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Abstract—The potential of electric vehicles (EV) to reduce
foreign-oil dependence and improve urban air quality has trig-
gered lots of investment by automotive companies recently and
mass penetration and market dominance of EVs is imminent.
However, EVs need to be charged more frequently than fossil-
based vehicles and the charging durations are much longer. This
necessitates in advance scheduling and matching depending on
the route of the EVs. However, such scheduling and frequent
charging may leak sensitive information about the users which
may expose their driving patterns, whereabouts, schedules, etc.
The situation is compounded with the proliferation of EV
chargers such as V2V charging where there can be a lot of
privacy exposure if matching of suppliers and EVs is achieved
in a centralized manner. To address this issue, in this paper, we
propose a privacy-preserving distributed stable matching of EVs
with suppliers (i.e., public/private stations, V2V chargers) using
preference lists formed by partially homomorphic encryption-
based distance calculations while hiding the locations. The
simulation results indicate that such a local matching of supplier
and demanders can be achieved in a distributed fashion within
reasonable computation and convergence times while preserving
privacy of users.

Index Terms—Electric vehicle charging, scheduling, privacy,
Pallier homomorphic encryption, distributed stable matching,
vehicular network.

I. INTRODUCTION

Electric vehicles (EVs) have received increasing attention
recently as they have the potential to provide sustainable
and eco-friendly transportation systems. They can also act as
energy storage systems [1] during power outages (e.g. Vehicle-
to-Home) or to support renewable energy systems. Due to such
potential, recently many auto companies have launched their
products of many kinds of EVs, thus, a mass penetration and
market dominance of EVs is expected in the upcoming years.
For instance, according to a study in [2], 15 million EVs are
expected to be on the roads by 2030.

Despite a disruptive increase in number of EVs is imminent,
current charging infrastructure is not sufficient. Thus, there
is an ongoing effort to expand the charging options for the
users. Recently, several different companies have built their
own charging networks (e.g., EvGo [3]). They offer charging
service to EV drivers through their membership programs.
They coordinate access to charging stations owned by them
and provide maintenance services to keep charging stations
running. While each charging network website provides the
map of their own charging stations, there exist web sites
(such as PlugShare [4]) that provide a complete view of all

charging stations from different charging networks as well as
the residential stations in an area on the map. This helps EV
drivers locate available charging stations, and monitor their
availability. The drivers can also check in when they charge
at that station, share tips, comments, and photos, and provide
snapshots of their charging experiences [4].

In order to provide more options for charging, there are
also EV owners who open their residential charging stations
to other EV owners and share through the charging network
web sites. Similarly, Vehicle-to-Vehicle (V2V) charge sharing
based solutions [5]-[9] are proposed recently to encourage EV
owners with excessive charge share their charge with other EV
owners in need. There are V2V charging products (e.g., Orca
Inceptive [10] by Andromeda Power) in market today which
are used by EV owners for charge sharing.

All these efforts for expanding the charging options are to
address the frequent and long-period charging needs of EVs
as opposed to fossil-driven vehicles. Specifically, in-advance
scheduling of charging is needed to minimize the waiting times
and thus increase the travel efficiency and driver comfort for
the EV users. Obviously, this scheduling needs to consider
the route of the EVs, the availability of charge suppliers
(i.e., public/private charging stations, V2V chargers) and EV
owners. This means scheduling may cause to leak some private
information about the users during this process. With a long-
term analysis of schedule and charging information (time,
location) user’s driving patterns and whereabouts may be
exposed. For instance, for a driver charging his/her EV at two
charging stations regularly (e.g., every day), it is reasonable
to speculate that these two places are around driver’s home
and work. This could further be used by an adversary to
trace the driver and commit crimes like breaking into driver’s
home when the driver is not at home. Similarly, marketers
can send driver ads that are designed based on the habitual
needs of the drivers. Such privacy threats may later hinder
the successful large-scale penetration of EVs in the market
as users see privacy as an important human right when using
technology [11]. Thus, new EV charging approaches that hide
or limit the aforementioned location and charging information
are needed to ensure that this new technology will not be
misused to violate users’ privacy.

While a number of approaches have been proposed recently
to address privacy issues in EV charging [12]-[16], they are
geared mostly for charging on the power grid and within a
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single charging provider. However, as the number of EVs
increases and different options (e.g., mobile V2V and resi-
dential) for charge suppliers emerge, there is a need for many-
to-many optimal matching for efficient resource utilization in
the network. While some recent works [17]-[19] study this
matching problem, they do not provide solutions for privacy-
preserving matching of requesters and suppliers. However,
both the requesters and some suppliers (e.g., V2V charge
supplier EV, residential supplier) may not want to share their
location information with the server in order not to expose
their living patterns. In this paper, we address this issue and
present a privacy-preserving matching of charge requester EVs
with all kinds of charge suppliers.

In order to avoid the potential privacy and security pitfalls of
centralized matching at a server, we propose to use distributed
stable matching that utilizes the preference lists of users that
are formed without having access to location information
of suppliers. This is achieved by sharing a user’s encrypted
location and performing homomorphic computations at the
supplier side. Specifically, we rely on a partially homomor-
phic scheme, namely Pallier, to be able to perform distance
computations. The simulation results indicate that such a
local matching of supplier and demanders can be achieved
in a distributed fashion within reasonable computation and
convergence times while preserving privacy of users.

The rest of the paper is organized as follows. In Section II,
we present an overview of the proposed system. In Section III,
we discuss the details of the proposed solution. In Section IV,
we present our evaluation of the proposed solution. Finally,
we end up with conclusion in Section V.

II. SYSTEM OVERVIEW

We assume a system model shown in Fig. 1 with two
sets of user groups: (i) EV owners requesting for charge,
and (ii) charge suppliers (i.e., public/private charging stations,
residential stations and V2V chargers). Note that there is no
centralized scheduler (i.e., server) assumed in the system. We
assume that requester EVs initiate a local query using a local
communication technology (e.g., DSRC, LTE-direct [20]) to
check if there is available suppliers' in their vicinity. The
suppliers will collect these requests, and reply back within
a reasonable decision time frame to be matched with the
requester EVs based on their needs in a distributed manner.
We assume that distributed stable matching will be used
for the matching of suppliers and demanders. During this
process, neither demanders nor suppliers will know the actual
locations of each other until they are matched. This can be
achieved via encryption. However, they need to know the
distances for decision making and thus each user will be able
to calculate the distance to the others interacted and form a
preference list in the ascending order of distances. This will
be achieved by performing computations on the encrypted
location information. Once a demander EV is matched with

'Not only the V2V suppliers can be located but also the charging stations
or other residential stations could be found once they are equipped with On-
board-units (OBU).
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Fig. 1: Overview of the local search and match system

a supplier, it will then learn the actual location to drive the
supplier’s location.

III. PROPOSED SOLUTION
A. Stable Matching

Stable Matching problem is the problem of matching users
at different sides of a bipartite graph. It is also known as
the stable marriage problem in which a group of men and
women with equal sizes are matched each other based on
their preferences. The goal is to find a matching M in which
each man and woman are assigned a partner and every one
is satisfied with their partners. Here, each individual becomes
satisfactory, so the matching is stable, if they are assigned
to somebody and there does not exist a blocking pair (m,
w) such that m prefers w to his current partner, and w
prefers m to her current partner. This problem is initially
introduced by Gale and Shapley [21] in an economic context
(e.g. market matching), however it has been applied to several
other domains including node deployment in wireless sensor
networks [22].

It has been shown that a stable marriage always exists if the
both set sizes are equal and can be found with a centralized
algorithm in O(N?) time [23]. Moreover, this algorithm
can naturally be implemented as a distributed one [24] for
which it is proved to be communication optimal [25]. A
relaxed version of stable matching problem is obtained with
incomplete preference lists. That is, each user on one side of
the bipartite graph may consider some of the users on the other
side as unacceptable, thus does not have them in its preference
list. Gale Shapley algorithm has been shown to work even for
this version of stable matching problem with incomplete lists
(SMI). Another relaxation is when the set of users in both
sides have unequal number of users. For example, when there
are m men and w < m women, there has to be some men
not matched with a woman. However, as it has been shown
in [26], with a proper stopping condition, a similar algorithm
can yield a stable matching if exists.

In order to run this algorithm in a privacy preserving
manner, the preference lists of users should be hidden from



Algorithm 1: Privacy Preserving Distance Calculation

1 The app generates encryption and decryption key pair of
Paillier’s cryptosystem: Ejey = (7, 9), Diey = (A, ).

2 EVpy generates the following ciphertexts and broadcasts
to the suppliers in the vicinity in S.

E(22;), E(z}), E(2y:), E(y7)

3 After receiving this request and associated ciphertexts,
every supplier EVg, first generates the following
ciphertexts:

E(x3), E(y3)

4 Then, EVg executes the following homomorphic

operations and sends it back to the EVg:

E(22;)™% = E(—2xz;),
E(2y:)~% = E(—2yy;),
E(—2z;x;).E(z3). (5) (( —x5)?)
E(— 2yzyg) E(y?).E(y; ) E((yi —yj)°)

E((w: — 2;)°)-E((y; — y;)?) = E([dist(i,§)]2)
5 EVg, after receiving the ciphertext, decrypts it and
computes the actual distance to the supplier, E'Vs.

dist(i,j) = /D(E([dist(i, j)]2))

others and the preference lists should be formed without
knowing unnecessary information from others. For the former,
running the algorithm in a distributed manner (rather than in
a centralized server) will hide preference lists of users from
the external entities. For the latter, we assume each demander
will form its preference lists of suppliers in the ascending
order of distances to them (as they may naturally prefer the
closest suppliers). However, we propose that these preference
lists could be obtained without knowing the actual location
information of suppliers using Paillier cryptosystem [27] based
homomorphic operations between the requester and supplier.
We also assume that the suppliers will form a preference list
of demanders in the ascending order of their distances (as they
may naturally want to service closest ones first).

For PHE operations, we assume that each EV owner will
get a separate pair of PHE public-private keys when the app
is setup. Suppliers will know the PHE public key of users,
but not the PHE private key and thus, they will not be able to
decrypt the raw location information. But they will perform
computations on ciphertexts resulting decryptable proper in-
formation for demanders using homomorphic properties.

B. Formation of Preference Lists

Let’s denote ciphertext generated by the Pailier cryptosytem
for m with E(m). The encrypted squared distance computation
between a requester ¢ at location loc; = (z;,y;) and a supplier
Jj at location loc; = (x;,y;) could be achieved by:

dist(i,7) = |loc; —
E(dist(i,j)) = E(z} -

)% + (yi — y;)?
25y + ;)

locj| = (z; —

2w + a:f +yi -

= E(2?). (E(z;)) > E(a?).E(y).
(E(y:) ™ E(y3) (1)

-
4
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Fig. 2: The communication between the demanders and sup-
pliers to form preference lists without knowing actual location.

If the supplier can get the encrypted values for both coordi-
nates (E(z;), E(y;)) and their squares (E(z?), E(y?)) from
the requester ¢, it can calculate E(dist (4, j)) and send back to
the requester without knowing requester’s location and without
releasing its location to the requester. Similarly, supplier can
learn its distance to the requester using its own key pairs. This
overall procedure with all communication and computation
requirements is summarized in Algorithm 1.

When a requester EV needs to be charged, it sends a
broadcast message to the suppliers in the vicinity with its
encrypted location information (i.e., E(2x;), E(z2), E(2y;),
E(y?)). The suppliers that receive this request then perform
necessary homomorphic operations (using requester’s PHE
public key and their location information) on these ciphertexts
without knowing the actual requester location information.
Once the encrypted distance information is obtained, it is sent
back to the requester (it is a broadcast but only the requester
can decrypt it). The requester then decrypts it and takes’ the
square root to obtain the actual distance. The requester waits
for a predefined time and collects all the supplier information
in the vicinity. Then, it forms a preference list of suppliers in
the ascending order of distances (i.e., travel time). This process
is also illustrated in Fig. 2.

Note that in the assumed system model, there are different
supplier options including public/private stations, residential
stations and V2V suppliers. Since the locations of pub-
lic/private stations will be fixed and known to public, it may
not be considered as privacy leakage. For residential charging
stations, even though the location will be fixed, residents may
still want to keep the location information private from the
other requesters until they are assigned in the final matching.
Similarly, in the case of V2V charger suppliers, the location
of EVs can change during the day thus a location update has
to be provided to the requesters each time a matching will
be done. Moreover, such V2V charge suppliers may not want
to release the location information to the requester EVs as
it might pose daily moving patterns of drivers and can be
considered as privacy leakage.

2Not necessary as the same list can be formed with squared distances.
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Fig. 3: Formation of incomplete preference lists through local
communication.

C. Privacy Preserving Distributed Stable Matching

Once the demander EVs and suppliers form their preference
lists, the matching process starts®. Fig. 3 shows an example
scenario, where four different EVs request for charge from the
stations and V2V chargers in their vicinity within the same
decision time frame. Note that both the demander EVs and
suppliers will have a partial view of the network. This will

Algorithm 2: DemanderEV()

1 d¢— free

2 continue < true

3 while continue do

4 if d = free & list(d) # () then
5 s < top(list(d))

6 sendMessage(propose, d, s)
7 d<+ s

8 end

9 msg <+ getMessage()

10 switch msg.type do

11 case accept

12 | nothing

13 end

14 case delete

15 list(d) < list(d) - msg.sender
16 if msg.sender = s then
17 | d « free

18 end

19 end

20 case stop

21 ‘ continue <— false

22 end

23 endsw

24 end

result in incomplete preference lists for the users. That is,

3The synchronization of the matching process by all users involved could
be achieved through a predetermined schedule (e.g., collect between 0-15 sec,
run matching between 15-30 sec) by all parties.

some suppliers will not appear in the list of some demanders.
Similarly, some demanders will not appear in the list of some
suppliers. Additionally, the number of demander EVs and
the supplier EVs currently available in the network could
change during the day. While these bring extra challenges to
the matching, thanks to the distributed computable nature of
stable matching even with incomplete lists [24], the users can

Algorithm 3: Supplier()

s free
continue < true
while continue do

1

2

3

4 msg < getMessage()

5 switch msg.type do

6 case propose

7 d < msg.sender

8 if d & list(s) then

9 ‘ sendMessage(delete, s, d)
10 else

11 sendMessage(accept, s, d)
12 s+ d

13 for each p after m in list(w) do
14 sendMessage(delete, s, p)
15 list(w) < list(w) - p
16 end

17 end

18 end

19 case stop

20 end « true

21 end

22 endsw

23 end

communicate to each other with necessary messages without
releasing their preference orders and come to a negotiation
on the final matching. For the unequal sets of demander and
suppliers, the algorithm also stops naturally with a specific
condition giving a stable matching [26] for those who are
matched. If there are fewer demanders than suppliers (i.e.,
d < s), the algorithm stops when d of the suppliers have been
proposed to, and if there are more demanders than suppliers,
the algorithm stops when each demander is either being
suspended by a supplier or being rejected by all suppliers.
Algorithm 2 and 3 show the procedures run by demanders
and suppliers, respectively. Each demander offers to their first
preference of suppliers in their list (with a propose message).
If that supplier has the demander in its list, it accepts to provide
service to this demander (and sends an accept message) and
deletes all other demanders that come after this accepted
one in its list (and let them know via a delete message).
If the demander gets the accept message, it does nothing.
However, the supplier may reject the demander if it is not
in supplier’s list (meaning not a better option), thus sends a
delete message to the demander. In that case, the demander,
once notified with rejection, becomes free again and proposes



to the next supplier in its list. This process continues until a
stable condition is reached, if exists. This algorithm guarantees
privacy in preferences and in the final assignment [24]. That
is, each requester only knows the assigned supplier, and no
more information.

IV. SIMULATION RESULTS
A. Experiment Setup and Metrics

In this section, we present several simulation results regard-
ing the performance of the proposed matching algorithm. We
have generated a network topology of 100 demanders and 100
suppliers in a region of size 1km by lkm. The location of the
demander and suppliers are assigned with uniform distribution.
Then, by changing the range, R, of the local communication
technology used, we obtain different sizes for the preference
lists of users. In Table I, the corresponding average list size
for different R values is shown. When R=1500, all demanders
can see all other suppliers and vice versa. Thus, the lists for

TABLE I: Average preference list sizes for different R

Range (R) - meter 100 250 500 | 750 1000 | 1500

Avg preference list size | 2.8 155 | 484 | 803 | 97.5 100

demanders consist of all suppliers and the lists for suppliers
consist of all demanders. Here, note that the lists of neighbor
users on the graph will have overlapping users, thus these lists
will not be independent. Such a dependence, however, will
affect the convergence and the messaging overhead which are
the considered metrics in the experiments. While convergence
refers to the duration of time for the algorithm to be stabilized,
message overhead is the number of messages exchanged
between demanders and suppliers.

For the PHE calculations, in general, we use 512-bit primes
for p and ¢ defined in Paillier cryptosystem. However, we also
test the impact of different key sizes later. For the simulations,
we use a computer with Intel core i7 processor with speed
2.5 GHz and a 16GB of memory. For every result in this
section, we took the average of 100 different runs for statistical
significance.

B. Performance Results

We first look at the messaging overhead in the stable
matching process. Fig. 4 shows the number of messages of
each type exchanged between the demanders and suppliers.
As expected, the number of delete messages is higher than
accept and propose messages, thus a secondary axis is used
for them. The results clearly show that the number of delete
messages grows linearly as the preference list size increases
for the users. This is because after the first acceptance, the
user sends a delete message to all others that come after the
one accepted in its list. On the other hand, the number of
propose and accept messages have some saturation after the
list sizes become more than 20. This is mainly due to the fact
that every user finds a stable matching after proposing a few
users in their lists. Also, as expected, the number of propose
messages is higher than accept message counts.

—O—# accept
—}—# propose | 7
—X— #delete

50 -

# accept/propose messages

0 20 40 60 80 100
Average size of preference lists

Fig. 4: The number of all messages of each type until the
distributed stable process converges.

Next, we look at the duration needed for both phases
of the algorithm. In the first phase, through communication
with each of the nearby users (one way of communication
is assumed to take 100 ms), encrypted distance values are
received and decrypted. Once all of them are collected, a
sorting algorithm is run to have the preference lists in the
ascending order of distances. The dominating factor in this
phase is the computation of Paillier operations. In the second
phase, due to the multiple messages exchanged between the
users throughout the distributed stable matching process, the
dominating factor becomes the communication cost. In Fig. 5,
the duration of these two phases are shown for different list
sizes. The results show that even with complete lists, first
phase takes around 1.1 sec, and the second one takes around
2.6 sec. Note that in non-privacy preserving version of the
distributed stable matching, there will not be the delay due to
the phase 1 encryptions but phase 2 duration will be the same.
Thus, the proposed privacy preservation method brings around
25% delay overhead to the matching.

In the proposed distributed matching, since each user has
a partial view of the graph and defines the preference lists
accordingly, it is possible that after the matching process
converges, such incomplete lists may yield some of the nodes
not matched. Fig. 6 shows the average coverage obtained in
the matching process, where the coverage refers to the %
of demanders and suppliers matched out of all users. For
example, when list size is around 48, 95% of users (meaning
95% of demanders and 95% of suppliers as we use equal
number for both sets) are matched in the current process.
With average list size of around 15, this ratio goes down to
88%, which is still reasonable. While this will cause some
users not matched in the current round, such users will most
likely be matched by the end of the next round with 98.5%
probability (i.e., 1-(1-0.88)?). Moreover, with a reasonably
short duration for each round (as shown in Fig. 5), matching
in the consecutive rounds can still be satisfactory for the users.

V. CONCLUSION

In this paper, we study the privacy preserving matching
of EVs that are in need of charge with suppliers. In the
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Fig. 6: Average coverage ratio of matching (% of deman-
ders/suppliers matched out of all).

proposed system, demander EVs identify the potential sup-
pliers in the vicinity through a local search with a peer-to-
peer (P2P) communication technology such as LTE-direct or
DSRC. Then, using a homomorphic encryption-based distance
calculation, each demander (supplier) calculates the preference
lists of the suppliers (demanders) in the increasing order of
their distances. Finally, using a distributed stable matching
algorithm with these preference lists, a matching is obtained
such that every demander and supplier is satisfied with their
assignments. Such a distributed querying and matching system
in general avoids the potential privacy and security pitfalls of
centralized matching at a server. The matching results satisfy
all the users at the same time, thus promotes participation.
Moreover, all this process is achieved without releasing the
location information of users and their preference lists to
one another. The simulation results show that this privacy
preserving matching process can converge in a reasonable time
and the computation overheads for Paillier based calculations
do not affect the convergence delay profoundly as long as
appropriate key sizes are selected.
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