Distributed Energy-Efficient Target Tracking
with Binary Sensor Networks

ZIJIAN WANG, EYUPHAN BULUT, and BOLESLAW K. SZYMANSKI
Rensselaer Polytechnic Institute

Target tracking is a typical and important cooperative sensing application of wireless sensor
networks. We study it in its most basic form, assuming a binary sensing model in which each sensor
returns only 1-bit information regarding target’s presence or absence within its sensing range. A
novel, real-time and distributed target tracking algorithm is introduced. The algorithm is energy
efficient and fault tolerant. It estimates the target location, velocity, and trajectory in a distributed
and asynchronous manner. The accuracy of the algorithm is analytically derived under an ideal
binary sensing model and extensive simulations of ideal, imperfect, and faulty sensing models
show that the algorithm achieves good performance. It outperforms other published algorithms by
yielding highly accurate estimates of the target’s location, velocity, and trajectory.

Categories and Subject Descriptors: C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Distributed networks; C.2.2 [Computer-Communication Networks]:
Network Protocols; C.2.4 [Computer-Communication Networks]: Distributed Systems—
Distributed applications

General Terms: Algorithms, Design, Performance

Additional Key Words and Phrases: Target tracking, binary sensor networks, energy efficient,
distributed algorithms

ACM Reference Format:

Wang, Z, Bulut, E., and Szymanski, B. K. 2010. Distributed energy-efficient target tracking with

binary sensor networks. ACM Trans. Sensor Netw. 6, 4, Article 32 (July 2010), 32 pages.
DOI = 10.1145/1777406.1777411 http://doi.acm.org/10.1145/1777406.1777411

This research was sponsored by U.S. Army Research Laboratory and the UK. Ministry of Defence
and was accomplished under Agreement Number W911NF-06-3-0001. The views and conclusions
contained in this document are those of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of the U.S. Army Research Laboratory, the U.S. Gov-
ernment, the U.K. Ministry of Defence, or the UK. Government. The U.S. and UK. Governments
are authorized to reproduce and distribute reprints for Government purposes notwithstanding any
copyright notation hereon.

Authors’ addresses: Z. Wang (corresponding author), E. Bulut, B. K. Szymanski, Computer Science
Department, Rensselaer Polytechnic Institute, Amos Eaton 109, 110 8th Street, Troy, NY 12180;
email: wangz@cs.rpi.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
© 2010 ACM 1550-4859/2010/07-ART32 $10.00

DOI 10.1145/1777406.1777411 http://doi.acm.org/10.1145/1777406.1777411

ACM Transactions on Sensor Networks, Vol. 6, No. 4, Article 32, Publication date: July 2010.

32:2 J Z. Wang et al.

1. INTRODUCTION

Wireless sensor networks composed of miniature devices that integrate physi-
cal sensing, data processing, and communication capabilities present great op-
portunities for a wide range of applications [Chong and Kumar 2003]. Among
them, target tracking is a representative and important application that usu-
ally requires a cooperative processing to achieve good results [Zhao et al. 2002;
Brooks et al. 2003; Li et al. 2002; Rahman et al. 2007; Lin et al. 2006]. One
of the fundamental studies of target tracking focuses on networks composed of
sensor nodes capable of the most elementary binary sensing that provides just
one bit of information about the target: whether it is present within the sensing
range or not. These so-called binary sensor networks constitute the simplest
type of sensor networks capable of target tracking [Arora et al. 2004; Aslam
et al. 2003].

There are two kinds of binary sensing models for binary sensor networks:
the ideal binary sensing model and imperfect binary sensing model. In the ideal
binary sensing model, each node can detect exactly when the target falls into its
sensing range R (as shown in Figure 1(a)). In the real world, detection ranges
often vary depending on the environmental conditions, such as the relative
orientation of the target and the sensor. These factors make target detection
near the boundary of the sensing range much less predictable. The preceding
observations give rise to an imperfect binary sensing model in which the target
is always detected within an inner disk of radius R;, but it is detected only
with certain nonzero probability in an annulus between the inner disk and an
outer disk of radius R,,;. Targets outside the outer disk are never detected (as
shown in Figure 1(b)).

Although there are many papers about target tracking for wireless sensor
networks, only a handful of research results on target tracking using binary
sensor networks have been reported in recent years. The algorithms presented
in Djuric et al. [2004] and Jing et al. [2007] first route the binary information to
a central node and then the central node applies particle filters on information
gathered from all sensors to update the target’s track. Yet, particle filters are
expensive to compute and transmitting data from each node to a central one is
very costly in terms of the energy needed for communication for any nontrivial
size network. In Mechitov et al. [2003], each point on the target’s path is esti-
mated by the weighted average of the detecting sensors’ locations. Then, a line
that best fits this point and the points on the trajectory established in the re-
cent past are used as the target trajectory. Kim et al. [2005] improve the weight
calculation for each sensor node that detected the target and use the estimated
velocity to get the estimated target location. However, the last two methods
require time synchronization of the entire network and assume that the target
moves at a constant velocity on a linear trajectory. Furthermore, they only use
positions of the sensor nodes that detected the target. Actually, the absence of
detection can also provide information useful for improving tracking accuracy.
In Shrivastava et al. [2006], both the presence and absence of the target within
the node’s sensing range are used to define local regions that the target had to
pass. These regions are bounded by the intersecting arcs of the circles defined

ACM Transactions on Sensor Networks, Vol. 6, No. 4, Article 32, Publication date: July 2010.

Distributed Energy-Efficient Target Tracking with Binary Sensor Networks . 32:3

A

(a) (b)

Fig. 1. Binary sensing models: (a) ideal, and (b) imperfect.

by the sensing ranges of the relevant nodes. The trajectory is estimated as a
piecewise linear path with the fewest linear segments that traverses all the
regions in the order in which the target passed them. However, the algorithm
is centralized and complex to compute. It also requires a designated node to
fuse data. Additionally, this designated node has to accumulate information
from tracking sensors to form all regions needed to compute the estimated
trajectory, which means that the tracking is not real time but delayed.

In this article, we introduce a novel distributed, energy-efficient, and fault-
tolerant target tracking algorithm using binary sensor networks that applies
to both ideal and imperfect binary sensing models. Each active node computes
the target’s location, velocity, and trajectory locally, but uses cooperation to
collect the sensing bits of its neighbors. Furthermore, the algorithm tracks
the target in real time, does not require time synchronization between sensor
nodes, and can be applied to targets moving in random directions and with
varied velocities. Moreover, the algorithm is tolerant to sensing faults, when a
sensor either fails to detect a target within its range or reports a “phantom”
target, as well as to information loss caused by packet collisions.

The remainder of the article is organized as follows. We describe the network
model and our assumptions in Section 2. In Section 3, we introduce our target
tracking algorithm in detail and describe its properties. In Section 4, we ana-
Iytically derive the fundamental performance limits of our algorithm under the
ideal binary sensing model. Section 5 presents the simulation results for both
ideal and imperfect sensing models as well as for scenarios with faulty sensing
and communications distorted by packet collisions. The conclusions are drawn
in Section 6.

2. NETWORK MODEL AND ASSUMPTIONS

The sensor network comprises N nodes randomly uniformly distributed over a
finite, two-dimensional planar region to be monitored. Each node has a unique
identifier and the union of sensing regions of all network nodes guarantees re-
dundant coverage of the monitored region. For simplicity, we assume that each
node in the network has the same sensing range R under ideal binary sensing
or the same radii R;, and R,,; under the imperfect binary sensing model. How-
ever, our algorithm also applies when these ranges vary from node to node.
Each node generates one bit of information (“1” for target’s presence and “0” for
its absence) only at the moment at which there is a change in the presence or

ACM Transactions on Sensor Networks, Vol. 6, No. 4, Article 32, Publication date: July 2010.

32:4 J Z. Wang et al.

absence status of the target. Otherwise, we get no other information about the
location, velocity, or other attributes of the target. To save energy and band-
width, a node that has not detected change in the absence or presence of the
target within its sensing range remains silent. Each time a new bit of informa-
tion is generated, the node communicates it to its neighbors that are defined
as nodes whose sensing ranges intersect its sensing range (depending on the
relation of the sensing range to communication range, exchanging information
with so-defined neighbors may require one-hop or multihop communication).
We assume static (immobile) nodes. There are many practical examples of Unat-
tended Ground Sensors (UGS) used in the military and security applications
to make this case worthy of study on its own.

We also assume that each node knows its own location. This assumption
can be satisfied by using some low-power GPS device or localization techniques
(e.g., Savvides et al. [2001]). It should be noted that each sensor estimates the
position of the target relative to its own location and sensing range. Hence,
to report these results, sensors do not need to be aware of their geographical
positions. Moreover, target velocity estimation requires only the knowledge of
the positions of the neighbors relative to each other, which can be established
via triangulation. Hence, establishing the geographical location of each node,
although helpful, is not necessary for the proposed algorithm to work correctly.
It is needed, though, for creating a central trajectory of the sensed target.
Establishing location of neighbors by triangulation and then finding each node’s
geographical position based on some of those neighbors having GPS is a fairly
standard procedure [Gentile 2007] that can be done at the network deployment,
so it is not discussed here.

Nodes exchange their location information through communication at the
network deployment stage. Each node has its own local timer and can time
stamp sent or received messages. Additionally, we assume that the target moves
with velocity that is low relative to the node’s sensing frequency. Consequently,
time of discovery of the change in the target’s presence within the node’s sensing
range differs little from the time at which the target moves within or out of
this range under the ideal binary sensing model.

3. TRACKING ALGORITHM

3.1 Basic Idea

To illustrate our basic idea, we use an example in Figure 2, which shows a
target moving through an area covered by three nodes. Initially, the target is
outside of the sensing ranges of all three nodes. Later, it moves within the
sensing range of node N, at time ¢, and then sensing ranges of nodes N, at
time ¢, and NV, at time ¢3. Finally, it leaves sensing ranges of nodes N,, N,, and
N,, in that sequence, at times #4, t5, fg, respectively.

According to the model described in the previous section, each node will
generate a bit at the time of a change of the status of the target versus the
sensor. It will generate bit “1” at the time of initial detection of the target’s
presence, and later bit “0” at the time of initial detection of its absence. Hence,

ACM Transactions on Sensor Networks, Vol. 6, No. 4, Article 32, Publication date: July 2010.

Distributed Energy-Efficient Target Tracking with Binary Sensor Networks . 32:5

Ay

al

t, ttst; t5 t
Ny:l Ny:1N,:1N,:0 Ny:0 N.:0

Fig. 2. An illustration of the basic idea behind the algorithm.

the messages are generated at the times at which the target enters and then
exits the sensing range of the node. Thanks to the timing of this message,
corresponding events are timed at each neighbor using its local clock, so the
time differences between the events are correct even if the local clocks are
skewed in terms of their measurements of the absolute time.

Clearly, at the transition time ¢;, the target must be on arc A; which is a
part of the border circle of the sensing range of the node reporting the bit
information. This arc can be determined cooperatively from the presence and
absence bits of neighbors of that node. Let us consider arc As defined at time
&> as an example. At time #, node N, senses the target presence within its
sensing range for the first time, so the arc is a part of the sensing range border
circle of node N,. At that time, node N, knows that the target is within the
sensing range of node N, so the target must be on arc “abc”. Node N, knows
also that the target is not within the sensing range of node IV,, so the target
cannot be on arc “bcd”. Hence, node N, concludes that the target must be
on arc As. An important observation is that, by using this method, the two-
dimensional uncertainty of the target’s location on the plane is reduced to a
one-dimensional uncertainty within the circle section. The shorter this circle
section is, the smaller the uncertainty becomes.

3.2 Tracking Algorithm under Ideal Binary Sensing Model

The initial idea of the tracking algorithm under the ideal binary sensing model
was presented in Wang et al. [2008a] and it can be summarized as follows. At
the network deployment stage, each node initializes the list of statuses of its
neighbors to “0”s. Each time a node receives one-bit information from a neigh-
bor, it updates its status on the list. At the moment at which the node discovers
the change in the target’s presence within its sensing range, it identifies the arc
of its sensing range border circle that the target is crossing. The target location
is estimated as the middle point of the corresponding arc and broadcasted to
neighbors. Two relatively accurate estimates of target location combined with
the difference of local times at which these estimates were made are used for
distributed computation of the target velocity. A weighted line fitting method

ACM Transactions on Sensor Networks, Vol. 6, No. 4, Article 32, Publication date: July 2010.

32:6 J Z. Wang et al.

Fig. 3. Instances of angle combinations.

is used to find a line, approximating a fragment of the target trajectory, that
best fits the estimated target locations.

3.2.1 Initialization and Information Update. In the initialization proce-
dure, each node establishes a list of its neighbors. Each element of the list
stores the following information: neighbor node identifier, intersection points
of the sensing circles of the node and its neighbor, an angle corresponding to
the arc defined by these intersection points, and one-bit information generated
by the neighbor, initialized to “0”. Upon receiving one-bit information from a
neighbor, the node updates the corresponding entry in the list.

3.2.2 Location Estimate. We combine all angles corresponding to arcs de-
fined by the neighbor list to determine the arc that the target is crossing. The
four instances of this process are shown in Figure 3. If the neighbors both
generated bits equal to “1”, the corresponding central angles are combined by
“&” operation that returns the intersection of these two angles. As shown in
Figure 3(a), the common angle of /103 and /204 is /203, so the node N, esti-
mates the target location as the middle point of arc “23” when it senses that
the target just moved within its sensing range. One special instance is shown
in Figure 3(b), where the common angle is just one of the two angles.

If one neighbor status is set to “1” while the other is set to “0”, the corre-
sponding central angles are combined with the “-” operation that returns the
angle formed from the first angle by excluding the second angle from it. For
example, in Figure 3(c) /103 — /204 is equal to /102. In a special case shown
in Figure 3(d), the result may consist of two angles, /102 and /304. The correct
angle in this case is chosen by considering the recent estimate of the target
location.

Let FA be the sought arc’s central angle initialized to 27 (the entire circle of
the sensing border of a node). Let IN be the set of neighbor nodes with status
set to “1” and let OUT be the set of neighbor nodes with status set to “0”. Then,
the final angle whose corresponding arc is the one that the target is crossing

ACM Transactions on Sensor Networks, Vol. 6, No. 4, Article 32, Publication date: July 2010.

Distributed Energy-Efficient Target Tracking with Binary Sensor Networks . 32:7

>t
N1 ot Nx
tNyl ~ !Ny ‘
thl thZ Nz
Fig. 4. Velocity estimation.
can be expressed as
FA =FA & angle; — angle;, (1)

ieIN jeour

where angle; is the central angle corresponding to neighbor i.

3.2.3 Velocity Estimate. We use a distributed, asynchronous algorithm to
estimate the target velocity. As shown in Figure 4, three nodes N,, N,, and
N, work asynchronously. At time #yv,; on node N,’s local clock, node N, senses
the target’s presence within its sensing range for the first time and generates
a bit “1” message. The estimated location of the target is also included in
this message to save energy and bandwidth. Since the elapsed time of radio
transmission is negligible, node N, receives this message at time ¢y, on its local
clock. Node N, will also receive the message from node N, at time #y,2. Then,
node N, can use the time difference #y,s — tn,1 and the difference of locations
reported in these two messages to estimate the target velocity. To estimate
velocity accurately, only location estimates with relatively high accuracy are
used; these are locations at the middle points of the short arcs.

3.2.4 Trajectory Estimate. A weighted line fitting method is used to get
the target trajectory and the weight of each estimate is defined as

|circle|

, (2)

larc|
where |arc| is the length of corresponding arc whose middle point is the es-
timated target location and |circle| is the length of the sensing range border
circle. Each node finds the line that best fits these weighted estimated loca-
tions. This line, when expressed as y = a-x + b, minimizes the metric @ defined
as

Q=) wilyi—a x—b7 3
icE

ACM Transactions on Sensor Networks, Vol. 6, No. 4, Article 32, Publication date: July 2010.

32:8 J Z. Wang et al.

where E = [(yo, %0), ... (i, i), . . . (Y&, 22)] is the list of the estimated target loca-
tions to which the line is fitted. Hence, this is the weighted least square error
line.

Each node will cache % (an adjustable parameter) estimated locations re-
ceived from neighbor nodes. The node will divide these estimated locations into
groups of size n (another adjustable parameter, a divisor of £ + 1) from the
beginning of the cache and use weight line fit method on the first group of
estimated locations to get a line segment with slope %;. Then the node will get
new line segment with slope %] using next group of estimated locations. If the
difference between the slopes is less than ¢ (the third adjustable parameter),
we assume that there is no turn in the trajectory and a new slope of line seg-
ment will be calculated using the next group of estimated locations. Otherwise,
the node will select the current group as an new start to get a new line segment
with slope k2. This procedure will continue to the end of the cached locations.
The specific values of the three parameters &, n, € used in our simulations are
given in Section 5.5.

3.3 Tracking Algorithm under Imperfect Binary Sensing Model

To make our algorithm robust, as in Shrivastava et al. [2006], we take a worst-
case approach to the information provided by the imperfect binary sensing
model: if a sensor output is “1”, then we assume that the target is somewhere
inside the large disk of radius R,,;; if a sensor output is “0”, then we assume
that the target is somewhere outside the small disk of radius R;,,.

The initial investigation of this case was given in Wang et al. [2008b] and it
showed that the main influence of the imperfect binary sensing model is that
the algorithm no longer could identify circular arcs that the target crosses (as
was possible in the ideal binary sensing model) when there the status of the
target sensed by a node changes. Instead, we can only identify that the target
must be within the ring determined by R;, and R,,;. However, we can use a
thin ring section which is determined by the neighbor output to approximate
the circular arcs and then estimate the position of the target. Although this
will make the one-dimensional uncertainty of the target’s location expand to a
two-dimensional uncertainty, if the resulting ring section is short and thin, the
error will still be small.

3.3.1 Initialization. In the initialize procedure, each node establishes a
list of its neighbors and calculates the exact angle corresponding to a neighbor
depending on the output and the relative position of that neighbor.

The three instances for neighbor (node N,) that outputs bit “1” are shown
in Figure 5. As described previously, if node N, outputs bit “1”, we can only be
sure that the target is within sensing range R,,;. When node N, senses there is
a change in the status of the target, it knows that the target is within the ring
determined by R;, and R,,;. Depending on the relative position of node N, to
node N,, there would be up to two angles corresponding to node N, resulting
from the intersection of R;, and R, circle of node N, and R, circle of node N,.
If two angles exist for node N, we choose the angle that ensures that the target

ACM Transactions on Sensor Networks, Vol. 6, No. 4, Article 32, Publication date: July 2010.

Distributed Energy-Efficient Target Tracking with Binary Sensor Networks . 32:9

N, N,
©

Fig. 6. Determination of an angle corresponding to neighbor’s output “0”.

must fall in this angle, for example, we choose /b10bs and Zajoag in Figure 5(a)
and 5(b) as the angle corresponding to neighbor N,. If only one angle exists for
node N,, then it is chosen as the corresponding angle, as shown in Figure 5(c).

The three instances for neighbor (node N,) that outputs bit “0” are shown
in Figure 6. As described previously, if node N, outputs bit “0”, we can only
know that the target is outside sensing range R;,. Depending on the relative
position of node N, to node N, there would be up to two angles corresponding
to node N, resulting from the intersection of R;, and R, circle of node N; and
R;, circle of node N,. If there are two existing angles for node N,, we choose the
angle that ensures that the target must fall out of this angle, for example, we
choose /ajoas and /bj0by in Figure 6(a) and 6(b) as the corresponding angle to
neighbor N,. For the instance shown in Figure 6(c), we cannot determine that
the target is outside Za;oag because the target could be within /a;oas no matter

ACM Transactions on Sensor Networks, Vol. 6, No. 4, Article 32, Publication date: July 2010.

32:10 . Z. Wang et al.

@) (b)

Fig. 7. Ring section thickness calculation.

what node N, outputs. So, if node N, outputs bit “0”, it will be considered as a
neighbor of node N, only if its R;, circle intersects with the R;, circle of node
N;.

3.3.2 Location Estimate. At the moment at which the node discovers the
change in the target’s presence, it calculates the final angle corresponding to
the ring section that the target is crossing using the same angle combination
method as in the ideal binary sensing model. Then, the thickness of the ring
section is recalculated to make the estimation of target position more accurate.

We calculate the intersection points of each pair of node N;’s neighbor that
output bit “1”. The intersection point that falls into the final angle and is
furthest away from the center of node N, determines one of the boundaries
of the ring section, which will make the ring section as thin as possible. A
new thinner ring section is determined by this intersection point, R,,; circle,
and final angle. For the case shown in Figure 7(a), this is ring section “abed”.
Interestingly, the neighbor node that outputs bit “0” contributes only to the
angle combination but not to the thickness calculation. As shown in Figure 7(b),
the recalculated ring section may exclude some area into which the target may
fall, although with small probability because this area is near R,,; circle of
node N,. Moreover, when the final angle is small, this area will be negligible in
size. The target position is estimated as the center point of this ring section.

3.3.3 Velocity Estimate. We use the same method as under the ideal binary
sensing model to estimate the target velocity. At the time of sending out the
message that contains the estimate position, the target may not be exactly at
the boundary of sensing circle, as was the case under the ideal binary sensing
model shown in Figure 4. Hence, to estimate velocity accurately, only location
estimates with relatively high accuracy are used for which the ring sections
are short and thin.

ACM Transactions on Sensor Networks, Vol. 6, No. 4, Article 32, Publication date: July 2010.

Distributed Energy-Efficient Target Tracking with Binary Sensor Networks . 32:11

3.3.4 Trajectory Estimate. We use the same method as under the ideal
binary sensing model to estimate the target trajectory but redefine the weight
of each estimate as

rin
S — @)
|ring section|
where |ring section| is the area of the corresponding ring section whose mid-
dle point is the estimated target location and |ring| is the area of the ring
determined by circles R;, and R,,;.

3.4 Properties of Our Tracking Algorithm

The most prominent feature of our algorithm is its energy efficiency supported
by its four inherent properties. The first such property is the use of binary
sensing that often reduces sensing energy requirements. For many types of
sensors, a binary detection uses either a simple threshold mode or on-board
signal processing, both of which reduce power consumption significantly. As
an example, for acoustic sensing (e.g., the KnowlesEA-21842 sensor) and mag-
netometer sensing (e.g., the Honeywell HMC1002 sensor), using binary mode
reduces power consumption five-fold compared to what a classification mode
requires [Singh et al. 2007].

The second property is that each node executing our algorithm generates a
message only when there is a change in the target status. Only two relatively
short messages are generated over the entire period during which the target
resides within the sensing range of a node.

The third property is processing the target information in a distributed man-
ner without routing the target information from each node back to the central
node which would consume a considerable amount of energy. Finally, as we will
show in Section 5.3.2, our tracking algorithm achieves higher accuracy with
smaller average number of neighbors than other binary sensing target tracking
algorithms. Having fewer active nodes saves a lot of energy and prolongs the
network lifetime.

Another interesting property of our algorithm is that the reporting and not
reporting the presence of the target in the sensing range by the neighboring
nodes can be verified for consistency against the known topology of the neighbor
graph. In case of perfect binary sensing, all neighbors reporting presence of the
target must have nonempty intersection of their sensing ranges. Moreover, none
of the sensors not reporting presence of the target can have such an intersection
entirely within its sensing range. We used this property to provide a level of
tolerance to reporting faults in our algorithm. The details of the modification
and measurements of the resulting fault tolerance are described in Section 5.6.
This is important because there are many reasons a node may fail to report the
target presences within its sensing range, or conversely to report the target that
is absent from its sensing range. Both kinds of errors will influence the target
position estimation. A typical reason for such errors is environment noise that
may affect the sensing device of a sensor [Liu et al. 2007]. Also any failure of
communication (e.g., a collision of packets carrying the reports) will result in

ACM Transactions on Sensor Networks, Vol. 6, No. 4, Article 32, Publication date: July 2010.

32:12 . Z. Wang et al.

Fig. 8. A configuration for performance analysis.

the new target status not being updated. Hence, fault tolerance to reporting
faults improves the algorithm performance in real applications.

4. FUNDAMENTAL PERFORMANCE LIMITS UNDER IDEAL BINARY
SENSING MODEL

Assume that we have a domain of area A; in which there are total of N sensors,
each with a uniform sensing range (to simplify the analysis, we set this sensing
range to be one unit, R = 1). Let us consider the specific time instance at which
the target T has been just sensed by node X whose center is at point Cy. All
neighbor sensors that also sense the target are within a circle centered at T
with radius of Ry = 1 unit, as shown in Figure 8. According to the algorithm
introduced in Section 3, the accuracy of our algorithm under the ideal binary
sensing model is just half of the length of the arc resulting from the angle
combination procedure, which is the length of the average shortest arc from
target T to the intersection point resulting from the intersection between the
sensing circle of neighbor node and the sensing circle of the node X. First,
we analyze the accuracy of our algorithm considering only the output from
neighbor nodes that also sense the target. Then, we extend this analysis to the
case in which the output from neighbor nodes that do not sense the target is
also considered.

The probability P, that there are £ (0 < 2 < N) neighbors that also sense the
target within their sensing ranges is

(R D)

A practical way to compute this probability is to start with the most probable
number of neighbors, which is

Fmost = {(N - Dﬂ . 6)

ACM Transactions on Sensor Networks, Vol. 6, No. 4, Article 32, Publication date: July 2010.

Distributed Energy-Efficient Target Tracking with Binary Sensor Networks . 32:13

Fig. 9. A configuration for calculating the shared arc length distribution.

Then, starting with %, — 1, knos: + 1, the probabilities for other £’s can be
calculated by the following formulas.

(N-k—Dr KA —n)
ET DA D n)Pk, P,1=—77——"h (7

(N — k)

Once the values of P, become very small, the computation of the subse-
quent P, probabilities stops.

All % intersecting arcs will have one point on one side of the target and
another on the other side. So the resulting average shortest length of the arc
of all intersections will be the double of the length of the distance of the target
from the closest intersection point on the either side of the target. Then, the
accuracy of our algorithm will be just half of the average shortest length of
the arc. Based on this insight, we introduce the method of calculating the
distribution of the length of the shared arc, as shown in Figure 9. Node X with
sensing range of one unit centered at point Cy (we refer to this circle as circle
Cy) just senses the target T. Node Y centered at point N is one of the neighbors
of node X that also senses the target within the sensing range of one unit (we
refer to this circle as circle Ny). These two sensing circles intersect at points P
and P’. We chose the notation so that P is the closest of the two intersection
points to the target and its distance may determine the accuracy of the target
position measurement. All the neighbors of node X that also sense the target
must fall in the circle centered at point 7' with radius of one unit (we mark this
circle as circle T'). It is important to note that any node whose sensing circle
also intersects with circle Cy at point P must be on the circle centered at point
P with radius of one unit (we refer to this circle as circle P). Consequently, any
node that also senses the target but has an intersection point with circle Cy

Pk+1 =

ACM Transactions on Sensor Networks, Vol. 6, No. 4, Article 32, Publication date: July 2010.

32:14 . Z. Wang et al.

closer to target T than point P must fall in the shadowed area that we denote
as A. If x denotes /PC\T size in radians, then the length of arc PT is 1 x x = x.
The probability P(x) that the length of arc PT is less than or equal to x is
llarea Al/||circle T'||, where ||.. .|| returns the area of its argument, sector QTC,,
is in circle T', and sector QPC, is in circle P.

larea A| = ||sector QTC,| — ||sector QPC,| + ||QTC,P]||

=nxR2x@2r —(r —x))/27n — 7 x R? x (m —x)/27
+2x1/2 x (2 x R? x cos(x/2)) x sin(x/2)= (x + sin(x)) x R? (8)
Hence, P(x) = x + sin(x)/m and the probability Ps(x) for the shortest arc

created by & neighbor nodes sensing the target being shorter than x is defined
as [Feddema et al. 1999]

k
Pi(x)=1—Prob(y; > x)=1— HProb(yi >x)=1-(1- Px))". 9
i=1

Hence, the average length of the shortest arc is

T kmax
5= P / xd(1—(1— P~ Py, (10)
k x=0 k=0
where
T T 1 k
8, = / —xd(1 — P(x))t = / (1 - HSTIH(W dx. 11)
x=0

x=0

We select kpmax in such a way that P, , 1 <0.1% < P,__ .

In the previous procedure, we only consider nodes that sense the target.
Yet, nodes that do not sense the target also contribute to the accuracy of the
algorithm. Let AB denote the average shortest arc with length of 2L centered
at point T' obtained through the preceding procedure and shown in Figure 10.
All nodes that intersect with circle Cy must fall within interior of the circle
centered at point Cy with radius of two units. Among all of these nodes, the
ones that do not sense the target but also have one intersection points on arc AT
must fall in the shadowed area which we will refer to as W and which is formed
by the circles of unit radius centered at points A and 7T'. The nodes within area
W also contribute to the accuracy of estimation of the target position by cutting
the feasible arc shorter.

Similar to the previous analysis, if one node falling in area W intersects with
arc AT at point P, then any node that does not sense the target but has an
intersection point @ closer to point A than P must fall in the shadowed area
shown in the right-hand side of Figure 10 that we will denote as Z.

Let ensing denote the number of sensors that sense the target at the given
time instance. We assume that this number includes the node that just observed
the target in its sensing range and its neighbors who also have the target
in their sensing ranges. Then the probability P, that there are £ (0 < £k <
N — kgensing) neighbors that do not sense the target within their sensing ranges

ACM Transactions on Sensor Networks, Vol. 6, No. 4, Article 32, Publication date: July 2010.

Distributed Energy-Efficient Target Tracking with Binary Sensor Networks . 32:15

Fig. 10. TIllustrations of contributions of the nodes that sense no target and distribution of the
cut-off arc length.

but contribute to the accuracy is
k
_ (N—ksensin, llarea W|| |larea W ||
Py = (N henine) (_Ad__n) (1 — larea W))
k N—E—Fagnsi (12)
— (kamsmg) <L+ sin(L)) (1 B L+Sin(L)) ensing
o k A—m A .

A practical way to compute this probability is to start with the most probable
number of neighbors, which is

N—k— ksensing

, L+ sin(L)
most — ’V(N - ksensing)ﬂ—‘ . (13)
Then, the probability for other £’s can be calculated by
r (N —k— ksensing)(L + sin(L)) , (14)
17 (ke + 1(Ag — L—sin(L) —) *
P = k(A; — L —sin(L) — 7) P (15)

(N =k + 1 — Egensing(L + sin(L)) " *
Once the values of P]

.1 become very small, the computation of the subse-
quent P, probabilities stops.

If we denote /PCyA as t in radian, then length of arc PA is 1 x ¢t = ¢t. The
probability P’(¢) that the length of arc PA is less than or equal to £ is

P'(t) = |larea Z||/||area W] = (t + sin(¢))/(L + sin(L)). (16)
The probability P/(¢) that the longest arc created by % neighbors not sensing
the target is shorter than ¢ is defined as

k
P/(£) = Prob(y, < t) = [| Prob(y; < ¢) = P'(¢)". (17)
i=1

ACM Transactions on Sensor Networks, Vol. 6, No. 4, Article 32, Publication date: July 2010.

32:16 . Z. Wang et al.

Y1=-X+T

Yo=-2%/T+2

y=sin(x)

2 T

Fig. 11. Analysis of the algorithm’s error for nearly uniform sensor distribution.

Hence, the average length of the longest arc is

L
sﬂ»:}jgl;uwuy=L—§:g%, (18)
J J

where

[E @+ sin@)Vdt
(L + sin(L))/
We select k., in such a way that P, , <0.1% < P;, . With this notation,

the accuracy of our algorithm is

§(L) = (19)

k=Fkmax J=kmax /

P O .
— / ~ J 1 J
€= Ek P.5' (&) kE:O P, J.EZO —(8k Y tzo(t—i—sm(t)) dt. (20)

Let us consider now the nearly uniform distribution of sensors with the
density p, measured as the average number of sensors in the unit square when
the sensing range R = 1. Consider a node whose sensing boundary is crossed.
With the preceding notation, on average there are k = 7 R?p, —1 = np,—1 other
sensor nodes that sense the target at that time. Since we assume nearly uniform
distribution of sensors, then, with probability one, we will have £ nodes sensing
the target and the entire Eq. (10) becomes just §;, = fx”:()(l — (x + sin(x))/m edx.
Setting y = 7 — x transforms 7 — x — sin(x) into y — sin(y) and then &, =

ACM Transactions on Sensor Networks, Vol. 6, No. 4, Article 32, Publication date: July 2010.

Distributed Energy-Efficient Target Tracking with Binary Sensor Networks . 32:17

Jro = sin(y))*dy/m*. From Figure 11, we get

gkt

T . . T o 3
/= (y — sin(y))*dy > /zn/2(2y m)dy = TN (21)

hence the error in radians is larger than 5" ;.

On the other hand, for line yq, coordinates of point @ are (2 3 H) so the
area above sin(x) over the interval [0, 7 /2] is

2
T T 1 T 2
2 —)(=- —1~0.134163549. 22
<2+n> +<2+n+2>(2 2+71> 0.134163549. (22)

But, the area above ys and below sin(x) over the interval [7/2,7]is 1 — I~
0.2146018365, so we have

k42

_ k oYy —
f (y — sin(y)) dy</ zn/(2+n)((2+ﬂ’)y/7f 2)*dy RS (23)

In short, we proved that the error in distance units is p— where 3 <c<g.
Hence, the error is inversely proportional to p,. If the sensing range isR>1,
and the sensor density (the average number of sensors in the distance unit
square) is p, it is easy to see that the error is expressed by the formula ﬁ, S0
the error is inversely proportional to the density and to the sensing range.

To assess the impact of nonsensing nodes for the error, we notice that L
measured in radians satisfies L > leﬂn = 2_}»1 and therefore the area over which
the nonsensing nodes contributing to error estimate are located is about R%(L+
sin(L)) > p—ln. Hence, on average there is one node there. Under assumption of
nearly uniform distribution, only j = 1 in Eq. (19) will have nonzero probability,
so Pj =1land P; ;; = 0. Hence, the summation in Eq. (19) collapses to a single
element Wh1ch 18

JLot+sin@®)dt 14+12/2—cos(L) L o
L+sin(L) L+sinl) 2

From that, we conclude that for medium and large densities (for which L is a

fraction, so approximation sin(L) ~ L is tight), the improvement from using

nonsensing nodes tends to 50%.

To verify our accuracy analysis, we also obtained the accuracy from simu-
lation of 800 sensor nodes with sensing range of one unit that were randomly
deployed over an area of 20 by 20 units. Hence, A; = 400, N = 800. Using
Eq. (10), we get that the average accuracy from just nodes that sense the target
is § = 0.261 in radians. Considering keensing values ranging from 1 to 16, we get
from Eq. (20) that the final accuracy with contributions from neighbor sensors
that do not sense target is ¢ = 0.155 in radians. On the other hand, the average
combination angle from simulation is 0.270, so the accuracy from simulation is
0.270/2 = 0.135, the difference between the analytical and simulation results
is only 0.02 or below 13%, showing an excellent agreement between the two.
Another interesting observation is that the use of sensors that do not sense the
target in the algorithm improves the accuracy of localization by about 40%, so

ACM Transactions on Sensor Networks, Vol. 6, No. 4, Article 32, Publication date: July 2010.

32:18 . Z. Wang et al.

@

Fig. 12. Tllustrations for packet collision and abandoning transmission.

very significantly. Since for this example p, = 2 then using the middle of the
interval for ¢ we get L = 0.278 in radians. Hence, the accuracy predicted by
Eq. (24) is 0.139, just within a few percent of the actual accuracy measured in
simulation that was 0.135.

5. SIMULATION

5.1 Simulator

We have designed a QT (a cross-platform application framework)-based simu-
lator and used data exchange between multithreads to simulate wireless com-
munication between sensor nodes. The communication range of each sensor
node is twice of its sensing range. In the basic simulations for the ideal and
imperfect binary sensing model, we assume that there is some MAC (Media Ac-
cess Control) protocol supporting ideal wireless communication, so simulations
have not modeled collisions or dropped packets. To investigate fault-tolerant
properties of our tracking algorithm, we added packet collisions to the wireless
communication as well as environmental noise to the sensing model for a set of
simulations based on the ideal (in terms of detecting the target at exactly the
sensing range) binary sensing model.

In our tracking algorithm, a sensor node only broadcasts a message when
the target enters or leaves its sensing range, so the only chance that there will
be a packet collision is when the target passes over sensing range boundary
circles in a quick succession. We assume that the packet collision arises when a
passage of the subsequent sensing range boundary happens after the previous
one in less than the collision time gap, defined as follows. The collision time gap
is the smallest time between the transmissions of two neighboring nodes after
which one node will sense the other’s transmission and cancel its own broad-
cast to avoid collision. Otherwise, there will be packet collision and none of the
messages broadcast by these two nodes will be received by their joint commu-
nication neighbors. A report point is defined as a position of the target on the
boundary of the sensing range of a node, which starts transmitting the report of
crossing. As shown in Figure 12(a), only if two subsequent report points (circle
spots) are within a circle (the dashed line circle) centered at the previous one
with the radius of collision_gap*target_velocity, then the corresponding two re-
ports may collide and none of them will be received by the joint communication
neighbors of the transmitting nodes. As shown in 12(b), only if only one of two
subsequent report points (circle spots) is within the collision circle (the dashed

ACM Transactions on Sensor Networks, Vol. 6, No. 4, Article 32, Publication date: July 2010.

Distributed Energy-Efficient Target Tracking with Binary Sensor Networks . 32:19

line circle) but both are within a circle (the dashed dotted line circle) centered
at the previous one with radius of transmission_time*target_velocity, the later
reporting node may sense the transmission of the previous one and abandon
its report.

The environmental noise will also affect the target detection. A sensor node
may report wrong target status caused by the false sensing. We randomly select
a certain percentage of the nodes in the simulation to report only wrong target
status when sensing the target.

5.2 Simulation Setup

It is obvious that the results of our tracking algorithm become more accurate
with an increasing number of neighbors reporting the status of the target. To
evaluate the impact of the neighbor node count on the performance of target
tracking, we used the following simulation environment. We kept the number
of nodes fixed at 800 over the area of 800 units by 800 units and varied their
sensing range R (R,,; for the imperfect binary sensing model) from 40 to 150
units. With the same topology, the effect of change of the sensing range is that
the average number of (sensing) neighbors increases with the sensing range.
Another interpretation is that if we fix the sensing range as a constant, say 40m,
then changing the range from 40 to 150 in terms of simulation units corresponds
to shrinking the area over which 800 nodes is deployed from 800m by 800m
to just 213.3m by 213.3m. In both cases the average number of neighbors of
each node changes, but in the second case also the spatial density of sensors
per square meter increases. The advantage of this approach is that we can
estimate the influence of neighbor node count or sensor spatial density on our
tracking algorithm excluding other factors, such as the placement of the sensor
nodes in relation to each other, which remains constant in our setting. For the
same reasons, the velocity of the target is also adjusted proportionally to the
sensing range, making it constant if measured in sensing range units.

For the imperfect binary model, two kinds of detection probabilities are used.
The first one is a constant distribution as defined in Eq. (25), where d is the
distance between the sensing node and the target.

Rout*d
Rout—FRin Rin = d = Rout
Pdetectl(d) = 1 d < Rin (25)
0 Rout = d

The second one is an exponential distribution defined in Eq. (26) [Dhillon
and Chakrabarty 2003], where « is its exponent parameter. In order to make
the detection probability approximately 0 when d = R,,;, we let e~ Fout—Fin) —
0.01%, yielding o = 2(0-01%)

Rin—Rout
(@ Fn) Riy <d < Rou
Paetecr2(d) = 1 1 d < Ry (26)
0 Ry <d

Finally, three types of trajectories have been considered, which are linear,

ACM Transactions on Sensor Networks, Vol. 6, No. 4, Article 32, Publication date: July 2010.

32:20 . Z. Wang et al.

circular, and a piecewise linear with random turns trajectories. To exclude the
boundary effect, all the trajectories are confined within the square area with
length of 800 — R,,.x located in the middle of the simulated region, where Ry«
is the maximum sensing range (150 units) in the simulation. For the random
turn trajectory, the length of each linear piece of the trajectory is random
but proportional to the sensing range. As in Mechitov et al. [2003], we set
Ruin = 0.9 x R,,; under the imperfect binary sensing model.

5.3 Location Estimate

The first metric that we consider is the location estimation error, measured as
the ratio of the distance between the estimated and real target locations to the
sensing range R (R,,; for an imperfect binary sensing model).

5.3.1 Algorithms to be Compared. We compare our algorithm with the
following four other algorithms introduced in Mechitov et al. [2003] and Kim
et al. [2005].

(1) Equal weight. Target’s position is estimated as the average of the detect-
ing sensors’ positions.

(2) Distance weight. Target’s position is estimated as the weighted aver-
age of the detecting sensors’ positions. The weight for each node is set at
4/v4R? — v2t2, where v is the target velocity and # is the time expired since the
target has been detected.

(8) Duration weight. Target’s position is estimated as the weighted average
of the detecting sensors’ positions. Given the time ¢ that expired since the node
has detected the target, the weight of this node is In(1 + £).

(4) Line fit. The initial estimate of the target position is made using distance
weight algorithm (2), and then a line that fits the history target position point
is found and the current target position is refined using this line and the target
velocity.

Algorithms (2), (3), and (4) have been designed for a linear trajectory with
constant velocity, so we compare our algorithm with them only for the linear
trajectory.

5.3.2 Simulation Results and Discussion. We ran each simulation ten
times and computed the average and confidence interval of the results under
confidence level of 95%. Figure 14 and Figure 15 show the location estimate
accuracy results under both ideal and imperfect binary sensing models.

As evidenced by the plots in these figures, in all cases our algorithm’s results
were better than the results of all four other algorithms. For the ideal sensing
case, the ratio of accuracy of our algorithm to the best accuracy of others grows
from nearly 3 for an important case of networks with medium neighbor density
(sensing range of 40 units) to slightly below 7 for dense networks. For the
imperfect sensing case, this ratio is always above 2, with the biggest value of
above 3 for networks of medium neighbor density, matching in this case the
ratio for ideal sensing. As a result, even for the networks with sensing range
R,y = 40 (i.e., the network in which a node has only five neighbors on average)

ACM Transactions on Sensor Networks, Vol. 6, No. 4, Article 32, Publication date: July 2010.

Distributed Energy-Efficient Target Tracking with Binary Sensor Networks . 32:21

and with the imperfect binary sensing model, the algorithm performs very well.
Interestingly, for all algorithms there is no significant difference in the results
between ideal and imperfect sensing models when the neighbor density is low
and medium. However, in networks with higher neighbor node counts, the ideal
case yields much better accuracy.

It should also be noted that the location estimate accuracies for all the
three trajectory types in the case of our algorithm are nearly the same, show-
ing that our algorithm works well for all kinds of trajectories. There is a
slight decrease in accuracy of the algorithm (1), the only one of the com-
parison algorithms applicable to nonlinear trajectories, for more complicated
trajectories.

Another important property of our tracking algorithm is that it achieves the
given desired location estimate accuracy using fewer neighbor nodes, that is
less dense networks, than needed by the other algorithms discussed before.
For example, the accuracy achieved by our tracking algorithm using sensing
range of 40 units (so for a network in which a node has 5 neighbors on average)
is nearly the same as the accuracy achieved by algorithm (1) using sensing
range of 150 units (hence for the network in which a node has 87 neighbors
on average) under the ideal binary sensing model. This advantage may be ex-
plored in two different ways by deploying the number of nodes higher than
necessary for our algorithm but equal to the number of nodes that one of the
other algorithms needs to achieve the given location estimate accuracy. First,
we can use all the deployed nodes and add certain robustness to node failures
to our algorithm. Indeed, if some of the redundant sensors fail (which often
happens in the real deployments for a multitude of reasons, such as energy
drainage, accidental damage, or random deployment behind obstacles) our al-
gorithm will still provide accurate location estimate results. Second, we can
also integrate our tracking algorithm efficiently with the node sleep schedul-
ing mechanism by turning off a portion of neighbor nodes to save energy. In the
example mentioned earlier, our tracking algorithm achieves the same location
estimate accuracy as algorithm (1) even when up to 95% of neighbor nodes
are turned off. This will save a lot of energy and prolong the network lifetime
significantly.

We also analyzed the number of messages exchanged and their corre-
sponding energy cost. Let the target move from point O; to point Oy with
velocity v(¢) over time dt as shown in Figure 13. Let o« = /X;X20., then
v()dt = 2Rsin(a) ~ 2Ra. Area Ry contains sensors that will broadcast bit
“0” when the target moves from O; to O;, and equal size area R; contains
sensors that would transmit bit “1”. Hence, the total number of messages gen-
erated by the the target moving from O; to Oy will be 2Ap, where A is the
size of area Ry, p is the sensor density per unit square. A can be computed
from Eq. (8), yielding A = (2« + sin(2a))R? ~ 4R?«. Thus, the total number of
messages generated is 4Rpv(¢)dt. If over time ¢., the target moves distance D,
then the number of messages produced is

t
f 4Rpv(t)dt = 4RpD. 27
t=0

ACM Transactions on Sensor Networks, Vol. 6, No. 4, Article 32, Publication date: July 2010.

32:22 . Z. Wang et al.

Fig. 13. Analysis of the number of messages generated.

So the total number of messages exchanged is proportional to the sensing
range R, the sensor density p per unit square, and the distance traveled by the
target D.

To verify this analysis, we performed two groups of simulations over an area
of size 800 by 800 covered by 800 sensor nodes (so the same density p per unit
square in each group). We set the sensing range R to be 40 units in one group
and 150 units in another. In both groups of simulations, the target moves along
a random trajectory (the same for each group) with a constant velocity and over
the same distance. We ran the simulation 20 times for each group changing the
topology of the network in each run. The exchanged messages were counted.
The total number of messages exchanged is 474 when R = 40 units and 1759
when R = 150 units. The ratio is 1759/474 = 3.71 which is very close to the
ratio of sensing ranges 150/40 = 3.75.

First, let us consider only transmitting energy cost here. According to the
energy consumption model for packet transmission, the energy cost for trans-
mitting a packet to distance d is E,, = kd?, where k is a constant. In the
discussed algorithms, each node broadcasts to all its neighbors, so over the
distance of the double sensing range, thus d = 2R. Hence, the total energy
cost is 4RpD * k(2R)?> = 16R3kpD. From Figure 14, it is clear that our al-
gorithm achieves nearly the same location estimate accuracy using sensing
range R = 40 units as the algorithm (1) (the best one among all the algorithms
compared) using sensing range R = 150 units. This means that our algorithm
needs to send only 40/150 = 27% messages using only (40/150)3 = 2% energy
when compared to the algorithm (1).

Considering the receiving energy cost, we noticed that each message is re-
ceived by (150/40)> = 14 times fewer nodes in our algorithm than in case of
algorithm (1), so the receiving energy expended by our algorithm is only 7% of
the receiving energy needed by the algorithm (1).

5.4 Velocity Estimate

We tested the performance of velocity estimation in two scenarios in which the
target moves along a linear trajectory. In the first scenario, the target moves
at a constant velocity which is R/15 unit/second. In the second scenario, the

ACM Transactions on Sensor Networks, Vol. 6, No. 4, Article 32, Publication date: July 2010.

Distributed Energy-Efficient Target Tracking with Binary Sensor Networks . 32:23
0.40 —m— our-linear
. —e— our-circular
—A— our-random
0.35
S —e— (1)-linear
[4 .
5 —*— (1)-circular
Dé) 0.30 1 —»— (1)-random
k= . —X— (2)Hlinear
2 025 —<— (3Hinear
@] —e— (4)-linear
5 -
2 0.20
w | S
s
2 0415+ -
S]
o
— 0.10 %
[
g) 4
'g'a 0.05 -
<]
0.00 —T T T T T T T T T T %‘
40 50 60 70 80 9 100 110 120 130 140 150
Sensing Range
Fig. 14. Location estimate accuracy for ideal binary sensing model.
0357 —n— our-linear 0357 —u—our-linear
—e— our-circular —e— our-circular
0.304 —A—our-random 030 ’:’ a“)r]{:::fm
—o— (1)linear s
025 o gg:c"cu'ar 025 T 8 ;rc:::clfn:
o e
020 e (i) 0204 e (4)inear

0.154

0.10

0.054

Average Location Error/Sensing Range

g

T T T T T T T T T T T T
4 50 60 70 80 90 100 110 120 130 140 150
Sensing Range

(@) the first detection probability

0.15

0.10

Average Location Error/Sensing Range
g
1

o
=Y
8

T T T T T T 7T T T T 71
60 70 8 90 100 110 120 130 140 150

Sensing Range

T T
40 50

(b) the second detection probability

Fig. 15. Location estimate accuracy for imperfect binary sensing model.

velocity of the target changes suddenly,

several times during simulation, to

a random value that is a multiple of R/15 unit/second. For the ideal binary

sensing model, we use the configuration

of 800 nodes with R = 40 unit (on

the average there are five neighbors of each node). For the imperfect binary
sensing model, we use the configuration of 800 nodes with R,,; = 40 unit and
R;, = 0.9 x R,,; unit under the first detection probability.

Figure 16 and Figure 17 show the estimated versus real velocities as a
function of time in these two scenarios. Clearly, the estimated velocity is very
close to the real velocity in the first scenario for both of the binary sensing
models. These two also agree well in the second scenario, although there is

ACM Transactions on Sensor Networks, Vol. 6, No. 4, Article 32, Publication date: July 2010.

32:24 . Z. Wang et al.
40
359 —— estimate
124
3.04 i
Al =
1 g T 10+

Velocity (unit/s)
Velocity (unit/s)

00 T T T T 1 T

—— estimate

20 40 60 80
Time

(a) constant velocity

Time

(b) random velocity

Fig. 16. Velocity estimated for ideal binary sensing model.

404

——estimate

354

—— estimate

204

Velocity (unit/s)
Velocity (unit/s)

T T 1 T T T T T 1
60 80 100
Time Time

(a) constant velocity (b) random velocity

Fig. 17. Velocity estimated for imperfect binary sensing model.

some delay before the change of real velocity is reflected in its estimate so
there are some large deviations in the brief moments immediately after the
velocity change.

For the ideal binary sensing model, the average and maximum differ-
ences between estimated and real target velocities in the first scenario are
0.0764 unit/second (a few percent of the speed of the target) and 0.2842
unit/second (around 10% of the target’s speed). The average and maximum dif-
ferences between estimated and real target velocity in the second scenario are
2.6295 unit/second and 6.8021 unit/second.

For the imperfect binary sensing model, the average and maximum dif-
ferences between estimated and real target velocity in the first scenario are
0.1210 unit/second and 0.3713 unit/second, so the average difference nearly
doubled, while the maximum difference increased by 30%. The average and
maximum differences between estimated and real target velocity in the second
scenario are 3.6283 unit/second and 11.5240 unit/second (so nearly 100% of the

ACM Transactions on Sensor Networks, Vol. 6, No. 4, Article 32, Publication date: July 2010.

Distributed Energy-Efficient Target Tracking with Binary Sensor Networks . 32:25

—estmate) 1 [T real
164 —— estimate|

o
1

'S
1

Velocity (unit/s)
o
h 1
5
]
0
Velocity (unit/s)

T 1
0 20 40 60 80 100 0 10 20 30 40 50 60
Time Time

(a) constant velocity (b) random velocity

Fig. 18. Velocity estimated using algorithm (1) for ideal binary sensing model.

target’s speed). Hence, there is a significant increase in these differences when
the sensing model changes from ideal to imperfect.

We also performed simulations to obtain velocity estimates using algorithm
(1) under the ideal binary sensing model. Figure 18 shows the estimated versus
real velocities as a function of time in the same two scenarios. The average
and maximum differences between estimated and real target velocity in the
first scenario are 1.1689 unit/second (around 44% of the speed of the target)
and 3.4833 unit/second (around 130% of the target’s speed). The average and
maximum differences between estimated and real target velocity in the second
scenario are 3.5160 unit/second and 9.0538 unit/second. These differences are
much higher than the ones obtained with our algorithm.

5.5 Trajectory Estimate

Figure 19 shows the typical estimations for three trajectory types under the
configuration of 800 nodes with R = 40 units using the ideal binary sensing
model while Figure 20 shows those for the imperfect binary sensing model
with R,,; = 40 units and R;, = 0.9 x R,,; using the first detection probability.
The estimation of trajectory uses the method described in Section 3.2.4 with
parameters k,n, e set tok =30,n=6,¢ = 0.2.

We measure the accuracy of estimated trajectory using the average differ-
ence between the estimated and real trajectories. It is calculated using the area
of a polygon formed by these two trajectories divided by the length of the real
target trajectory. The average accuracies are 0.187, 1.227, and 1.704 under an
ideal binary sensing model, for linear, circular, and piecewise linear trajecto-
ries with random turns, respectively. The average accuracies are 0.287, 1.811,
and 2.873 under an imperfect binary sensing model, for linear, circular, and
piecewise linear trajectories with random turns, respectively.

We simulated also trajectory estimation using algorithm (1) under the ideal
binary sensing model. Figure 21 shows the typical estimations for three trajec-
tories under the same configuration. The average accuracies are 3.926, 4.385,
and 5.167, many times higher than the accuracies achieved by our algorithm.

ACM Transactions on Sensor Networks, Vol. 6, No. 4, Article 32, Publication date: July 2010.

32:26 . Z. Wang et al.

(c) random trajectory

Fig. 19. Trajectory estimation for ideal binary sensing model.

5.6 Fault-Tolerance Simulation

In this section, we evaluate the performance of our algorithm when a sensor
occasionally either receives a report with the wrong target status or does not
receive a report when the status of the target changes. Such faults arise be-
cause of environmental noise distorting sensing or packet collisions disturbing
communication with neighbors. We start with the description of modifications
to our algorithm that make it tolerant to such faults. Then, we demonstrate
the level of fault tolerance achieved by our tracking algorithm through a set
of simulations based on the ideal (in terms of detecting the target at exactly
sensing range distance) binary sensing model.

To deal with incorrect target status, our tracking algorithm first combines
all angles corresponding to “1” bit reports, and then it combines all angles
corresponding to “0” bit reports. For each neighbor node that reports “1”, the
algorithm checks whether its angle intersects with the angles of all the other
neighbor nodes reporting “1”. For each pair of nodes with angles that do not
intersect, a counter of each node will be increased by one and the neighbor node
will be added to a list of the partner. Upon completion of this procedure, each
node will have its counter and noncommon angle neighbor node lists calculated.

ACM Transactions on Sensor Networks, Vol. 6, No. 4, Article 32, Publication date: July 2010.

Distributed Energy-Efficient Target Tracking with Binary Sensor Networks . 32:27

(c) random trajectory

Fig. 20. Trajectory estimation for imperfect binary sensing model.

For example, the result for the nodes shown in Figure 22(a) is: neighbor node
N,,: counter: 2, list: N,, N,; neighbor node N,: counter: 1, list: N,,; neighbor node
N,: counter: 1, list: N,,. Clearly, if all the neighbor nodes report “1” correctly,
their counters will be all 0 and their lists will be empty because intersection of
all their angles includes the target.

Next, all the neighbor nodes will be put into a list sorted by their counters
and the neighbor node with the highest counter will be deleted first. When a
neighbor node is deleted, it is also deleted from the noncommon angle neighbor
node list of the paired node and the counter for that node will be decreased
by one. If multiple nodes have the same and bigger than 0 counter, they are
deleted at same time, to make sure that no node with a potentially wrong
report survives. This deletion continues until all the counters of the surviving
nodes become 0. By then all the error target status reports will be deleted.
For example, after deleting node N, (which has the highest counter, equal
to 2, at this point) from the list, we get: neighbor node N,: counter: 0, list:
empty; neighbor node N,: counter: 0, list: empty. Another example is shown in
Figure 22(b): neighbor node N;: counter: 1, list: N,,; neighbor node N,,: counter:
1, list: IV;; neighbor node N,: counter: 0, list: empty. After nodes N,, and N,

ACM Transactions on Sensor Networks, Vol. 6, No. 4, Article 32, Publication date: July 2010.

32:28 . Z. Wang et al.

(c) random trajectory

Fig. 21. Trajectory estimation using algorithm (1) for ideal binary sensing model.

with the highest counter equal to 1 are deleted together, the list shrinks to
just one node: neighbor node N,: counter: 0, list: empty. In this example, some
correct target status reports are also deleted, but it just affects the accuracy of
the estimated target position a little (from the circle spot to the square spot)
without ever resulting in a quite far away misleading estimation (the diamond
spot, in case that node N, is considered to report incorrectly alone, causing
node N, count to drop to 0).

After all angles of nodes reporting “1” are combined, the algorithm combines
all angles of nodes reporting “0” bit. As shown in Figure 23(a), where /102
is the angle resulting from combination of all angles of nodes reporting “1”
bit, node N, will find out that there is a contradiction and it will conclude
that there is a wrong report included in combining angle /304 using the “-”
operation. For the instance shown in Figure 23(b), where /304 is caused by a
wrong “0” report, the algorithm cannot discover that and the target position
will be estimated at the diamond spot. However, if there are enough “1” reports,
/102 will be small, thus the chance that such a situation happens is low. Even
if it does happen, the accuracy will not be affected very much because /102
is small.

ACM Transactions on Sensor Networks, Vol. 6, No. 4, Article 32, Publication date: July 2010.

Distributed Energy-Efficient Target Tracking with Binary Sensor Networks . 32:29

«»

-” operation.

Fig. 23. Examples of fault tolerance in

Another example of fault tolerance is shown in Figure 6(c). If the target falls
in angle /ajoaz, but node N, receives bit “0” from node N, due to the detec-
tion failure or environmental factors (such as an obstacle preventing target
detection), our algorithm can still get the correct target position estimate by
excluding node N, from the neighbor list (described in the previous section) and
using information received from the remaining neighbor nodes.

Now, we will give the details of the simulation environment through which
we evaluate the fault tolerance of our algorithm. As in the previous simula-
tions, we kept the number of nodes fixed at 800 and varied the sensing range
R from 40 to 150 units. A collision gap of the sensor network is defined as
the minimum time between two independent attempts to communicate by the
neighbor nodes that would not lead to a collision of their transmissions. This
gap is determined by the time that it takes for a radio to switch from listening
to transmitting. It is usually very small compared to the packet transmis-
sion time. We set the collision gap to be 0.0001 second and call the circle of
radius 0.0001*target_velocity a collision circle. Thus, the simulation will en-
force packet collision if a collision circle centered at the current point of the
target crossing the sensing range of a node contains future or past crossing

ACM Transactions on Sensor Networks, Vol. 6, No. 4, Article 32, Publication date: July 2010.

32:30 . Z. Wang et al.

Table I. Fault-Tolerant Results for Linear Trajectory

Sensing Range 40 60 80 100 120 150

ideal sensing 0.061681 | 0.027515 | 0.017458 | 0.011750 | 0.009465 | 0.007501
packet collision | 0.061706 | 0.027889 | 0.017494 | 0.012447 | 0.010685 | 0.008139
wrong report 0.076377 | 0.036045 | 0.021637 | 0.014421 | 0.012025 | 0.009898

collision&wrong | 0.077268 | 0.038050 | 0.022705 | 0.015861 | 0.013133 | 0.011186

Table II. Fault-Tolerant Results for Circular Trajectory

Sensing Range 40 60 80 100 120 150

ideal sensing 0.068974 | 0.029909 | 0.016972 | 0.012357 | 0.009378 | 0.007449
packet collision 0.069416 | 0.030191 | 0.017090 | 0.012962 | 0.010335 | 0.008778
wrong report 0.080432 | 0.039182 | 0.022370 | 0.015434 | 0.012599 | 0.009409

collision&wrong | 0.080896 | 0.037735 | 0.023686 | 0.016244 | 0.012954 | 0.011477

Table III. Fault-Tolerant Results for Random Trajectory

Sensing Range 40 60 80 100 120 150

ideal sensing 0.062041 | 0.029779 | 0.016823 | 0.011575 | 0.009336 | 0.007970
packet collision | 0.064382 | 0.032705 | 0.017623 | 0.012588 | 0.010028 | 0.008748
wrong report 0.074263 | 0.034594 | 0.022625 | 0.015810 | 0.012005 | 0.010031

collision&wrong | 0.080263 | 0.035148 | 0.023778 | 0.016603 | 0.012753 | 0.011027

points (see Figure 12). It should be noted that the future crossing points are
known only in simulation. Moreover, the preceding condition is necessary but
not sufficient (for example, for nonlinear trajectories the predicted collisions
may not happen when the target changes the direction of movements), so this
collision enforcing method overestimates the number of collisions. We also set
the transmission time to be 0.01 second. In our algorithm, if a node wants to
transmit a report and overhears that another node is already transmitting, it
will abandon the transmission and would not report the change of status. This
approach decreases accuracy of the method but avoids cascading collisions,
when the delayed node transmission would collide with the later transmission
by another node. The simulator uses the transmission circle defined as a circle
of radius 0.01*target_velocity to detect such situations. Indeed, it can arise only
when the transmission circle centered at the current point of the target cross-
ing a sensing range of a node contains any previous crossing points (like in case
of collisions, this method overestimates the number of abandoned reports).

We set the probability that the sensor node reports wrong target status “0”
even if the target is within its sensing range to be 5% and set the probability
that the sensor node reports wrong target status “1” even if the target is out of
its sensing range to be 1%. These settings reflect the fact that the chance for
the wrong report of the first kind (that is, failing to detect that the target is
within the range of the sensor) is higher than that of the second kind (that is,
detecting a “phantom” target in the sensing range).

Tables I to III show the target position estimation accuracy for linear, cir-
cular, and random trajectories under the ideal binary sensing model, packet
collision model, wrong report model, as well as packet collision together
with wrong report model, respectively. Clearly, the accuracy decreases only a
little when the packet collision and wrong target status report are taken into

ACM Transactions on Sensor Networks, Vol. 6, No. 4, Article 32, Publication date: July 2010.

Distributed Energy-Efficient Target Tracking with Binary Sensor Networks . 32:31

consideration, which means that our tracking algorithm has a good fault-
tolerant property.

6. CONCLUSIONS AND FUTURE WORK

Target tracking is a typical and important application of sensor networks usu-
ally relying on cooperation between sensor nodes. In this article, we study the
target tracking problem under the simple and basic binary sensor network
model. We introduce a real-time distributed target tracking algorithm without
time synchronization for both the ideal and imperfect binary sensing models
which is also energy efficient and fault tolerant. We analyze the accuracy of our
algorithm under the ideal binary sensing model and demonstrate that it agrees
well with the accuracy obtained via simulations. The analysis also shows that
for the configuration simulated, the use of sensors that do not sense the target
by the algorithm improves the accuracy of localization by nearly of factor of 2
(decreasing the estimation error by 50% compared to using only sensors that
do sense the target), so very significantly. Results of extensive simulations of
this algorithm performed under different configurations and scenarios are also
reported and they confirmed the analysis. We observe that the introduced al-
gorithm outperforms algorithms reported elsewhere in terms of its accuracy of
estimating the target location, velocity, and trajectory using the binary sensor
networks.

Our future work will further investigate energy efficiency in target tracking
applications. Target tracking systems using sensor networks spend most of the
energy on sensing and communicating measurements between sensors. Since
sleeping is the most basic and effective way to conserve energy, nontracking
sensors should sleep, while tracking sensors should spend the minimum energy
necessary to track the mobile target. A sleep scheduling mechanism through
which unnecessary sensor nodes can be turned off and go to sleep effectively
enhances the lifetime of the entire system [Yang et al. 2006; Xu et al. 2004;
Yeow et al. 2007; Visvanathan and Veeravalli 2005]. Therefore, integrating our
algorithm with a sleep scheduling protocol to reduce the energy consumption
in the target tracking applications will be the main subject of our future work.

REFERENCES

ARORA, A., DuTTa, P, BaPAT, S., KULATHUMANI, V., ZHANG, H., NAIK, V., MIrTAL, V., CAO, H., DEMIRBAS,
M., Goupa, M., CHor, Y.-R., HERMAN, T., KULKARNI, S. S., ARuMUGAM, U., NESTERENKO, M., VORA, A.,
AND MivasHITA, M. 2004. A line in the sand: A wireless sensor network for target detection,
classification, and tracking. Int. J. Comput. Telecomm. Netw. 46, 5, 605—634.

AstaM, J., BUTLER, Z., ConsTanTIN, F., CrEspi, V., CYBENKO, G., AND Rus, D. 2003. Tracking a
moving object with a binary sensor network. In Proceedings of the ACM SIGOPS International
Conference on Embedded Networked Sensor Systems (SenSys).

Brooks, R. R., RamanaTHAN, P., AND SavEED, A. 2003. Distributed target classification and tracking
in sensor networks. Proc. IEEE 91, 8, 1247-1256.

CHong, C.-Y. anD KuMaR, S. P. 2003. Sensor networks: evolution, opportunities, and challenges.
Proc. IEEE 91, 9, 1247-1256.

DuiLLoN, S. AND CHAKRABARTY, K. 2003. Sensor placement for effective coverage and surveillance
in distributed sensor networks. In Proceedings of the IEEE Wireless Communications and Net-
working Conference. Vol. 3. 1609-1614.

ACM Transactions on Sensor Networks, Vol. 6, No. 4, Article 32, Publication date: July 2010.

32:32 . Z. Wang et al.

Dguric, P. M., VEmura, M., anD Bucarro, M. F. 2004. Signal processing by particle filtering for
binary sensor networks. In Proceedings of the 11th IEEE Digital Signal Processing Workshop
and IEEE Signal Processing Education Workshop. 263—267.

Feppema, T. J., Barry, L., AND SPLETZER. 1999. Probability of detection for cooperative sensor
networks. In Proceedings of the SPIE Unattended Ground Sensor Technologies and Applications.
Vol. 3713. 1-11.

GenTiLE, C. 2007. Distributed sensor location through linear programming with triangle in-
equality constraints. IEEE Trans. Wirel. Comm. Vol. 6. 2572—2581.

Jing, T., Hicuem, S., AND CEDRIC, R. 2007. Binary variational filtering for target tracking in sensor
networks. In Proceedings of the 14th IEEE /| SP Workshop on Statistical Signal Processing. 685—
689.

Kiv, W., MEecHITOV, K., CHOI, J.-Y., AND HAM, S. 2005. On target tracking with binary proximity
sensors. In Proceedings of the International Conference on Information Processing in Sensor
Networks (IPSN).

Li, D., Wong, K., Hu, Y. H., anD Saveep, A. 2002. Detection, classification and tracking of targets
in distributed sensor networks. IEEE Signal Process, Mag. 19, 2.

L, C.-Y., Peng, W.-C., anp TsEng, Y.-C. 2006. Efficient in-network moving object tracking in
wireless sensor networks. IEEE Trans. Mobile Comput. 5, 8, 1044-1056.

Ly, X., ZHao, G., anp Ma, X. 2007. Target localization and tracking in noisy binary sensor
networks with known spatial topology. In Proceedings of the IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). Vol. 2. 11-1029-11-1032.

Mecuirov, K., SUNDRESH, S., KwoN, Y., AND AcHA, G. 2003. Cooperative tracking with binary-
detection sensor networks. Tech. rep. UIUCDCS-R-2003-2379, University of Illinois at Urbana-
Champaign.

RanmaN, R., Aranyanl, M., AND SaLiGrRAMA, V. 2007. Distributed tracking in multihop sensor net-
works with communication delays. IEEE Trans. Signal Process. 55,9, 4656—-4668.

Savvipes, A., Han, C.-C., anp Strivastava, M. B. 2001. Dynamic fine-grained localization in ad-
hoc networks of sensors. In Proceedings of the ACM /| IEEE International Conference on Mobile
Computing and Networking (MobiCom). 166-179.

SHRIVASTAVA, N., MuDUMBAI, R., MaDHOW, U., AND SURI, S. 2006. Target tracking with binary prox-
imity sensors: Fundamental limits, minimal descriptions, and algorithms. In Proceedings of the
ACM SIGOPS International Conference on Embedded Networked Sensor Systems (SenSys).

SiNGH, J., MapaOW, U., KUMAR, R., SURI, S., AND CAGLEY, R. 2007. Tracking multiple targets using
binary proximity sensors. In Proceedings of the 6th International Symposium on Information
Processing in Sensor Networks. 529-538.

VISVANATHAN, A. AND VEERAVALLI, V. V. 2005. Sleeping policies for energy-efficient tracking in
sensor networks. In Proceedings of the IEEE | SP 13th Workshop on Statistical Signal Processing.
1158-1163.

Wang, Z., Burut, E., anD Szymanskr, B. K. 2008a. A distributed cooperative target tracking with
binary sensor networks. In Proceedings of the IEEE International Conference on Communication
(ICC) Workshops. 306-310.

Wang, Z., Burut, E., anp Szymanski, B. K. 2008b. Distributed target tracking with imperfect
binary sensor networks. In Proceedings of the IEEE Global Telecommunications Conference
(Globecom), Ad Hoc, Sensor and Mesh Networking Symposium. 1-5.

Xu,Y.,d., W, anp LEg, W.-C. 2004. Prediction-based strategies for energy saving in object tracking
sensor networks. In Proceedings of the IEEE International Conference on Mobile Data Manage-
ment. 346-357.

Yang, L., Feng, C., anp Peng, R. J. J. 2006. Binary variational filtering for target tracking in
sensor networks. In Proceedings of the IEEE International Conference on Networking, Sensing
and Control. 916-921.

Yeow, W.-L., THam, C.-K., anD Wong, W.-C. 2007. Energy efficient multiple target tracking in
wireless sensor networks. IEEE Trans. Vehicular Technol. 56, 2, 918-928.

Zuao, F., SHIN, J., AND REICH, J. 2002. Information-Driven dynamic sensor collaboration for track-
ing applications. IEEE Signal Process. Mag. 19, 2, 61-72.

Received June 2008; revised October 2009; accepted October 2009

ACM Transactions on Sensor Networks, Vol. 6, No. 4, Article 32, Publication date: July 2010.

