unable to rec-
ognize while retaining low-loss samples ensure that the model does
not lose the ability to understand samples that it was previously
good at recognizing.

In our proposed approach, the Variable Low/High Loss (VLHL)
sampler uses two separate buffers: Bp;gn_joss and Bjoay—joss Such
that |Bhigh—loss| + |Bhigh—loss| = |8B| and |Bhigh—loss| =8Bx Rhigh
and |Bjpyy-joss| = B * (1 - Rhigh) where 7zhigh € (0,1) is the
percentage of samples that should be allocated to Bj;gp—joss and
(1 = Rpign) € (0,1) is the percentage of samples that should be
allocated to Bjy4y_joss-

Baseline: Random Sampler (Random) [17]: In addition to the
MRLL and MRHL methods, we compare our proposed VLHL method
to three additional baseline approaches. The first approach is to
use a random sampler, where the sample at each time instance
t is selected or ignored randomly and when selected, randomly
replaces one of the previous elements in 8. If the method is unable
to perform better than the random sampler, than the method is not
improving the accuracy of the model, but is instead sabotaging the
quality of the model.

Baseline: Rolling Window Method (Rolling): The rolling win-
dow method takes a naive approach to selecting samples by select-
ing the most recent window w = | 8| of samples at time ¢ such that

WiseML ’22, May 19, 2022, San Antonio, TX, USA

Activities Seen: |1 |2 | 3 F

nonn

Hernandez and Bulut

1l

Training

urrent Process:)
c ocess Period

Round #1

Round #2

Training Training
Period Round #3 Period ‘

\4

Time

Figure 2: Simulation setting time-table. At each round, 4 distinct actions are seen by the sampler. At the end of each round, a
training period of 10 epochs is given to train the local model based on the samples retained in 8 for the given round.

B={t-w+1,...,t — 1,¢t}. With this method, the assumption is
that we can learn more information from the most recent samples
rather than retaining old samples which may no longer be relevant
to the machine learning model.

Baseline: Unconstrained Expanding Method (Expanding):
The third baseline metric explored assumes that | 8| expands to hold
all samples such that at any given time t, 8 = {1,2,...,t — 1,t}.In
this approach, the device is assumed to be able to store an unlimited
number of samples which is unrealistic for edge devices. Even so,
this baseline metric allows us to understand what the accuracy of
the model would be when all data samples are available and none
of the important samples are missed.

3.2 Local Learning

After processing the sample stream using the described sampler
methods, we have B, X, and §j y. We use X and § 7 to train the local-
model on-device by minimizing the loss function described in Equa-
tion (4) as so:

perd |B| ZL(% (X’) y’) (7)

where 0 are the model weight parameters and Fp(X;) is the pre-
dicted model output given input X; and model-parameters 0. The
trained model can be used locally for on-device model inference,
but can also be used to share knowledge to other devices in the
network such as through federated learning.

4 EVALUATION
4.1 Dataset

In this work, we perform human activity detection experiments in
5 locations within a home environment using the dataset collected
in [7]. For each location, we perform 4 HAD actions (sitting, sitting
to standing, standing, standing to sitting) in a round-robin fashion
50 distinct times. The first set of 25 are used for training our model
while the final 25 are used for evaluation.

4.2 Simulation Setting

To simulate a streaming design using the described dataset, we
assume that one set of all 4 actions is made available each round
and that each round appears at distinct times with an arbitrary
amount of time between rounds. Training is performed over 25
rounds where the sampler is able to filter the dataset in real-time,
but cannot perform any model training while receiving new samples
during a round. Instead, model training occurs at the end of each
physical round before the next round is performed. After each
round, the model trains on the selected samples for 10 epochs.

25
25
é 20 g 20
% 15 § 15
c 10 210
) 3
o 5 o 5
2000 6000 10000 500 1000 1500 2000 2500
Selected Sample Index Selected Sample Index
(a) Baseline: Expanding (b) Baseline: Rolling
25 25
o 20 o 20
£ E
S 15 > 15
zZ z
210 210
> >
o o
x5 T 5
200 400 600 200 400 600
Selected Sample Index Selected Sample Index
(c) MRLL [16] (d) MRHL [18]
25 25
g 20 é 20
§ 15 2 15
1o 210
3 >
o o
r 5 T 5
200 400 600 800 1000 500 1000 1500 2000

Selected Sample Index Selected Sample Index

(e) VLHL (this paper) (f) Baseline: Random [17]
Figure 3: Samples selected for different methods. Black in-
dicates that the sample was selected for the given round.
Samples which are never selected by a given sampler are not
given a sample index number.

The diagram in Fig. 2 shows an illustrated example where during
each round, actions 1, 2, 3 and 4 are seen by the sampler, then the
round is followed by a training period where no new samples are
collected from the environment. The goal is that during the data-
collection round, the CSI-samples are naturally annotated within
the environment during this period. We will note that naturally
annotating the data stream in real-time is an important future work
for allowing on-device training at the edge for all applications, but
is out of scope for the work discussed here.

Online Stream Sampling for Low-Memory On-Device Edge Training for WiFi Sensing

100

90 - 1

80 - 1

70 F :

Accuracy

60 - 1

50
0% 30% 50% 70% 100%

Loss Highest Percentage

‘***' Random — — Expanding Rolling ‘

Figure 4: Accuracy per sampling method.

5 100

@

£

<80

)

o

» 60

Q

g 40

&

. 20 .

£ Y

=}

Z 0

Round

—O©— MRLL —— VLHL (50%/50%) —— MRHL
—-—- Random — — Rolling

Figure 5: Number of samples retained per round.

4.3 Result of Sampling

For the six samplers evaluated in this work, Fig. 3 shows which
samples are selected over the 25 rounds of training. We can see
in Fig. 3a that the number of samples selected by the Expanding
sampler increases over each round resulting in a total of 11,035
samples selected by round 25. All other samplers retain |8| = 100
samples per round. In Fig. 3b, the Rolling Window sampler does not
retain any samples captured from previous rounds which means
that the models are unable to train on any potentially important
samples over more than a single round of training resulting in
exactly 2, 500 unique samples being selected. The remaining four
samplers; MRLL (Fig 3c), MRHL (Fig 3d), VLHL (Fig 3e), Random
sampler (Fig 3f), each capture a varying number of unique samples.
For example, the Random sampler captures 2, 068 unique samples
which is almost equal to what the rolling window sampler captures
but is much higher than the sample counts captured by MRLL (636
unique samples), MRHL (675 unique samples) and the VLHL (1, 008
unique samples) methods. From this view, we can see that both
MRLL and MRHL capture the fewest number of unique samples
which may suggest that the sampler gets stuck with the same sam-
ples over time, thus reducing the diversity of the samples available
for training. The Random sampler, Rolling window sampler and
VLHL samplers each form a straight line in Fig. 3 while MRLL and
MRHL create an “S”-shaped curve. The more straight the line, the
more often the sampler is selecting new samples while the more
curved the line, the more often the sampler is opting to retain old
samples rather than capturing new samples.

Now that we understand the differences in how the samplers
behave, we can evaluate the accuracy of the models locally for each

WiseML ’22, May 19, 2022, San Antonio, TX, USA

100 T T T T

Accuracy

Round

[—6— MRLL —%— VLHL (50%/50%) —— MRHL |

Figure 6: Accuracy over subsequent rounds.

location. Fig. 4 shows the accuracy using the different samplers
where the bar graph show the accuracy with different values set
for parameter Rp;4p, for the VLHL method from 0% (equivalent to
MRLL) to 100% (equivalent to MRHL). Additionally, the line plots
show the samplers that are not affected by Rp;gp,. Out of these three
line graphs, we can see that Rolling achieves the lowest accuracy of
just 68.4% accuracy followed closely by the Random sampler with
an accuracy of just 71.4%. We can see that the MRLL (R4, = 0%)
only achieves 69.3% while MRHL (Rp;4, = 100%) achieves 76.0%
accuracy which is greater than random and rolling, but not by much.
The Expanding sampler is able to store all samples at the end of each
round and thus does not lose any potentially important samples due
to sampling. As such, Expanding is the best-case scenario and can
achieve an accuracy of 96.4%. Using VLHL with Rp;gp, = 50%, the
accuracy achieved is 90.8% which is not as high as Expanding but
does greatly improve the accuracy compared to each other limited-
buffer sampler. This shows that balancing low-loss samples and
high-loss samples does allow for an improved accuracy compared
to just using low-loss or high-loss samples exclusively.

If we consider the number of retained samples per method in
Fig. 5, we can see that MRLL and MRHL both retain far higher
number of retained samples compared to VLHL. This directly trans-
lates into a lower accuracy because the model is not trained on a
diverse set of samples over each round, but instead mostly the same
samples are retained over subsequent rounds. In fact, we can see in
Fig. 6 that MRLL and MRHL reach a plateau after approximately 5
rounds of sampling while VLHL continues to increase accuracy up
until the final round. This corresponds directly with the fact that
MRLL and MRHL are stuck with many of the same samples round
after round as was illustrated in both Fig. 3 and Fig. 5.

At the end of each round, we train the model locally on the
data in B for 10 epochs before moving on to the next round. A
low value for epochs ensures that the model trains quickly and
without consuming too much energy. In Fig. 7, we can see that at
10 epochs, the model trained with VLHL achieves 92.4% accuracy
while 50 epochs achieves only a slightly larger accuracy of 93.5%
while also increases the time to train and thus energy consumption.
In this example, the highest accuracy (96.4%) is achieved when the
number of epochs per round is set to 35. Furthermore, we can see
that VLHL is able to achieve accuracy higher than both MRLL and
MRHL except when the number of epochs per round is very low
(i.e., 1 or 5) where VLHL is unable to surpass 70.0% accuracy. This
shows that while we can achieve high accuracy by training for

WiseML ’22, May 19, 2022, San Antonio, TX, USA

100 T T T T T T T T T

90

80

704

Accuracy (%)

60

50
5 10 15 20 25 30 35 40 45 50

Epochs

[—©—MRLL —%— VLHL (50%/50%) —— MRHL |

Figure 7: Effect of number of epochs per round on accuracy.

many epochs after each round, we can still achieve sufficient model
accuracy with as low as 10 epochs of training per round.

While we consider very small buffer sizes in this work, (ie., |B| =
100), we find in Fig. 8 that VLHL still achieves greater accuracy
compared to MRLL and MRHL up to |8| = 1,000. As we would
expect, as |B]| increases, so does the accuracy, however we can
see that while VLHL achieves 93.8% accuracy when |8| = 100,
the accuracy only increases up to 97.5% when |B| = 500 while
MRLL and MRHL achieve considerably lower accuracy of 64.0%
and 76.3%, respectively when |8| = 100 which can only increase to
94.7% (when |B| = 600) and 95.4% (when |B| = 900), respectively.
This shows that VLHL still outperforms both MRLL and MRHL as
the buffer size increases which ensures that our algorithm can be
applied to edge devices with varying memory constraints.

5 CONCLUSION

In this work, we evaluated the use of online streaming sampling
for training machine learning models on-board edge devices. We
propose the use of Variable Low/High Loss (VLHL) which selects
a balanced set of high loss and low loss samples to capture novel
samples for training (i.e., high loss samples) while also retaining
samples which are well understood and representative of the dataset
(i.e., low loss samples) for the current environment. Overall, we find
that VLHL achieves greater accuracy than baseline sampling algo-
rithms as well as two state-of-the-art sampling algorithms: Most
Recent Highest Loss (MRHL) and Most Recent Lowest Loss (MRLL).
We find that while MRLL and MRHL get stuck with samples over
time, VLHL seeks novelty from newer samples. By identifying this
on-device sampling algorithm, we can capture useful training data
for on-device model training while also upholding memory con-
straints that prevent all data from being buffered on low resourced
and pervasive edge devices.

ACKNOWLEDGMENTS

This work is supported in part by National Science Foundation (NSF)
Graduate Research Fellowship Program (GRFP) under Grant No.
1744624, and Commonwealth Cyber Initiative (CCI). Any opinions,
findings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect
the views of the funding agencies.

Hernandez and Bulut

Accuracy (%)

60
100 200 300 400 500 600 700 800 900 1000
|B]

[—6—MRLL —— VLHL (50%/50%) —=— MRHL |

Figure 8: Effect of different internal buffer sizes (|8|) on
model accuracy.

REFERENCES

[1] Maria Francesca Alati, Giancarlo Fortino, Juan Morales, Jose M Cecilia, and Pietro
Manzoni. 2022. Time series analysis for temperature forecasting using TinyML.
In 2022 IEEE 19th Annual Consumer Communications & Networking Conference
(CCNC). IEEE, 691-694.

Yunhao Bai and Xiaorui Wang. 2020. CARIN: Wireless CSI-based Driver Activity

Recognition under the Interference of Passengers. Proceedings of the ACM on

Interactive, Mobile, Wearable and Ubiquitous Technologies 4, 1 (2020), 1-28.

Han Cai, Chuang Gan, Ligeng Zhu, and Song Han. 2020. TinyTL: Reduce Activa-

tions, Not Trainable Parameters for Efficient On-Device Learning. arXiv preprint

arXiv:2007.11622 (2020).

Lachit Dutta and Swapna Bharali. 2021. TinyML Meets IoT: A Comprehensive

Survey. Internet of Things 16 (2021), 100461.

[5] Lingchao Guo, Zhaoming Lu, Shuang Zhou, Xiangming Wen, and Zhihong He.
2021. Emergency Semantic Feature Vector Extraction From WiFi Signals for In-
Home Monitoring of Elderly. IEEE Journal of Selected Topics in Signal Processing
15, 6 (2021), 1423-1438.

[6] Steven M. Hernandez and Eyuphan Bulut. 2020. Lightweight and standalone
IoT based WiFi sensing for active repositioning and mobility. In 2020 IEEE 21st
International Symposium on" A World of Wireless, Mobile and Multimedia Net-
works"(WoWMoM). IEEE, 277-286.

[7] Steven M. Hernandez and Eyuphan Bulut. 2021. WiFederated: Scalable WiFi

Sensing using Edge Based Federated Learning. Internet of Things Journal (2021).

Steven M Hernandez, Deniz Erdag, and Eyuphan Bulut. 2021. Towards Dense

and Scalable Soil Sensing Through Low-Cost WiFi Sensing Networks. In 2021

IEEE 46th Conference on Local Computer Networks (LCN). IEEE, 549-556.

Hongbo Jiang, Chao Cai, Xiaogiang Ma, Yang Yang, and Jiangchuan Liu. 2018.

Smart Home Based on WiFi Sensing: A Survey. IEEE Access 6 (2018), 13317-13325.

[10] Kavya Kopparapu and Eric Lin. 2021. TinyFedTL: Federated Transfer Learning
on Tiny Devices. arXiv preprint arXiv:2110.01107 (2021).

[11] Wamiq Raza, Anas Osman, Francesco Ferrini, and Francesco De Natale. 2021.
Energy-Efficient Inference on the Edge Exploiting TinyML Capabilities for UAVs.
Drones 5, 4 (2021), 127.

[12] Haoyu Ren, Darko Anicic, and Thomas A Runkler. 2021. TinyOL: TinyML with
Online-Learning on Microcontrollers. In International Joint Conference on Neural
Networks (IJCNN). IEEE, 1-8.

[13] Haoyu Ren, Darko Anicic, and Thomas A. Runkler. 2021. TinyOL: TinyML with

Online-Learning on Microcontrollers. In International Joint Conference on Neural

Networks (IJCNN). IEEE.

Yu Rong, Andrew Herschfelt, Jacob Holtom, and Daniel W. Bliss. 2021. Cardiac

and Respiratory Sensing from a Hovering UAV Radar Platform. In IEEE Statistical

Signal Processing Workshop (SSP). IEEE.

[15] A.Navaas Roshan, B. Gokulapriyan, C. Siddarth, and Priyanka Kokil. 2021. Adap-

tive Traffic Control With TinyML. In Sixth International Conference on Wireless

Communications, Signal Processing and Networking (WiSPNET). IEEE.

Vatsal Shah, Xiaoxia Wu, and Sujay Sanghavi. 2020. Choosing the sample with

lowest loss makes sgd robust. In International Conference on Artificial Intelligence

and Statistics. PMLR, 2120-2130.

[17] Jeffrey S. Vitter. 1985. Random sampling with a reservoir. ACM Trans. Math.
Software 11, 1 (1985), 37-57.

[18] Xiao Zeng, Ming Yan, and Mi Zhang. 2021. Mercury: Efficient On-Device Dis-

tributed DNN Training via Stochastic Importance Sampling. In Proceedings of the

19th ACM Conference on Embedded Networked Sensor Systems. ACM.

Taiyu Zhu, Lei Kuang, John Daniels, Pau Herrero, Kezhi Li, and Pantelis Georgiou.

2022. JToMT-Enabled Real-time Blood Glucose Prediction with Deep Learning

and Edge Computing. Internet of Things Journal (2022).

[2

—_
A

—_
=t

&

[

[14

[16

[19

	Abstract
	1 Introduction
	2 Background
	2.1 WiFi Sensing
	2.2 Machine Learning at the Edge (TinyML)
	2.3 Applications

	3 Proposed Method
	3.1 Streaming Sample Selection
	3.2 Local Learning

	4 Evaluation
	4.1 Dataset
	4.2 Simulation Setting
	4.3 Result of Sampling

	5 Conclusion
	Acknowledgments
	References

