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ABSTRACT
Utilizing fine grained analysis of wireless signals for human activity
recognition has gained a lot of traction recently. The unique changes
to the ambient wireless signals caused by different activities made
it possible to recognize these fingerprints through deep learning
classification methods. Most of the existing work consider a set
of physical activities or gestures and try to recognize each one of
them as a separate class. However, this makes the classification
task harder especially when the number of activities to recognize
becomes larger and when these activities include movements from
the same body parts. To address that, in this study, we consider the
decomposition of each physical activity into the limbs and body
parts involved in that activity and study a one-by-one recognition
solution. We propose a Generative Adversarial Network (GAN)-
based hierarchical method that not only recognizes the involved
body limbs and facilitates the recognition of complex activities, but
also mitigates the temporal effects in the collected signal data and
thus provides a generalized solution. Our experimental evaluation
shows that we can recognize unknown physical activities through
the proposed hierarchical limb recognition based model with a
small Hamming loss and by just using WiFi signal data from a
single transmitter and receiver link.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting systems and tools; • Hardware → Wireless integrated
network sensors; • Computing methodologies → Machine
learning.
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Figure 1: Main body limbs involved in a physical activity.

1 INTRODUCTION
Monitoring physical activities of people is an essential tool for
rehabilitation, healthy aging and well-being of individuals [1]. It
can also help early diagnosis of several medical issues and disorders
and can result in more effective treatment and recovery [16, 28].

Thanks to the recent advances in mobile and wearable device
technology, one can now easily track their physical activities and
additional health related metrics like heart rate and blood pressure
with a wearable device attached to their body (e.g., Fitbit, smart
watch). The ubiquitious availability of such devices also motivates
people to performmore physical activities for a healthy lifestyle [15]
as they can use the feedback from these devices to balance their
diet and exercise accordingly.

While the usage of such wearables is pretty common today, the
studies show that there are a lot of variations in the measurements
done with different types of devices and they can work in certain
scenarios or for people with certain physical features. These devices
will also be limited tomeasuring themovement of the body part they
are attached to. Thus, in order to track different limb movements,
a separate sensor or wearable attached to each of these limbs [27]
would be required, making it a cumbersome solution. Moreover,
these devices require periodic maintenance, such as recharging or
replacing batteries and may not be comfortable to wear for some
people all the time. That is why the usage of wearables is less
common among old adults compared to young adults [35]. While
the adoption rate among old adults is growing, further studies are
needed to motivate the usage of mobile health tracking devices by
older adults [23].

Alternatively, in this study, we consider a wireless sensing based
non-invasive, minimal or no maintenance requiring, and low-cost
solution to track the moving body parts during physical activities.
In particular, we consider the utilization of ambientWiFi signals and
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the associated Channel State Information (CSI) over all subcarriers
for this purpose. Most of the existing WiFi sensing solutions [3,
9, 10, 30] consider recognition of a set of activities (e.g., sitting,
walking, drinking) using the CSI data collected from WiFi signals.
Different from these studies, in this study, we specifically explore
the recognition of moving body limbs throughWiFi sensing. To this
end, we consider five different main body parts attached to human
torso as shown in Fig. 1 and decompose each physical activity into
the movement of these body parts. Then, we explore a hierarchical
approach that aims to recognize the limbs involved in a physical
activity one by one. To achieve this goal, our approach not only
identifies the next limb involved in the physical activity based on
the currently recognized ones, but also determines when to stop
including new limbs.

Multi-limb activity recognition can be helpful in various ways.
It can help monitoring patients with movement disorders or those
recovering from any limb surgery (e.g., rehabilitation exercises). It
can also contribute to detecting multi-limb movements during sleep.
For instance, Periodic Limb Movement Disorder (PLMD) occurs
when a patient moves one or more limbs frequently and period-
ically during sleep [13, 31]. Detecting this disease is challenging,
especially for elderly individuals living alone. Moreover, by know-
ing which body limbs are moving (and potentially how fast they
are moving), it may be possible to estimate the energy expenditure
or calories burned associated with a physical activity without any
wearables [34]. Thus, our proposed solution can be a valuable tool
for all these purposes.

The rest of the paper is organized as follows. We first review
related work on limb movement recognition methods and WiFi
sensing in Section 2 and highlight the differences of this study. In
Section 3, we then elaborate on the proposed method. Next, we
provide the evaluation of the proposed solution together with how
the data is collected and processed in Section 4. Finally, we provide
our concluding remarks and discuss on future work in Section 5.

2 RELATEDWORK
Identification and tracking of moving limbs has been studied exten-
sively using computer vision techniques. With the advances in deep
learning algorithms and increasing number of available datasets
with human pose information, this type of research has also been
growing [2, 19, 20]. However, such computer vision-based solutions
require a line-of-sight visibility of the human and thus are limited
to certain scenarios. It is also affected by lighting conditions or
any obstructions in the environment. On top of these, they also
come with privacy related concerns by the users and they have high
deployment costs due to the cameras or other related equipment
involved.

Wearable sensor based approaches [17, 24, 25] mitigate some
of these problems (e.g., cost, privacy) by installing several types
of wearable sensors on the human body and utilizing statistical
and learning based solutions on the collected data. These sensors
include IMU sensors, accelerometers and smartwatches. While it
has been shown that some sufficient accuracy can be achieved in
the identification of moving limbs as well as the specific activities
performed, there are other issues with such solutions. Wearing
one or multiple of such sensors on the body can be intrusive and

inconvenient for the user. Moreover, for long term monitoring they
need to be recharged and maintained carefully by the users.

In order to overcome the limitations of both computer vision-
based and wearable sensor-based systems, sensing through wireless
signals has been considered for the recognition of human activi-
ties and gestures in general recently. In particular, usage of WiFi
signals [11, 18, 29] has been studied extensively in the last years
thanks to the already available WiFi devices and signals in most
indoor environments. Most of these studies however consider a
set of activities or gestures, depending on the application consid-
ered, and aim to recognize them through a machine learning based
prediction model, without considering limb based decomposition.
While in some earlier studies (e.g., CARM [33]), understanding the
effects of different human body parts on the CSI has been slightly
discussed, more related and detailed exploration is made only very
recently through studies that look at the human pose estimation
problem [21, 22, 36]. These studies however target estimation of
joint locations and rotations and eventually the pose of the human
mostly in static scenarios, which is different from our objective.
They also leverage complicated hardware (e.g., L-shaped antenna)
that can provide features like Angle of Arrival (AoA) thus are costly.

In terms of the machine learning solutions integrated in WiFi
sensing studies, various different models and architectures have
been considered including Dense Neural Networks (DNN) [10], Con-
volutional Neural Networks (CNN) [4], Long Short-Term Memory
(LSTM) Networks [37] and Recurrent Neural Networks (RNN) [26]
depending on the use case considered. Generative Adversarial Net-
works (GAN) [5, 6, 14, 32, 38] have also been considered to develop
subject and environment independent generalized solutions. In this
work we use GANs with a different purpose and aim to mitigate the
temporal effect in the CSI data. That is, we consider data collected
for the same activity at different times as different domains and
minimize the effect of integrated temporal changes in them through
the negative impact of domain discriminator. Furthermore, we inte-
grate this GAN approach within our hierarchical based approach,
making it different from previous studies.

3 PROPOSED SOLUTION
The proposed approach uses a hierarchical design in the prediction
of limbs involved in the performed activity. Moreover, we use a
GAN based neural network at each level. Next, we talk about the
details of these two core components in our solution.

3.1 Hierarchical Prediction Approach
The proposed hierarchical approach breaks the task of recognition
of a physical activity into subtasks and aims to recognize involved
body limbs in that activity one by one. This is achieved through the
usage of different prediction models at each level of the recognition
hierarchywhich are trained only with the data of the selected subset
of activity classes.

We start with the first model, referred to as the Level1 model, to
determine which limb is the most prominent within this activity.
Since there is no limb recognized yet at the beginning, this Level1
model is the one that is pretrained with five individual limb move-
ments only and aims to identify the mostly predicted one that is
involved in the considered unknown (which can be single-limb or
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Figure 2: Steps of the proposed hierarchical prediction ap-
proach and an example run.

multi-limb) activity. Once this model predicts one of these five limbs
(denoted as 𝐿1𝑝𝑟𝑒 ), we continue with the subsequent steps to identify
the other limbs or stop the process of identifying new limbs. To this
end, in the second level, we use a model that is trained with a set
of classes that includes the class that is predicted in the previous
level (i.e., 𝐿1𝑝𝑟𝑒 ) and all possible two limb combinations that include
𝐿1𝑝𝑟𝑒 . Once, the Level2 model predicts the highest recognized class
among them, we decide to continue or stop the recognition pro-
cess depending on the prediction. That is, if Level2 model predicts
𝐿1𝑝𝑟𝑒 with the highest prediction, we stop with the outcome from
previous level; otherwise, we continue with the next level similarly.

Fig. 2 shows an example scenario for the unknown activity
RA+LA through this hierarchical prediction approach. After Level1
model predicts RA with the highest ratio, we need a Level2 model
that is trained with classes that include RA class itself and the
two limb classes that include RA (i.e., RA+LA, RA+LL, RA+RL and
RA+Head). Since the output of the Level2 model is RA+LA, we con-
tinue with Level3 with a model that is trained with class RA+LA
and all other three limb combinations that include RA+LA (i.e.,
RA+LA+LL, RA+LA+RL RA+LA+Head). Level3 model predicts that
RA+LA is the highest predicted class, thus the process stops there.
This depends on the insight that if no more limbs are included in an
activity, the class representing the previous level prediction should
be the highest.

Note that with this hierarchical approach, we consider smaller
size models that are pretrained to recognize only a subset of limb
combinations. With five limbs, there can be a total of 25 − 1 = 31
different limb combinations moving in an activity potentially. In-
stead of a single model that is trained on all these combinations, the
hierarchical approach overall depends on six 5-class classifiers (in

A1 A2 A3 A1 A2 A3 . . . . . . . . . .

Per repetition split

A1 A2 A3

A1 A2 A3 A1 A2 A3 . . . . . . . . . . A2 A3
Per dataset split

A1 A2 A3

TestTraining

Repetition 1 (R1) Repetition N (RN)Repetition 2 (R2)

Figure 3: Two different ways of splitting dataset for training
and testing.

Level1 and Level2), ten 4-class classifiers (in Level3), ten 3-class clas-
sifiers (in Level4) an five 2-class classifiers (in Level5) in total. This
is to be ready for any unknown activity with any limb combination
but indeed at each level only one model is used.

3.2 GAN Models to Mitigate Temporal Effects
Given this hierarchical classification approach, next, we need mod-
els at different levels for the subset of classes considered. To this
end, we develop a GAN based architecture to mitigate any temporal
effects in the data and obtain a generalized solution. In order to test
the temporal effects in the data, we collected a dataset of activities
repeated in a round robin fashion. This is achieved by collecting
some data from each activity, and then starting another round of
collection from each one again. Once the data is collected through
multiple rounds, we considered two different splits of the data set
into training and test portions as illustrated in Fig. 3. In the first
way, we considered the last 30% of each repetition of each activity
(i.e., gray areas) as test data, while in the second way we considered
last 30% of the entire dataset as the testing part. Note that the latter
is the proper way for temporal data, but our goal is to show how the
temporal changes affect results. Our results show that with per rep-
etition split, we can obtain much better prediction accuracy. This is
because with per repetition split, the temporal difference between
the training and test data is smaller thus the features learned by
the model help recognize the features in test data. These results
indicate that CSI dataset can have temporal effects and we need to
handle that to obtain a robust prediction performance.

GAN based approach aims to address this issue. Note that while
GANs have been considered by some previous work earlier [32, 38],
the way we model it is different. We consider different repetitions of
the activities collected as separate domains and design the domain
discriminator to recognize such temporal differences when the
same activity is performed. Thus, the negative impact of domain
discriminator loss in GAN helps us recognize the activities properly
even if they are performed at different times.

The main goal of this adversarial model is to extract temporal-
independent but limb activity dependent features so that it can
recognize any limb activity mitigating the environmental and tem-
poral effects during the experiment.

To achieve this goal, the input data is initially transformed into
low-dimensional representations (Z) by a feature extractor com-
posed of a three-layer dense neural network (DNN). If X is the input
dataset and P is considered as the set of all the parameters of DNN,
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Figure 4: Proposed GAN network with repetitions represent-
ing different domains.

then learned features Z from the feature extractor can be written
as 𝑍 = 𝐷𝑁𝑁 (𝑋 ; 𝑃).

Utilizing these learned feature representations, the activity recog-
nizer aims to maximize prediction accuracy by making predictions
on all input data. To eliminate domain-specific features, a domain
discriminator is employed to label each domain, identifying which
activities are performed in which domain of the environment.

Ultimately the architecture of the model is built on three main
blocks: (i) feature extractor, (ii) domain discriminator, and (iii) limb
activity recognizer, as shown in Fig. 4. Our feature extractor model
is a three-layer DNN which is designed to enhance feature learn-
ing and prevent overfitting. The first hidden layer comprises 128
neurons, utilizing the Rectified Linear Unit (ReLU) activation func-
tion to introduce non-linearity, followed by batch normalization
to stabilize and accelerate the training process, and a dropout rate
of 0.5 to mitigate overfitting by randomly deactivating half of the
neurons during training. The second hidden layer consists of 64
neurons, also employing ReLU activation, batch normalization, and
a dropout rate of 0.5, ensuring consistent regularization and normal-
ization. The third hidden layer features 32 neurons with the same
sequence of ReLU activation, batch normalization, and a dropout
rate of 0.3.

Activity classifier and domain discriminator blocks are mainly
built with fully connected layers for classifying activity and do-
main classes. Softmax is used as the activation function in both
implementations.

In our study, the primary objective is to accurately recognize
different activity classes formed by different limb movements. To
achieve this, we need to optimize the feature extractor through
backpropagation by minimizing the activity loss while simulta-
neously maximizing the domain loss. This approach ensures that
the feature extractor can fool the domain discriminator and learn
domain-independent features, enabling it to classify activities across
various domains or different repetitions of the activities.

Table 1: Activities used in experiments together with the
limbs involved in each activity.

Limb Activity RA LA LL RL Head
1 RA ✓

2 LA ✓

3 LL ✓

4 RL ✓

5 Head ✓

6 RA+LA ✓ ✓

7 RA+LL ✓ ✓

8 RA+RL ✓ ✓

9 LA+LL ✓ ✓

10 LA+RL ✓ ✓

11 LA+Head ✓ ✓

12 RA+Head ✓ ✓

13 LL+Head ✓ ✓

14 RL+Head ✓ ✓

15 RA+LA+Head ✓ ✓ ✓

16 RA+LA+LL ✓ ✓ ✓

17 RA+LA+RL ✓ ✓ ✓

4 EVALUATION
4.1 Experimental Set up and Data Collection
In order to test the performance of the proposed hierarchical ap-
proach, we collected WiFi CSI data for 17 different classes of move-
ments that are given in Table 1. Note that we skipped some of the
combinations (e.g., LL+RL or LA+RA+Head+LL) due to the hardness
of performing them. However, we will try to include more limb
combinations in our future efforts.

We used our ESP32-CSI-Toolkit [7, 8] to collect CSI which uses
two ESP32 WiFi-enabled microcontrollers for our transmitter and
receiver, respectively. Note that these microcontrollers have very
low cost (i.e., < $10) allowing a more cheaper solution than wear-
able based tracking solutions, and without having the burden of
intrusive nature of wearables. The ESP32 devices are set to transmit
CSI at a packet rate of 100Hz.

Fig. 5 shows the scenario how ESP32 microcontrollers are setup
during our data collection. Each activity is performed for 10 seconds
(by moving the corresponding limbs included up and down at the
same time), with a 10-second transition (i.e., no movement) period
between activities. We repeated the 17 activities 10 times in a round
robin fashion (as shown in Fig. 3), and these 10 repetitions were
used as different domains in our deep learning model. Overall, the
experiment took 56 minutes and 40 seconds.

4.2 CSI Pre-Processing
To prepare the dataset for our learning model, we apply several
preprocessing steps after data collection. First, we convert the raw
CSI data into CSI amplitude values for 64 different subcarriers of the

channel by𝐴(𝑖 ) =
√︃
(𝐻 (𝑖 )

𝑖𝑚
)2 + (𝐻 (𝑖 )

𝑟 )2), 𝐻 (𝑖 )
𝑟 is the real and 𝐻 (𝑖 )

𝑖𝑚
is

the imaginary part of the CSI vector (𝐻 ) for subcarrier 𝑖 . We did not
use the phase values in this study. After obtaining the amplitude
values for all 64 subcarriers, we filter out the subcarriers whose
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Figure 5: Experiment setup for data collection.

amplitude values remained constant over time. This process results
in the exclusion of 12 subcarriers, leaving us with 52 subcarriers as
the features for the input dataset.

Next, we apply window averaging to denoise and smooth the
signal dataset. A sliding window function with a window size of
100 is used. After splitting the data into training and testing sets
using dataset split as illustrated in Fig. 3, we then apply principal
component analysis (PCA) to reduce the dimensionality of the
dataset and extract the most relevant features. With these filtering
and denoising methods, our dataset is prepared for model training.

4.3 Compared Prediction Models
We compare the following three different approaches:
All-class Classifiers: This refers to the straightforward approach
with a model trained with data from all (i.e., 17) classes. We consider
both a DNN and a GAN based model to show the benefit of GAN
model within this case too. DNN model is structured similar to
the feature extractor, activity classifier and domain discriminator
architectures (e.g., ReLU activation, batch normalization, and a
dropout layer) explained earlier for the GAN. For the loss function
optimization, we used Adam optimizer with 0.02 as the learning
rate and cross entropy loss as the loss function.
Multi-label Classifier: In this model, we consider labels of five
limbs that are involved in each activity and train them with the
corresponding labels. Table 1 shows these labels for each activity.
We used the same DNN architecture here too. Due to multi-label
design, each activity is encoded with binary codes of each limb.
That is, for example, ’LA+RA’ is encoded as 11000 and ’LA+LL’ is
encoded ’01100’, using the ordered labels of RA, LA, LL, RL and
Head. Sigmoid activation function is applied at the fully connected
layer. Binary cross entropy loss is also used as the loss function
together with Adam optimizer.
GAN based Hierarchical Classifier: This refers to our proposed
solution described in Section 3.

Each of these models are trained with 70% of the entire dataset
collected and tested with the remaining 30% (i.e., dataset split). We
also considered sliding windows for the CSI data before feeding
them into each model. The window size is set to 100 (i.e., 1 sec of
data).

Figure 6: Confusion Matrix of 17-class DNN classifier.

4.4 Performance Metrics
We use two main metrics, namely, prediction accuracy and Ham-
ming loss. Accuracy is defined as the ratio of the number of correctly
predicted instances to the total number of the instances in the test
data:

Accuracy =
TP + TN

TP + TN + FP + FN
where TP is true positives, TN is true negatives, FP is false positives
and FN is false negatives. Note that since our activities include
multiple labels, for a prediction to be TP, all the labels should be
correctly predicted, thus an exact matching is required. Thus, to
quantify the difference between the set of the true labels and the
set of the predicted labels, we also use Hamming loss for a more
detailed prediction analysis. Hamming loss can be calculated by
applying the XOR function for each instance and then adding them
together to find the overall measurement [12]:

Hamming loss =
1
𝑚

𝑚∑︁
𝑖=1

1
𝑞
Δ(𝑇𝑖 , 𝑃𝑖 )

where 𝑚 is the number of samples, 𝑇𝑖 and 𝑃𝑖 are the list of true
and predicted labels of instance i, respectively, q is the number of
classes used in the prediction model, and Δ(.) is the XOR function
that gives the number of classes that are wrongly predicted for each
instance.

4.5 Performance Results
First of all, we look at the results with all class classifiers. While
considering a single model trained with all classes can be a straight-
forward solution, our results show that we can only get 33 and 42%
accuracy with a DNN and GAN-based 17-class classifiers, respec-
tively. Looking at Fig. 6 which shows the confusion matrix of the
17-class DNN classifier results, we see that the diagonal has the
highest prediction values. However, we notice that a multi-limb ac-
tivity can be confused with the single limb activities it contains. For
example, RA+LA is confused with single limb activity RA; RA+LL is
confused with LL. Similarly, we see confusions between the multi-
limb activities which have limb(s) in common (e.g., LL+Head with
RL+Head).
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Table 2: Multi Label Classifier Results

Unknown Accuracy (%) Hamming
Limb Activity (exact match) Loss

1 RA 47.44 0.1812
2 LA 56.94 0.1334
3 LL 53.22 0.1365
4 RL 43.26 0.1575
5 Head 50.28 0.1674
6 RA+LA 61.88 0.1058
7 RA+LL 61.91 0.0933
8 RA+RL 40.85 0.1785
9 LA+LL 56.33 0.1267
10 LA+RL 41.76 0.1934
11 LA+Head 41.53 0.1817
12 RA+Head 67.70 0.0820
13 LL+Head 33.99 0.2178
14 RL+Head 59.25 0.1149
15 RA+LA+Head 51.58 0.1278
16 RA+LA+LL 53.58 0.1491
17 RA+LA+RL 52.85 0.1384

Table 3: Prediction results at each level by the proposed hier-
archical GAN based hierarchical approach.

Unknown Level 1 Level 2 Level 3
Limb Activity Highest predicted class

1 RA RA RA+LA

N/A
2 LA LA LA
3 LL LL LL
4 RL RL RL
5 Head Head Head
6 RA+LA LA RA+LA RA+LA
7 RA+LL LL RA+LL RA+LL
8 RA+RL RL RL
9 LA+LL LL LA+LL LA+LL
10 LA+RL RL RA+RL
11 LA+Head LA LA+Head LA+Head
12 RA+Head RA RA+Head RA+Head
13 LL+Head LL LL+Head No data
14 RL+Head RL RL+Head No data
15 RA+LA+Head RA RA+LA RA+LA+Head
16 RA+LA+LL LL RA+LL RA+LA+LL
17 RA+LA+RL RL RL

The results for multi-label classifier model is given in Table 2.
We see that the accuracy for classes ranges between 33.99% and
67.70%, with an average of 51.43%. Hamming loss ranges between
0.082 and 0.2178, with an average of 0.1464. Even though the results
are better than all-class classifier results, it may not be sufficient to
be used in practice.

Finally, we look at the results of the proposed hierarchical GAN
based approach. The results in Table 3 shows the highest predicted
class for each unknown class at each level of recognition process.

Table 4: Performance Comparison of Different Approaches

Prediction Model Accuracy (%)
(exact match)

Hamming
Loss (%)

All-class classifier
(DNN)

33.39 0.1764

All-class classifier
(GAN)

42.87 0.1512

Multi-label Classi-
fier

51.43 0.1464

GAN based Hierar-
chical Classifier

76.47 0.0705

We see that our Level1 GAN models always predict a correct limb
included in the unknown activity considered. In Level2, we see
failures in four cases, that are highlighted and strike through. For
example, for RA, Level2 model should predict RA as the highest
predicted class but it predicts RA+LA as the highest. Digging further,
we find that in all these four failing cases, our GAN models actually
predict the right class as the second highest predicted class. That
is why when we look at the Hamming loss obtained from these
predictions, we see 0.0705, which shows the true predictions (i.e.,
exact match) are indeed slightly missed.

Note that in some scenarios, we could not get results for each
level towards the stopping criteria defined. For example, for LL+Head,
we could not test if the proposed method would select LL+Head in
Level3 due to the lack of data. Similarly, for RA+LA+Head, we pre-
dict correctly in all three levels but we need to test if the proposed
method would select RA+LA+Head in Level4 too to stop the process.
However, this is skipped as collecting four limb movements was
challenging.

Overall, as Table 4 shows, the proposed GAN-based hierarchical
recognition approach achieves the highest accuracy and the lowest
Hamming loss among all models compared. In the future, we will
consider more combinations of limbs and evaluate the performance
in the missing possible scenarios.

5 CONCLUSION
In this work, we studied the use of CSI data from WiFi signals to
recognize the limbs involved in a physical activity. We proposed
a hierarchical approach that aims to recognize the involved limbs
in the activity one by one. We used GAN based models at each
level of recognition steps and utilized a stopping method that does
not proceed to further levels if the predicted class is still from
previous level. The performance evaluation shows that the proposed
approach shows a higher prediction accuracy and a low Hamming
loss, compared to other solutions.

While there is room to improve these results, we would like
to note that these results are obtained with only one TX-RX link
in the environment. In our future efforts, we will consider more
TX-RX pairs distributed in the area. We will also consider different
moving speeds for each limb and try to recognize these speeds
for the identified models. Finally, we will collect data from more
volunteers and evaluate the robustness of our approach.
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