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Abstract—WiFi sensing aims to utilize the changes in the
Channel State Information (CSI) of WiFi signals due to the
reflections from objects in the environment for sensing purposes.
It uses machine learning classification models to predict physical
actions being performed in a given environment (e.g., human
activities such as walking, running). Thanks to the existing WiFi
infrastructure in most indoor areas, this device-free technology
can be used to provide low-cost motion detection and activity
recognition opportunities for smart-homes. However, as the WiFi
signals can be sniffed by adversaries, it can also be utilized
by malicious actors to learn private information about the
residents. To address this issue, motivated by the fact that the
accuracy of WiFi sensing systems is highly reliant on the location
of transmitter and receiver devices, we propose a simple yet
effective solution based on the utilization of spatially distributed
transmitter antennas (connected to a single source device) which
communicate to a receiver device. The legitimate or allowed
receiver is provided the schedule of transmitter antennas; thus,
it can leverage this information to more accurately recognize
activities performed within the environment. On the other hand,
an eavesdropper who is unaware of the transmission schedule
will encode the CSI frames from all transmitter antennas as if
they were transmitted by a single source and thus will fail to
recognize the activities properly. Through experiments, we show
the effectiveness of this approach considering different number
of transmitter antennas as well as against different levels of
eavesdroppers.

Index Terms—WiFi sensing, security and privacy, human
activity detection

I. INTRODUCTION

The use of WiFi has recently been extended beyond commu-
nication purposes through the concept of WiFi sensing; thanks
to the recent advances in deep learning as well as the tools [1]-
[3] that made the access to the Channel State Information
(CSI) of WiFi signals easy. WiFi sensing aims to leverage fine-
grained WiFi signal variations caused by physical reflections
from objects in the environment which can be used to perform
sensing tasks. This is primarily achieved through the extrac-
tion of CSI over subcarriers in orthogonal frequency-division
multiplexing (OFDM) systems [4]. CSI data represents how
wireless signals propagate from the transmitter to the receiver
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Fig. 1: A malicious eavesdropper (i.e., Eve) can obtain CSI
data to perform adversarial WiFi sensing with a pretrained
environment-independent ML model.

through multiple paths. This data consists of a matrix of
complex values representing the amplitude attenuation and
phase shift of multi-path WiFi channels.

Several unique properties of WiFi sensing allow it to be
a favorable solution compared to existing sensing systems.
For example, WiFi sensing is device-free and thus it is not
physically intrusive compared to wearable sensor-based sys-
tems, can be performed regardless of lighting conditions unlike
camera-based sensing, and can go through walls contrary
to both sensor-based and video-based solutions. As such,
it has recently attracted a lot of attention by the research
community and has been adopted in several applications (e.g.,
human activity/gesture recognition [5]—[7], health sensing [8]—
[10]). These recent research efforts by academic community
have also been supported by standardization efforts for next
generation WiFi (e.g., 802.11 bf [11]) which consider sensing
and communication together. Similarly, sensing as a side-
service of WiFi is also becoming an industrial reality through
new start-up companies (e.g., Origin Wireless [12]) and initial
commercial products [13] for smart homes.

Despite this excitement for the use of WiFi for ubiquitous
sensing in several different applications there is also an
inevitable security and privacy risk of WiFi sensing for all
of us. That is, an adversary (e.g., Eve in Fig. 1) sniffing
the WiFi signals in the environment can use it for acquiring
some private information about the users (e.g., if they are
at home or not, or even which room they are in [25], their
walking direction behind the wall [26]) and leverage this
information for malicious purposes. Recognizing this risk, in
some WiFi sensing studies [27], the machine learning model
used in WiFi sensing is trained in a way such that only the



TABLE I: Comparison of Existing Defense Methods

References Method Issues
[14], [15], [16] | Transmitter altered signals By altering the signals, the data is no longer valid WiFi frames.

[17] Signal strength variations Reduces communication capacity of the network.

[18], [19] External obfuscator node Requires an additional device used solely for noisy transmissions.
[20] Intelligent reflecting surface (IRS) | Requires hardware with low consumer usage.

[21], [22] Omnidirectional jammer Prevents all legitimate sensing and communication.
[23] Directional jammer Requires additional physically moving devices.
[24] Alters signals to emulate activities | Requires specialized USRP equipment and non-standard WiFi frames.

allowed behaviors (e.g., falling of a senior) can be sensed
properly while private activities (e.g., bathing) are prevented.
However, such solutions provide only partial protection as
it assumes that the trained model is the source of potential
privacy leakage only. However, ambient WiFi signals can
be sniffed by an eavesdropper and CSI data can be used
for detection of activities using a pretrained environment-
independent model [28]-[30] (i.e., a model trained using CSI
data collected from different environment(s) but can perform
accurate predictions in a totally new environment).

There are some recent efforts that aim to protect CSI signals
from adversaries and thus invalidate their proper WiFi sensing
capability. However, they are either more complicated as they
use specialized hardware (e.g., using USRP [19], IRS [20]),
and are not easy to implement in practice. Moreover, some
of the solutions aim to totally avoid WiFi sensing even for
legitimate devices thus are not desirable. Our goal is to allow
legitimate WiFi sensing with allowed receiver (RX) devices
but prevent illegitimate RX devices or eavesdroppers from
performing adversarial WiFi sensing. To this end, we propose
a WiFi sensing solution where multiple spatially distributed
transmitter (TX) antennas are used to transmit WiFi packets
to the RX.

The rest of the paper is organized as follows. In Section II,
we provide a background on WiFi sensing and discuss the liter-
ature in particular in adversarial WiFi sensing and solutions to
avoid it. In Section III, we present our system model together
with the assumptions made and attacker and defense models.
We then present our motivation for this work in Section IV
and evaluate how our method can prevent eavesdroppers from
performing WiFi sensing through experiments in Section V.
Finally, we provide additional discussion about our method in
Section VI and make our concluding remarks in Section VII.

II. PRELIMINARIES
A. Background on WiFi Sensing

WiFi sensing uses the radio-frequency (RF) signals found
throughout our homes and offices to detect and sense physical
properties of the environment. These RF signals propagate
over multiple unique physical paths (signal multipath) from
the transmitter to the receiver. These multipaths cause slight
variations in the signal due to the RF signals reflecting off of
surfaces as well as propagating through objects such as walls,
furniture, and people within the environment.

Channel state information is a signal metric captured in
communication systems which use orthogonal frequency-

division multiplexing (i.e., 802.11), to allow data-symbols
to be encoded in multiple subcarrier frequency allowing for
higher symbol throughput as well as resilience to signal
fading and shadowing caused by multipath interference in the
channel. CSI is modeled using the following relation:

Y@ = HOZ0) 4 ) )

where i is the subcarrier index, z is the transmitted signal, y
is the received signal, 7 is a noise vector, and H is a complex
vector containing the channel state information denoting the
transformation change required from the input z to the output
y. The complex CSI vector contains 64 subcarriers where 52
are data-subcarriers and 12 are null-subcarriers. The CSI value
for each subcarrier is defined as a complex number with a real
component (H, ﬁz)) and an imaginary component (H Z»(Z). We can
transform this raw CSI into amplitude:

40 = \/ (1) + (1), @

o = atan2 (H), HO). (3)

and phase:

B. Related Work

With the growing number of studies (e.g., [25], [31])
showing various levels of activity information and location
leakage through adversarial WiFi sensing systems, developing
counter mechanisms has become a necessity. Thus, recently
several studies have looked at this problem and proposed
different solutions. Table I provides a summary of existing
defense mechanisms against eavesdropping with WiFi sensing.
In [14], an obfuscation based solution is proposed which
captures ambient wireless signals and relays them back into
the environment with randomized modifications. However,
the proposed solution uses full-duplex radio which requires
specialized and costly hardware. A similar approach without
using full-duplex is studied in [23], but it uses a motorized
component to change the orientation of the antenna and
introduces randomized delay. In [17], a solution is proposed
which varies signal strengths of the transmitters and a game-
theoretical model is studied between the attacker and defender
considering the trade-off between privacy and utility in the
system. This can however reduce the communication capacity
between the devices.

Jammer-based solutions [21], [22], introduce randomized
signal noise to prevent proper sensing. However, these so-
lutions hamper the communication, thus they may not be



practical in most of the real-life scenarios. Instead, in [19], a
selective obfuscating solution is proposed to avoid extraction
of location information from CSI. The solution superimposes
a duplicated copy of the signal on each frame which does
not affect the reception but does hinder the location-relevant
information. However, this is mainly for protection of location
and not applicable to activity detection use cases.

In [24], a modification to the radio training system is
proposed to change the transmitted symbols over time, space
and frequency as if they are affected due to human activities in
the environment. While this approach prevents eavesdroppers
from distinguishing real and fake human gestures, due to the
requirement of specialized hardware (e.g., USRPs), it incurs
a high cost and will not be practical. Note that our work
also differs from the studies (e.g., [16]) that look at solutions
against malicious radiometric fingerprinting of devices. These
studies focus on the device-specific fingerprinting which could
be used for impersonation attacks.

III. SYSTEM MODEL
A. Assumptions

In our proposed system, we assume multiple TX antennas
that are spatially distributed in a target sensing area as illus-
trated in Fig. 2. There is a single source device (D) that is
equipped with an antenna switch to automatically select the
transmitting antenna at a per-packet level. This ensures that
low layer attributes (e.g., MAC address and sequence number)
will not directly reveal antenna changes to the eavesdropper.
Usage of TX antennas are determined by a predefined schedule
model (S) which is shared between D and any legitimate
RX devices. When evaluating our proposed system, only a
single TX antenna communicates at any given time, however,
S may be extended to allow multiple antennas to communicate
simultaneously.

B. Experiment Setup

In our experiments, we consider a home environment where
ESP32 microcontrollers are used as both TX and RX devices
using the 802.11n protocol and 2.4GHz frequency band for
CSI collection. Five TX devices that are placed 70 centimeters
apart in a room of size 2.8 meters x 3.2 meters and 1 RX
device are used as illustrated in Fig. 2. The RX is placed in
an adjacent room to emulate an attacker which does not have
direct access to the targeted sensing area. Each of the five
TXs transmit WiFi frames to the RX at 20Hz concurrently
resulting in CSI samples arriving at the RX at an overall rate
of 100Hz. During our experimental data collection we allow all
TXs to transmit concurrently so that we can emulate different
transmission schedules, however in a real world system, only
selected TXs will transmit at any given point of time. We
collect CSI data to a Raspberry Pi single-board computer for
processing.

For our dataset', we perform the following 5 activities:

'Dataset and codebase for this project can be found in

https://github.com/MoWiNG-Lab/AntiEave-WiFi-Sensing.
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Fig. 2: Experimental setup with 5 TXs and 1 RX and 5
activities to be sensed. The scheduler (S) decides which of
the TXs that are wired connected to the same source device
(D) through an antenna switch needs to transmit.

e Door: Opening/closing main door

« Sit: Sitting and swiveling on a chair at a desk

o Stand: Standing at a desk and writing in a book
o Closet: Opening/closing closet door

o Empty: No movement within the room

These activities are performed in a round-robin fashion 6
distinct times. The first set of 3 repetitions are used for
training our model while the final 3 are used for evaluation.
Note that while the activities considered in this dataset are
performed in diverse locations, WiFi sensing techniques are
also applicable when multiple activities are performed at the
same location [32], [33]. Additionally, while we use multiple
ESP32s to act as TX antennas during our data collection phase,
a similar system can also be achieved with a single WiFi device
(e.g., one ESP32) and an antenna switch as illustrated in Fig. 2.

C. Tree-structured Parzen Estimator (TPE)

For our evaluations, we use the Tree-structured Parzen
Estimator (TPE) [34] which is a hyperparameter optimization
technique which selects some set of hyperparameters (#) in an
attempt to decrease some loss function £ through the use of
an expected improvement (EI) function:

_ p(O1£(0) > L)
p(OlLr(6) < L),
where L£* is the average loss of the previously evaluated

hyperparameter values for a given hyperparameter and £'(9) is
formed based on previously observed hyperparameter values.

EI(6) @)

D. Attack Model

We consider a scenario where an attacker aims to sense the
activities performed by an individual and subsequently localize
the individual using the temporal CSI data obtained from the
sniffed ambient WiFi signals. Fig. 1 illustrates our scenario
where Alice transmits a signal to Bob. As the signals propagate
through the environment, some of them reflect off of the
human within the environment before continuing to propagate
to Bob, thus allowing Bob to perform WiFi sensing. However,
a malicious eavesdropper (Eve) can also receive the reflected



TABLE II: Scenarios considered during training and evalua-
tion.

Scenario Train on Evaluate on Section
CSI from CSI from
Normal Sensing Single TX Single TX Section IV
Naive Eve Single TX Multiple TX | Section V-A
Advanced Eve Multiple TX | Multiple TX | Section V-B

signal which then allows Eve to perform WiFi sensing and
thus Eve can achieve covert surveillance.

We assume that the attacker knows the set of localized
activities and has a pretrained ML model for these activities.
We also assume that this model is obtained through the solu-
tions in the literature that offer environment-independent ML
models [28], [29] or generic models that are obtained through
a federated learning process [30]. However, we consider CSI
data generated from both a single TX and multiple TX devices
for training the attacker’s model. Additionally, we assume that
the attacker has a device and a tool that can extract CSI data
from sniffed signals, which can be easily achieved through
recent low-cost off-the-shelf solutions [35]. Attacker then uses
this extracted CSI for predictions using the pretrained model.
Similar to the training scenario, we look at the predictions
when attacker uses CSI data received from (i) a single TX and
(i1) multiple TXs. These scenarios and the sections looking at
the evaluation of each scenario are given in Table II.

E. Defense Model

To prevent eavesdroppers from sensing physical activities
using WiFi sensing without also hindering allowed RX devices
from sensing physical activities, we leverage a multi-TX setup
as illustrated in Fig. 2. We define a scheduler S which pseudo-
randomly decides which TX should transmit at a given time
instance, t, such that S(¢t) € {1,2,...,|TX]|}. Allowed RX
devices are given access to S which ensures that they are able
to accurately identify which TX is transmitting at any given
time while the disallowed eavesdropper is unable to make
this distinction. To further obfuscate the physical activity and
reduce the sensing capability of the eavesdropper, we define
specific probability values for each TX device to determine
how often the TX is selected from our scheduler module (S).

F. Allowed RX Emulation

To evaluate the proposed system, we begin by describing
the CSI data as seen by the allowed RX. This RX can
recognize which TX is transmitting at any given time (from
scheduler information). In our evaluations, we begin with a
3-dimensional CSI tensor H € RI7XITXIxIsl where |T]| is
the number of time steps in our dataset, |7 X| is the number
of transmitters, and |s| is the number of subcarriers per CSI
frame. We apply a transformation to H based on our scheduler
model S as so:

(H ® S) [t,i,:] = H[¢t, 1, :] % soft_equals(i,S(t)), (5)

where H[t, 7,:] is a tensor slice of all subcarriers for station 4
collected at time ¢ and

soft_equals(a,b) =1 — tanh(]a — b|8), (6)

which has an output approaching 1 when a = b, and 0 when
a # b and when f is some large value (i.e., § = led).
Through this, the allowed RX receives a tensor (]H[ o S ) S
RITIXITXIxIs| however for each i € {1,2,...,|TX|} which
is not selected at time ¢, the values for (H ® S)[t,i,:] =0
because the model being trained would not be able to witness
the CSI for the i-th TX.

G. Disallowed (Eavesdropper) RX Emulation

Now that we have reviewed the CSI data as seen by an
allowed RX, next we review the CSI data as seen by a
disallowed RX (i.e., an eavesdropper). The only difference
in the allowed RX versus the disallowed RX is that the
disallowed RX is not able to directly identify the difference
between which TX is actively transmitting at any given time.
As such, we define:

ITX]
HDS)[t]=Y ((H@S)[t,i,:])
i=1

= (H®S)[t,S(t),:],

where (H ) S) € RITIxIsI 1t is important to note that while
(H & S) and (H & S) have different tensor shapes, they
both contain the same amount of CSI amplitude information,
meaning that they both have the same number of non-zero
entries within the tensors. However, (H &S ) encodes slightly
more information due to the structure itself which is derived
due to the knowledge of the transmission schedule shared
between the TXs and RX.

)

IV. MOTIVATION

In our initial efforts to motivate the multi-TX based pro-
posed solution, we begin by presenting our experiment results
for a human activity detection and localization scenario. We
train a Dense Neural Network (DNN) machine learning classi-
fier model Mrx_,, per TX-m with one input dense layer, two
hidden dense layers and one dense output layer. We apply
Ly kernel regularization across each dense layer and apply a
dropout layer between each dense layer to prevent the model
from overfitting. Finally, we use Stochastic Gradient Descent
(SGD) to optimize the loss function

lz| |C]
‘C(xvy) = _ﬁ Zzyi,c IOgMTX-m(xi,c)y (8)

i=1 c=1
where Mrx., (2;,c) is the model prediction for input CSI z; .
and y; . is the true class for the i-th CSI measurement. We
apply a preprocessing step to transform the raw CSI through
Principal Component Analysis (PCA), which is shown to be
one of the most effective preprocessing methods for increasing

prediction accuracy in WiFi sensing scenarios [36].

We begin by showing how the accuracy of a WiFi sensing
system is affected by the different physical positions of the five
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Fig. 4: Confusion matrix for each model in Fig. 3.

TXs relative to the RX as well as relative to the actions being
performed. To this end, we train an ML model on training
data captured by each TX and then evaluate the models on
the testing data from the same TX. The accuracy for the
models trained at each TX is shown in Fig. 3. We can see
that TX-A achieves the highest accuracy at 84.59% and TX-
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Fig. 5: Multiple TX antennas are used to transmit the WiFi
signals at different times based on a predefined schedule
known by a legitimate RX device, which then can filter the
necessary CSI data for use in the prediction model, while
eavesdropper uses all CSI and obtains inaccurate results.

D achieves the lowest accuracy at 64.47%. This demonstrates
that the accuracy possible from each TX varies due to the
unique physical positions of the TXs within the environment.

The confusion matrices in Fig. 4 show which classes
of actions are accurately predicted and which classes are
commonly predicted incorrectly per TX. From this, we can
see that each TX is better at distinguishing different sets of
activities due to the spatially distributed nature of the TXs
in the environment as well as the unique physical locations
where each physical activity is performed. For example, TX-
A achieves high classification accuracy on classes sif, stand,
closet, TX-C achieves high classification accuracy on classes
door, sit, stand and TX-B, TX-D, TX-E can each distinguish
the closet action with high accuracy. This means that each of
the TXs has unique strengths as well as unique weaknesses in
our experiment scenario. In the next section, we will evaluate
how we can leverage these differences due to TX positioning
against a malicious eavesdropper.

V. EVALUATION

We demonstrated how CSI captured from a single TX can
be used to predict the localized physical activity of humans
in an environment. However, achieving high accuracy in the
previous scenario not only means that legitimate RXs can
sense actions being performed, but it also means that malicious
eavesdroppers can also covertly perform surveillance on the
human target by sniffing these same signals.

To obfuscate the physical actions being performed in the
environment, we allow the TXs to transmit one at a time on
a random schedule every 50ms as illustrated in Fig. 5. This
random schedule is emulated during our evaluations using the
data collected and described in the previous section, but in a
real-world deployment, we can assume that each TX adheres
to the random schedule.

We study two scenarios: (i) a naive attacker that is not aware
of the multiple TX antennas thus uses a sensing model trained
with CSI data from one TX, and (ii) a more intelligent and
advanced attacker which trains a sensing model using CSI
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from multiple TXs which are generated based on the scheduler.
In the latter, however, we still assume that the attacker does
not know which packet comes from which TX device.

Note that it is not trivial for an advanced attacker to generate
a pretrained environment independent model using CSI data
from multiple TX locations (as done in the single source with
a single antenna scenario [28]-[30]). This is because different
spatial distribution of TX devices with respect to a receiver
device can generate different results. However, to explore the
extent to which an attacker can achieve sensing, we assume
that the attacker is able to acquire CSI data from the same
spatial distribution of TX devices as in the environment of
interest along with the corresponding labels for each activity.

A. Naive Attacker

We begin by evaluating the naive attacker which considers
that there is only one TX in the environment communicating
with an RX device to generate the necessary signaling for
WiFi sensing. As such, the model that is trained by this naive
attacker will likely be confused by the CSI data coming from
multiple TX antennas located in unique physical positions.

In Fig. 6, we can see the accuracy of the eavesdropper
model when trained on CSI from a single TX and then
applied to our obfuscation scenario where 5 TXs transmit on
a random schedule. Since the eavesdropper does not know the
random order of the transmitting devices, the eavesdropper
must assume the use of all incoming CSI frames. We can see
that the accuracy for each of the TX models has decreased
significantly by as much as 53.5% for TX-E and a decrease
of accuracy more than 35% for all other TXs (compared to
the results in Fig. 3). Overall, this suggests that increasing the
number of TXs even beyond five will allow for an ever lower
accuracy for the naive attacker.

Fig. 7 shows the confusion matrix for each of the eaves-
dropper models in this same scenario. These figures show
that our random scheduling method causes the eavesdropper
model to randomly and incorrectly guess the current action
being performed in the environment. Unlike Fig. 4 where
each TX was able to achieve greater than 80% accuracy for
more than one class, with our random scheduling method,
the eavesdropper is unable to predict any of the individual
classes with an accuracy greater than 80% for any of the
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Fig. 7: Confusion matrix for each model in Fig. 6.

TX models. The class that is most accurately predicted for
the eavesdropper would be the door class using the model
trained at TX-C. However, because the remaining predictions
are so poor, it is not reasonable for an eavesdropper to believe
that these predictions are correct. For example, while door
is correctly predicted 75% of the time, empty is incorrectly
predicted to be the door class 57% of the time and similarly,
sit is incorrectly predicted to be the door class 30% of the time.
Thus, because the accuracy is so poor for most of the action
classes, any accurately predicted class cannot be distinguished
from incorrectly predicted classes by the eavesdropper thus
rendering the predictions useless.

Another fascinating observation is that the TX-E model
incorrectly predicts sit, stand, closet classes most often to be
the door class, yet the door action is rarely ever predicted
correctly. This suggests that our method can be used to deceive
the eavesdropper such that the eavesdropper will have a high
propensity for predicting one given class while also concealing
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the action when it actually occurs in the environment.

Now that we have evaluated the eavesdropper model when
5 TXs are used in our random schedule, we next look at the
accuracy of our system when different numbers of TXs are
used during evaluation. In Fig. 8, we evaluate the accuracy
for a model trained at TX-A and then evaluate when multiple
TXs are used in the random schedule including TX-A and
some number of other TXs. The red dashed line shows the
accuracy (84.59%) of the model when the random schedule
was not applied. We can see that the accuracy decreases as
more TXs are added to our random schedule, however, even
when the number of TXs is 2 (i.e., TX-A and one other TX),
the accuracy is 63.2% which is far lower than the 84.59% that
could be achieved without the random schedule.

B. Advanced Attacker

In the previous scenario, we assumed that the eavesdropper
naively trains a model using CSI collected from a single TX
and then applies this model in a randomly scheduled multi-
TX setting. However, a more advanced eavesdropper may
train their model using CSI collected from all TXs as they
actively communicate in the environment. As such, in this
section, we begin by evaluating the advanced attacker in a
random station schedule scenario. After this, our goal is to
identify a transmission schedule which reduces the ability of
the eavesdropper to perform sensing.

1) Random Schedule: In order to test the accuracy of
models generated by Eve using the multi-TX data, we initially
consider a random schedule of TXs in the system. Eve trains
a model based on the data from all TXs using this random
schedule, then the model is also used for predictions again
using the CSI data from all TXs involved. In Table III, we
review two forms of random TX scheduling, namely: periodic
and non-periodic. In the periodic case, we create a pseudo-
random schedule of size w which is repeated across the entire
dataset. For the non-periodic case, we create a pseudo-random
schedule across all timesteps within our dataset without ac-
tively ensuring periodicity. From this, we can observe that the
periodic case allows Eve to achieve an accuracy of +29.62%
greater than the non-periodic case. This demonstrates that any
repeating patterns in the transmission schedule will actually
improve the accuracy of Eve compared to a single-TX system

TABLE III: Eavesdropper accuracy with periodic and non-
periodic random schedulers (N = 50 each).

Type Avg. Accuracy (Std. Dev.)
Non-Periodic 56.58% (£9.90%)
Periodic 86.20% (£1.75%)

(i.e., 86.20% is greater than all accuracy values in Fig. 3).
This also demonstrates that an advanced attacker can achieve
greater prediction accuracy (i.e., 56.58%) compared to a naive
attacker (i.e., 48.5% with TX-A in Fig. 6) but still less
accuracy than if only a single TX was used in the environment
(i.e., 64.5% worst-case with TX-D in Fig. 3).

2) Probabilistic Schedule: In our previous experiments, we
observed that each TX can achieve different levels of accuracy.
For example, TX-A achieves the greatest accuracy in Fig. 3
at 84.6% while TX-D only achieves the lowest accuracy of
64.5%. We propose that we can leverage this knowledge to
determine a schedule by setting pseudo-random probabilities
uniquely per-station. Since different environments will have
different TXs which achieve the best and worst sensing accu-
racy values, thus, we propose a learning approach to determine
these pseudo-random per-station probabilities. Specifically, we
use TPE to determine the optimal hyperparameter values for
the probability of each station.

Towards this, when selecting the per-station probabilities,
we define 0 < m < %, the minimum probability that
all TXs are selected. In our experiments, since we have 5
TXs, the maximum value for m is 20%. The order in which
hyperparameters are selected is important to ensure that the
entire search space is explored by TPE. We find that if we
use TPE to select a station probability in order for TX-A,
TX-B, ..., TX-E, then TX-E will inevitably result in only
very low probability values being explored due to it being the
last selected probability value. As such, we instead select the
probabilities of each TX in a random order for each TPE trial,
thus allowing the full search space to be explored.

In Fig. 9, we illustrate the results of TPE when N = 100
TPE trials are performed and the minimum per-station prob-
ability mm = 5%. In this figure, we can see that as the
probability for TX-A increases, the eavesdropper accuracy
increases as well, thus TPE is able to recognize that low-
values are more useful for our experiment environment. TX-C
shows a similar upward trend while TX-B, TX-D, and TX-E
show a negative trend as probability increases for each station.
This is understandable considering that these TXs achieve the
lowest accuracy values in Fig. 3 when evaluated on their own.
While high probability values for TX-E appear to achieve the
lowest accuracy for Eve, the achievable accuracy distribution
range is wide, demonstrating that high probability values for
TX-E do not always translate to the same low accuracy for
Eve. This may be due to other TXs like TX-A or TX-C being
selected along with TX-E in those trials.

Next we consider how applying different minimum prob-
ability values for m affects accuracy of Eve. By applying
a minimum probability for all TXs, we can ensure that we
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Fig. 9: Eavesdropper accuracy for different per-station probabilities when using TPE (N

probability: 5%).

100, minimum per-station

TABLE IV: Average accuracy (N = 25 each) for different per-station probabilities.

Station Probabilities Eavesdropper Accuracy Allowed-RX

TX-A | TX-B | TX-C | TX-D | TX-E | TPE Accuracy | Avg. Accuracy (N = 25) | Difference | Avg. Accuracy (N = 25)

4% 34% 23% 39% 0% 40.26% 40.60% (+0.34%) 86.12%

6% 29% 25% 36% 4% 40.06% 40.94% (+0.87%) 87.61%

6% 26% 21% 40% 7% 39.89% 40.85% (+0.96%) 88.19%
leverage all of the available hardware which is deployed in 80
the environment. Since our experimental design uses five 9
TXs, when m = 20, each TX is selected equally by S, 570 I |
however, with m = 0, it is possible that some TXs are geo | )
unused for communication and sensing. In Fig. 10, we show §
the mean and standard deviation of N = 100 TPE trials when S50t :
m € {0,5,10, 15,20}. The average accuracy of Eve decreases -
slightly as m decreases from 62.38% when m = 20 down 0 s 10 5 20

to 59.02% when m 0. However, the standard deviation
increases from 2.43% when m = 20 up to 13.33% when
m = 0. This is because with low values of m, there are
more possibilities for better Eve accuracy as well as lower
Eve accuracy values. This demonstrates that allowing some
stations to be selected with a minimum probability m < }g%’
ensures that we can further decrease the achievable accuracy
of even an advanced attacker.

The three best performing station probability values found
through TPE are shown in Table IV along with the accuracy
achieved during TPE optimization. We can see that TX-D
is given the highest probability values. This is a reasonable
choice considering that TX-D achieves the lowest accuracy
(i.e., in Fig. 3) when evaluated alone. When TPE is used
to optimize the per-station probability values, only a single
training repetition is performed. As such, it is possible that
the accuracy achieved is artificially low. To ensure that the
accuracy values found through TPE are legitimate, we repeat
the experiment with the same per-station probability hyper-
parameter values over N = 25 repetitions and calculate the
average and the difference from the TPE accuracy. We can
see that for most of the best-selected per-station probabilities,
the TPE accuracy and the average after 25 repetitions is
within 1%. This demonstrates that the per-station probabilities
selected by TPE are generalizable and not due to random
chance. From this, we can observe that by using unique
selection probabilities for each TX allows us to reduce the

Min. Probability (%)

Fig. 10: Effect of minimum per-station probability on eaves-
dropper accuracy (/N = 100 each).

expected accuracy of the eavesdropper from 56.58% (i.e., non-
periodic in Table III) down to approximately 40% accuracy.
Now that we have demonstrated that these per-station prob-
ability values can successfully decrease the accuracy of the
advanced attacker, next we look at how these random station
probabilities affect any legitimate WiFi sensing RX device. A
legitimate RX knows the exact random schedule of the TXs
while the eavesdropper does not and as such, our allowed TX
can actually leverage the CSI coming from more than one TX
when making predictions. In Table IV, we identified the station
probabilities which achieve lowest accuracy for Eve through
TPE. Using these same station probabilities, we trained an
allowed RX model by replacing eq. (7) with eq. (5). By doing
this, we encode some additional structure in the CSI tensor
without including any additional CSI amplitude data. Through
this, we find that all station probabilities achieve between
86.12% and 88.19% accuracy for the allowed RX. In fact,
these accuracy values are similar and even greater than the
best single TX in Fig. 3 (i.e., TX-A with 84.6% accuracy).
As such, we can say that while applying the pseudo-random
schedule reduces the effectiveness of disallowed eavesdropper
devices in performing sensing, the same system does not affect
and may even improve the performance of allowed sensing



device. Note that these accuracy values for Eve are based
on the assumption that the eavesdropper can obtain training
CSI data from the TX devices in the environment, which
could be challenging. Any missing information during such
training process (e.g., wrong labels, missing CSI from some
time frames or from some TXs temporarily) will potentially
lower the accuracy even further.

VI. DISCUSSION
A. Effect on Communication

WiFi sensing combines RF sensing into preexisting per-
vasive communications systems (i.e., WiFi). As such, it is
important that a scheme which decreases the sensing ability
of a system does not also decrease the communication ability
of the system. For example, a signal jammer may be an
efficient method for adding random signal noise into WiFi
sensing measurements, however it also hinders the ability
for legitimate WiFi devices to communicate while jamming
is in progress. Our proposed method achieves the following
regarding both sensing and communication:

1) Sensing is still possible and even improved for legitimate

RXs through the use of multiple TXs.

2) Sensing is falsified and obscured for illegitimate eaves-

dropper RXs.

3) Communication packets are captured like normal for

legitimate RXSs.

4) Communication packets are captured like normal for

eavesdropper RXs.
Notice, that our method does not worry about the content
of the communication and even allows both legitimate and
eavesdropper RXs to still capture the packet data. If the data
in the packets must be hidden from eavesdroppers, then the
data can easily be encrypted before transmission, however this
is unrelated to the privacy concerns discussed in this paper.

B. Generalizability to New Environments

In this work, we demonstrated that we can confuse an eaves-
dropper device by transmitting over multiple TX antennas
following a pseudo-random schedule rather than transmitting
over just a single TX antenna. Due to the placement of these
TX antennas and the physical locations of the activities being
sensed, we showed that different TX antennas are better for
recognizing different sets of activities. As such, the best per-
station probabilities selected in this experimental environment
will not necessarily be applicable to new environments, which
may also have more or fewer TX antennas in the setup. As
such, the proposed system is structured such that:

1) Per-station probabilities are learned through the TPE
using real-world CSI data collected in the environment.
Thus, the probability values can be selected automati-
cally for each new environment.

2) The allowed RX (i.e., eq. (5)) and disallowed RX (i.e.,
eq. (7)) are designed as differentiable functions which
allows for a machine learning model-based optimization
of station probabilities. Thus, more complex station
scheduling can be performed in new environments.

Furthermore, towards machine learning model-based station
scheduling, it has been shown in [36] that even low level
WiFi sensing devices such as the ESP32 used in this study
can leverage machine learning models directly on-board. This
means that such a system is possible even with low cost
equipment, thus improving the scalability of such a system.

C. Future Work

In this work, we evaluated the effect of five TX antennas that
are positioned at a constant distance apart, however different
distributions of TX antennas will have different effects within
each unique environment. As such, more work can be done
in understanding how different TX antenna positions and
different number of antennas affect the proposed system.
Furthermore, because each environment has unique activities
to be obfuscated, it may be possible to automatically determine
optimal placement of these TX antennas through metrics such
as the sensing-signal-to-noise-ratio (SSNR) [37] or through
wireless sensing signal simulators [38].

In our experiments, the eavesdropper uses CSI exclusively
to recognize and localize the activities performed. However,
metrics such as the received signal strength indicator (RSSI),
angle of arrival (AoA), or other signal metrics may also be
available for the eavesdropper and may reveal the physical
locations of the TXs [39]. While this work focuses directly
on obfuscating physical activities, additional work into obfus-
cating antenna locations (e.g., [40]) will directly benefit our
proposed system.

VII. CONCLUSION

In this work, we proposed a defense mechanism against
adversarial WiFi sensing through the use of multiple spatially
distributed TX antennas connected to the same source device.
These antennas are utilized to transmit data based on a pseudo-
random schedule which is known to legitimate RX devices
but hidden from eavesdroppers. Legitimate RX devices can
filter the received data per TX device based on the schedule
used and use a specific ML model for predictions, while the
eavesdropper uses the CSI data from all TX devices and uses
them as input into its prediction model. Through various ex-
periments, we showed that accuracy of the eavesdropper model
is much lower than the accuracy of the legitimate RX model
thanks to the obfuscation generated through the spatially dis-
tributed TX antennas. The accuracy of the eavesdropper also
reduces as the number of TX devices increases. Additionally,
we demonstrated that setting a per-station probability for our
pseudo-random scheduler allows for a further decrease in the
accuracy of an eavesdropper. We proposed a Tree-structured
Parzen Estimator (TPE) approach to identify optimal per-
station probability values which ensure that the system can be
automatically adaptable in new environments. Finally, we also
showed that accuracy for legitimate WiFi sensing RX devices
can even be improved through the use of CSI from multiple
TXs. As such, the proposed system is able to allow legitimate
sensing to occur while reducing the feasibility of illegitimate
eavesdropper-based sensing from occurring.
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