Train-Localization in Tunnels using Magnetic Signatures

INTELLIGENT MAGNETIC POSITIONING FOR AVOIDING COLLISIONS OF TRAINS

Thomas Strang, Andreas Lehner, Oliver Heirich, Benjamin Siebler, Stephan Sand Intelligence on Wheels (IoW) & German Aerospace Center (DLR)

Thomas Strang et.al. – WiSense@PerCom 2024 – 15.03.2024

Motivation

Improving safety and efficiency ...

intelligence on wheels

TrainCAS Virtual Infrastructure

Collision Avoidance based on

Train2Train Communication

Location Beaconing via

... of future railway transportation

Why Localization with Magnetic Signatures?

Research Questions

- Which sensor positions are most suitable?
 - Noise analysis
 - Understanding contributions to the signature
 - Cross section dependencies
- What is the influence of magnetic track brakes?
- How about the long term stability of magnetic signatures?
- How good is the velocity determination from synchronized sensors without map?
- Which accuracy can be achieved with magnetic localization alone and if fused with other sensors?

4

Measurement Campaign

Campaign Overview (early 2021)

<u>Berlin</u>

- Urban and suburban, bridges, underpasses, crossing road and rail traffic
- Göttingen Kassel
 - High speed, tunnels incl. switchways, cargo trains
- Dasing Radersdorf
 - Rural, not electrified, single track
- 2.242 km in 8 measurement days (with track repetitions)
- 1.450 km of magnetic track signatures recorded
- 98 km trajectories referenced by Leica-stations (cm accuracy range)

Magnetic Sensor Arrays

DLR

Antenna and sensor relative positions

Data Analysis

Thomas Strang et.al. – WiSense@PerCom 2024 – 15.03.2024

Reference Trajectories

- No PVT 8.1%
- GNSS Standalone (3.5%)
- SBAS (15.0%)
- DGPS (73.4%)
- Leica1 (3.2%)
- Leica2 (1.1%)

of 2.242 km

DLR

Thomas Strang et.al. - WiSense@PerCom 2024 - 15.03.2024

Expl: Kassel – Göttingen: High Speed and Long Tunnels!

Expl: Kassel – Göttingen Magnetic Track Brake

 A. Lehner, T. Strang, O. Heirich, B. Siebler, S. Sand, P. Unterhuber, D. Bousdar Ahmed, C. Gentner, R. Karasek, S. Kaiser: *Impact of Track Brakes on Magnetic Signatures for Localization of Trains.* 5th International Conference on Railway Technology: Research, Development and Maintenance 2022, Montpellier, France

Expl: Friedberg Long term stability

Magnetic Localization

Magnetic localization

Thomas Strang et.al. – WiSense@PerCom 2024 – 15.03.2024

Along-track accuracy

Heirich, Oliver und Siebler, Benjamin und Lehner, Andreas und Strang, Thomas und Sand, Stephan (2022) <u>Magnetic Train Localization: High-Speed and Tunnel, Experiment and</u> <u>Evaluation.</u> ION GNSS+ Conference 2022, 21.-23.Sept.2022, Denver CO, USA.

Track-selective magnetic localization

- Along-track localization: positioning availability with detected and excluded distortions is > 98%
- O, X is from a detector, not from data labeling

Track-selective magnetic localization

- Cross-track: switch & track identification inside tunnel
- O, X is from a detector, not from data labeling

Integration

23

White and an only have the state of the

Magnetic Odometry integrated into TrainCAS

Example:

Speed estimation inside Leinebuschtunnel (1.740m)

with magnetic odometry speed error < 1.7 km/h (RMSE) in tunnel, even less along the entire track outside tunnels

Magnetic Localization integrated into TrainCAS

Example:

Localization error inside Leinebuschtunnel (1.740m)

with magnetic localization < ~20m

Summary and Outlook

Findings

- Localization accuracy in along-direction is comparable to GNSS (95%: 1.5m sensor outside, 1.8m sensor inside)
- It ack-selectivity: It is possible to re-identify the correct track and a track change at a switch, also inside tunnels of arbitrary length
- Other trains causing distortions: can be handled with fault detection
- Speed error was below 1.7 km/h (RMSE) in integrated system with support of magnetic signatures

Conclusion

- Magnetic signatures are a major improvement to train localization and odometry
- Best results if magnetic odometry & localization combined with GNSS, IMU and digital track map for continuous train localization and integrity monitoring

Teamwork

12 📀 🤣 🛕 SIEMENS 🕧 KNORR-BREMSE STADLER 🗰 🗰 Due foreiter and the for

and the lot of the lot

Oliver Heirich

Benjamin Siebler

Thomas Strang Andreas Stephan Sand Paul Unterhuber

Dina Bousdar

Rostislav Karasek Susanna Kaiser Andreas Lehner Sand Luis Wientgens

Marius Schaab

Carsten Riebbecke

Christian Gentner