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ABSTRACT
Maintaining independence in daily activities and mobility is critical
for healthy aging. Older adults who are losing the ability to care
for themselves or ambulate are at a high risk of adverse health
outcomes and decreased quality of life. It is essential to monitor
daily activities and mobility routinely and capture early decline
before a clinical symptom arises. Existing solutions use self-reports,
or technology-based solutions that depend on cameras or wearables
to track daily activities; however, these solutions have different
issues (e.g., bias, privacy, burden to carry/recharge them) and do
not fit well for seniors. In this study, we discuss a non-invasive, and
low-cost wireless sensing-based solution to track the daily activities
of low-income older adults. The proposed sensing solution relies on
a deep learning-based fine-grained analysis of ambient WiFi signals
and it is non-invasive compared to video or wearable-based existing
solutions. We deployed this system in real senior housing settings
for a week and evaluated its performance. Our initial results show
that we can detect a variety of daily activities of the participants
with this low-cost system with an accuracy of up to 76.90%.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting systems and tools; • Hardware → Wireless integrated
network sensors; • Computing methodologies → Machine
learning.
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1 INTRODUCTION
Ability to perform daily activities independently is one of the crit-
ical needs for healthy aging. Loss of independence in older ages
represents the transition from health to disability. Thus, older adults
who lose the ability to ambulate or care for themselves are at a high
risk of adverse health outcomes (e.g., falls) and decreased quality
of life. Aging in place is difficult in particular for low-income older
adults with multiple chronic conditions and disabilities, lack of
transportation, and limited social capital. That is why it is essential
to routinely monitor daily activities and mobility to capture early
decline before a clinical symptom arises.

Traditional activity and mobility assessment tools are primarily
self-report, subjective, and episodic. These assessments are prone
to recall bias, especially among older adults with memory issues.
Additionally, they do not capture variability over time, making
it challenging to track a patient’s decline in function. Recently,
digital health technologies have been proposed to obtain objective,
high-frequency, and remote monitoring. However, significant user
challenges (e.g., loss of device, incorrect use) threaten the reliability
of the data collected. Motion detection sensors in the context of in-
home unobtrusive physical performance assessment show limited
results as they could not detect different types of human behaviors
(e.g., sitting, walking, eating, and leaving home). There is a need to
develop and test new sensing technology that can characterize and
quantify different types of daily activities in a real-world setting
while also being discreet, affordable, and requiring minimal user
engagement.

In this study, we propose to leverage ubiquity ofWiFi technology
and low-cost devices that can transmit WiFi signals to monitor the
daily activities of senior adults in a home environment (see Fig.1 for
sample setup). This allows for an activity recognition opportunity
without any wearables on the body of the person that is monitored,
and even allows monitoring beyond visual line of sight (i.e., in
multiple rooms of the house) as WiFi signals penetrate through
the walls. This is achieved through the fine-grained analysis of
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Figure 1: A typical deployment with potential activity
hotspots in the living and kitchen area with sample WiFi
RX/TX positions.

WiFi signals (i.e., Channel State Information (CSI) on subcarriers),
which reflect from individuals’ bodies while propagating in the
environment and thus carry information regarding their location
and movements. Existing studies on WiFi sensing usually consider
a limited and controlled/lab environment (e.g., a room) and focus
on recognition of random activities happening in a non-natural
environment (i.e., subjects are asked to perform the activities rather
than doing them in their daily routine). These studies also utilize
specialized hardware (i.e., a laptop and an updated Network In-
terface Card [10]) to collect WiFi CSI data from the transmitter
devices in the environment. Because these devices are costly and
bulky, they are not amenable to scalable deployments. To address
this, we recently developed an Internet of Things (IoT)-based stan-
dalone and lightweight solution to WiFi sensing which facilitates
the large-scale deployments [11].

Utilizing our IoT based solution that uses low-cost ESP32 mi-
crocontrollers, we deployed our WiFi sensing based system in the
houses of nine different older adults and evaluated its performance.
In this study, we go through the steps we followed during deploy-
ment together with the challenges we faced. We also present our
initial results from a subset of the data collected and discuss our
further steps.

To the best of our knowledge, despite the variety of studies on
WiFi sensing, there is no study that deploys a WiFi sensing-based
system in a senior house setting for 5-7 days and collects data in a
natural setting i.e., as the participants perform these activities in
their daily routine, and provides its evaluation.

The rest of the paper is organized as follows. Section 2 provides a
background onWiFi sensing technology and discusses related work
in the field. Section 3 presents the details of our system setup, high-
lighting its features, and functionality. In Section 4, we go through
the details of the deployment process together with the details of
the participants involved. We then present the performance results
of the WiFi sensing system in the deployed environments. Finally,

we discuss our future directions in Section 5 and our concluding
remarks in Section 6.

2 BACKGROUND
2.1 Channel State Information
WiFi sensing technology harnesses ambient WiFi signals to detect
and perceive the physical properties of the surrounding environ-
ment [15, 21]. These radio frequency (RF) signals travel through the
environment along multiple paths, moving from a transmitter (TX)
to a receiver (RX). As these signals interact with various objects in
the background, such as walls, furniture, and people, they undergo
different types of variations.

CSI is a metric used in orthogonal frequency-division multiplex-
ing (OFDM) systems. It is employed to characterize the amplitude
and phase variations that wireless signals experience across differ-
ent subcarrier frequencies during transmission between a transmit-
ter and a receiver. The following equation models CSI:

𝑦 (𝑖 ) = 𝐻 (𝑖 )𝑥 (𝑖 ) + 𝜂 (𝑖 ) , (1)

where 𝑖 is the subcarrier index, 𝑥 is the transmitted signal, 𝑦 is the
received signal, 𝜂 is a noise vector, and 𝐻 is a complex vector con-
taining the CSI denoting the transformation change required from
the input 𝑥 to the output 𝑦. The CSI value collected for each sub-
carrier is a complex number that consists of both a real component
(𝐻 (𝑖 )

𝑟 ) and an imaginary component (𝐻 (𝑖 )
𝑖𝑚

). Using these compo-

nents, we can then compute amplitude 𝐴(𝑖 ) =
√︃
(𝐻 (𝑖 )

𝑖𝑚
)2 + (𝐻 (𝑖 )

𝑟 )2

and phase 𝜙 (𝑖 ) = 𝑎𝑡𝑎𝑛2(𝐻 (𝑖 )
𝑖𝑚

, 𝐻
(𝑖 )
𝑟 ).

2.2 Related Work
WiFi sensing based human activity recognition has gained signifi-
cant attention in recent years due to its non-intrusive nature and
the ubiquity of WiFi infrastructure [15, 21]. Our study contributes
to this field by exploring the recognition of activities performed by
elderly people during their daily routine in a week using low-cost
WiFi chips, making it a unique study that deploys and evaluates a
WiFi sensing system in practice.

There are a few studies [3, 6, 25, 26] exploring possibilities of
deploying a series of wireless sensors like ZigBee, XBee, Arduino,
temperature sensors, contact sensors, LPG sensors, GSM modules,
wearable smartwatch, and so on forming a Wireless Sensor Net-
work (WSN) to remotely monitor wellbeing of the elderly people.
However, none of these studies utilizes ubiquitous ambient WiFi
signals to track and monitor people.

A significant number of studies [9, 31–35] explore the usage of
several WiFi capable devices to collect CSI data and then recognize
several activities, even with centimeter-level accuracy in passive
gesture tracking. However, only a handful of the studies [8, 12,
13, 29] explore the usage of low-cost devices like ESP32 for WiFi
sensing.

Our study incorporates two other challenges, namely, activity
recognition for long-term periods in a real-life ever-changing envi-
ronment and deployment in different environments for different
participants. Wireless signals like WiFi tend to change over time
responding to either any kind of environmental change or due
to some temporal effect on the WiFi chip as discussed in studies
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like [18]. The study [16] proposes an Environment Independent (EI)
framework for WiFi CSI-based activity recognition by using CSI
amplitude ratios between antennas, applying PCA for noise reduc-
tion, and employing weighted majority voting across subcarriers
to mitigate environmental effects and improve cross-environment
performance. The work in [20] reviews recent advances in deep un-
supervised domain adaptation, focusing on techniques that transfer
knowledge from a labeled source domain to an unlabeled target
domain using various approaches, including discrepancy-based,
adversarial-based, and reconstruction-based methods with their
strengths and limitations for addressing domain shift problems, i.e.,
applying same setup in different environments. In this study, how-
ever, we have trained customized models for different deployments
as their floor layouts were different.

Relating to our machine learning approach, we found a few
studies exploring the application of ensemble learning with WiFi
CSI data. In [4], multiple WiFi links are used to collect data and
train different basemodels to benchmark the performance of several
ensemble approaches. It leverages the advantage of having multiple
WiFi links. Another study [19] also looks at the activity recognition
problem by stacking ensemble approach with two separate models,
i.e., ResNet and CNN with GRU, on the same datasets. These studies
present performance improvement using ensemble over the base
learner models, thus we take the advantage of ensemble learning
in our study as well.

3 OVERVIEW OF DEPLOYEDWIFI SENSING
SYSTEM

We have developed a complete IoT infrastructure to deploy in sev-
eral nursing home apartments for old people. As shown in Fig. 2,
our system involves both offline data collection components and
online (over the Internet) remote monitoring components. The fol-
lowing subsections describe the functionalities of and challenges
faced with these components.

3.1 Deployed System Components
Depending on the floor maps of the participants, we deployed sev-
eral Raspberry Pi 4B devices to collect WiFi CSI data from ESP32
WiFi receiver (Rx) microcontrollers and record activities using cam-
era modules to prepare the ground truths.

3.1.1 Raspberry Pi. We used CanaKit package with Raspberry Pi
4B boards having 2GB RAM. The principal function of this mini-
computer is to collect CSI data from all the connected ESP32 Rx
devices using our developed CSI-Pi [23] server app. This server app
is also equippedwith capabilities like recording and post-processing
videos.

3.1.2 Camera Module. We recorded the video of the participant
performing several daily activities through a connected ArduCam
module using the PiCamera [17] library. The camera was often
supported by a tripod, while a few deployments required it to be
taped on some higher ground to have a better view of the apartment.
As per IRB protocols, we recorded the activities from 8 AM to 8 PM
giving the participant a fully private night time. Consequently, we
consider only these 12 hours of CSI data in our system.
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Figure 2: (a) Single set of devices with Raspberry Pi (R. Pi) 4B,
multiple ESP32 WiFi receivers, Kasa SmartPlug, and camera
module, (b) Overall end-to-end monitoring system.

3.1.3 ESP32 Microcontrollers. We deployed multiple pairs of ESP32
WiFi receiver and transmitter. These were flashed with ESP32-CSI-
Tool [11] firmware.We saved CSI data only from the receiver devices
connected with Raspberry Pi. The transmitters were powered on at
some far-reach corner of the apartment ensuring the line of sight
(LoS) of some observable activities.

3.2 Remote Live Monitoring and Health Check
We developed a fully connected ecosystem of multiple online com-
ponents, i.e., a continuous monitoring system to let us know the
status of the data collection process and also to let us debug and
even reset the system remotely.

3.2.1 Tailscale. Tailscale [28] is a partially open-source software-
defined mesh virtual private network (VPN). Each of our Raspberry
Pi devices was equipped with a Tailscale client app which made
it accessible via SSH from our developer end in case of any dis-
crepancy suspected in the data collection status. Tailscale ensures
end-to-end encryption of any such remote connection using Wire-
Guard [36] so that no man-in-middle attack can happen while we
access any remote device.

3.2.2 Kasa Smart Plugs. Kasa Smart plug enables us to power on
and off any connected IoT device remotely, even through the Inter-
net. We powered almost all of our Raspberry Pi and ESP32 devices
with these smart plugs. Each of these plugs was connected to the
Internet and manageable through the Kasa smartphone app. When-
ever we observed any device not working properly, we accessed it
using Tailscale and tried to fix it first. If it did not work, we could
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restart the device by controlling its power through its connected
smart plug.

3.2.3 Discord Webhook Messages. A summary of the collected CSI
data and recorded videos were periodically sent to a webhook in
the Discord messaging app to let all concerned personnel know the
most recent status of the data collection process. We could analyze
and proactively detect any failing ESP32, failing camera, power
outage, etc. occurrences in the deployed home by looking into a
few kilobytes of sent messages in the Discord app from time to
time.

3.2.4 Verizon Orbic Speed 5G WiFi Hotspot. All of our Raspberry
Pi and smart plug devices were connected to the Internet through
one or more Verizon Orbic 5G WiFi hotspots. This was needed as
there were no Internet available at the residences of participants.

3.3 Challenges and Issues Faced
We faced various practical issues in our live deployments which are
not usual in a controlled lab environment. We gathered experiences
through these issues as we solved those in consecutive deployments.
However, some issues were found inevitable and costed us lose a
significant amount of data.

3.3.1 Unexpected Person Attendance. WiFi sensing is susceptible
to the presence of multiple people and we were to monitor the
participant living alone in the apartment. However, we observed
several occasions involving the presence of an outsider like a nurse,
maintenance officials, visiting friends, our deployment team, and so
on in the monitored environment. We needed to exclude those parts
of the CSI data during data annotation looking into the recorded
videos. Note that recent studies [2, 22] show that it can be possible
to monitor multiple people’s activities separately, however for the
sake of our initial deployments we targeted single person based
movements.

3.3.2 Device Heating. In one of our early deployments, we noticed
our Raspberry Pi functioning extremely slow and barely was reach-
able. Investigation revealed that our used aluminum case of CanaKit
was not good enough to release the device’s heat and it was getting
too hot to continue its operation at the usual speed. We then used
only plastic casings with enough vents, thermal heat sinks, and a
cooling fan installed inside for the consecutive deployments and
never faced a similar issue.

3.3.3 Device Positioning. A few of the apartments were so chal-
lenging to cover with our camera and WiFi transmission LoS that
we needed to tape our devices, i.e., camera and ESP32, onto the wall
or high-standing types of furniture. While it might not be favorable
to all the participants, it even left marks on the wall in a deploy-
ment. On several other occasions, either the taped camera or the
camera with tripod or the Raspberry Pi was displaced due to activi-
ties around it. One positive takeaway of this type of issue is none
of our ESP32 devices were displaced as those are comparatively
lightweight and safely placed to maintain the same transmission
line.

3.3.4 Pets. We tried to on-board participants with no pets, but
one of them had two cats. We requested her not to let the cats out

Table 1: The number of occurrences of the selected daily
activities per participant.

Activity Code P03 P05 P09

Enter Apartment enapt 16 16 5
Exit Apartment exapt 27 24 5
Enter Private Area enpri 48 38 28
Exit Private Area expri 54 45 23
Kitchen Activity kit 115 74 16
Fridge Open/Close fri 65 41 27

of the unmonitored private space, i.e., the bedroom. However, it
is unlikely for the cats to do so. So we needed to look out while
annotating that participant and clip our data during the presence
of the cats inside our monitored space.

3.3.5 Heaters and Fans in the Environment. Winds from fans can
make random movements of lightweight materials in the envi-
ronment. Besides, we observed a deteriorating data rate from a
transmitter, leading it to not transmit anymore after a few days and
discovered later that the participant was using a heater by its side.
These issues caused us to lose a significant amount of data.

3.3.6 Maintenance Emergency. In one of our deployments, the par-
ticipant had a water leak from her roof to the side wall. One of our
smart plugs was soaked and fused in the leaked water, which made
the attached Raspberry Pi power off. We noticed the device missing
its periodic Discord messages while not reachable through Tailscale
and found out about this issue after contacting the participant. We
admit that this kind of maintenance emergency can cause havoc in
this type of live deployment.

3.4 Post-processing
After collecting the data, a time-consuming step was to look into all
the recorded videos and annotate the interesting activities to train
our WiFi sensing ML model for activity classification. We recorded
the videos with online synchronized timestamps embedded on
top of each frame so that we could record the actual millisecond
accurate timestamp of any activity. This manual post-processing
step got particularly tougher with more camera angles recording
movements simultaneously.

Additionally, the volume of the collected CSI data and recorded
video files was over a hundred gigabytes per participant. With more
participants deployed and more data accumulated, processing this
volume of data became more challenging.

4 EXPERIMENTS
4.1 Participants Information and IRB
We deployed our system and collected data from nine participants
after being approved by VCU Institutional Review Board (IRB).
Among them, there are one African-American man, six African-
American women, and two white women. Their ages range from
55 to 77, with an average of 67.3. We have annotated and run
experiments with three participants’ data in this study, namely P03,
P05, and P09. Their floor maps are shown in Fig. 3 with sensor
placements which are done mainly based on camera angle visibility
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(a) (b) (c)

Figure 3: Deployed floor-maps of (a) participant 3 (P03), (b) participant 5 (P05), and (c) participant 9 (P09).

among the furniture positions, power outlets, and floor layout. Table
1 enlists the repetition counts per observable activity.

4.2 Data Collection
During the experiments, we collect CSI data using WiFi-enabled
ESP32 microcontrollers and the ESP32-CSI Toolkit [11]. Unlike
other data collection methods that require a host laptop with an
updated Network Interface Card (NIC), these microcontrollers offer
a compact, cost-effective, and independent solution. The portability
and versatility of the ESP32s facilitate easy deployment. In order
to run the proposed solution in resource limited edge devices ef-
ficiently, we integrate solutions like online sampling of collected
CSI data [14]. In our system, each transmitter sends data frames
at 100𝐻𝑧 to its respective receiver. Multiple pairs of these RX and
TX devices are deployed based on the floor map of the apartment.
The received CSI data at the RX ESP32 are exported to a file stored
inside a Raspberry Pi 4B. Due to the multiple days-long deployment
period, all video and CSI data stored grows beyond a hundred giga-
bytes in size and thereby makes it resource-consuming to transfer,
annotate, and process for machine learning.

4.3 Preprocessing and ML Model Development
The CSI data undergoes preprocessing steps before being fed into
the machine learning model for training. Initially, we denoise the
collected CSI data by independently applying a moving average to
each subcarrier using a window of size𝑤 . Next, we use Principal
Component Analysis (PCA) to further denoise the collected data.
We have not reduced the data dimension from 64 after applying
PCA like many other studies. The preprocessing steps as well as the
data flow throughout the developed CNN and Gradient Boosting
Ensemble model, can be seen in the Fig. 4.

Once the preprocessing steps are finished, we use the data of
each WiFi link to train separate CNN models independently. We
train a CNN model ℎ𝑚 (𝑥) for𝑚th WiFi link’s CSI amplitude data,
𝑥 . This training yields a residual 𝑟 (𝑚)

𝑖
for 𝑖th action, where

ℎ𝑚 (𝑥) ≈ 𝑟
(𝑚)
𝑖

(2)

This CNN takes the input 𝑥 (CSI amplitudes) and is trained to min-
imize the difference between its output and the residuals. Note
that we can think of each CSI window as a two-dimensional mono-
chrome (gray-scale) image of dimension 𝜔 × 64, where 𝜔 is the

number of CSI frames per window. Therefore, it can be processed
by convolutional layers of a CNN model. We have used three such
convolutional layers and two final dense layers to construct our
CNN model. Each convolutional layer has a kernel of size (3, 3)
and max pooling of dimension (1, 1). We have eight filters for the
first layer, 16 for the next, and 32 for the third convolutional layer.
A batch normalization or dropout layer follows each layer to pre-
vent overfitting. We have used categorical cross-entropy as the loss
function of the CNN model. This architecture is depicted in Fig. 4.

Ensemble learning [7] is a powerful paradigm enhancing the
predictive performance of individual base or weak learner models
by combining their strengths. It encompasses various techniques
such as Bagging (or, Bootstrap Aggregating), Boosting, and Stack-
ing. Each technique introduces different strategies to combine base
learners. For example, Bagging reduces the variance of a model
by training multiple instances of the same learning algorithm on
different bootstrap samples and then averaging or voting their pre-
dictions. On the other hand, Boosting improves the overall perfor-
mance of a model by sequentially training a series of base learners,
with each learner focused on correcting the errors of the previous
one. Our use case lures us to use a Boosting method. Among various
Boosting methods, AdaBoost focuses on misclassified samples, Gra-
dient Boosting builds models sequentially to minimize errors, and
XGBoost optimizes Gradient Boosting with regularization and par-
allel processing. Moreover, Light GBM uses leaf-wise tree growth
for faster training, while CatBoost handles categorical features
efficiently and reduces prediction shifts. After trading between sim-
plicity and applicability, we have chosen Gradient Boosting for this
study.

Therefore, a Gradient-Boosting (GB) Ensemble model is initial-
ized to create a stronger learner by combining the predictions of
multiple CNN models as weak learners. If 𝑦𝑖 is the true label for
any 𝑖th action, then the initial GB ensemble prediction 𝐹0 (𝑥) is
calculated as -

𝐹0 (𝑥) = argmin
𝜃

𝑛∑︁
𝑖=1

𝐿(𝑦𝑖 , 𝜃 ) (3)

Here, 𝐿 is the deviance or logistic loss function. For𝑚th iteration,
i.e.,𝑚th CNN model training, the negative gradients or residuals,
𝑟
(𝑚)
𝑖

, of the loss function with respect to the current prediction
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Figure 4: Data flow through the designed GB-Ensemble Model combining multiple CNN models for activity prediction.

𝐹 (𝑥) for 𝑖th action is calculated using the equation:

𝑟
(𝑚)
𝑖

= −
[
𝜕𝐿(𝑦𝑖 , 𝐹 (𝑥𝑖 ))

𝜕𝐹 (𝑥𝑖 )

]
𝐹 (𝑥𝑖 )=𝐹𝑚−1 (𝑥𝑖 )

. (4)

We then update the model’s prediction by adding the new CNN’s
prediction scaled by a learning rate 𝛼 , as per this equation

𝐹𝑚 (𝑥) = 𝐹𝑚−1 (𝑥) + 𝛼ℎ𝑚 (𝑥). (5)

The final prediction using all the𝑀 WiFi links is given by

𝐹𝑀 (𝑥) = 𝐹0 (𝑥) + 𝛼

𝑀∑︁
𝑚=1

ℎ𝑚 (𝑥) . (6)

The implementation of this proposed evaluation system is com-
pleted using libraries as Tensorflow [1] version 2.16.2, Keras [5]
version 3.4.1, and Sci-kit Learn [24] version 1.2.2. The models are
then trained on the VCUAthena [30] server occupying 384𝐺𝐵 RAM,
one CPU of AMD EPYC 7763 64-Core processor, and one unit of
NVIDIA A100 80GB GPU through Slurm [27] workload manager.

4.4 Experiment Results
After collecting CSI data for the specified actions in each environ-
ment, we developed corresponding deep learning models using the
steps outlined in Section 4.3. Since there was no training data, we
used 60% of the activity instances to train the models while the
others were used for testing.

4.4.1 Results with Individual RX-TX pairs. Each optimized CNN
model is trained with a single WiFi link, i.e., individual RX-TX pair
data. As the activity locations are spread over the whole floor area
and not all WiFi links cover the line-of-sight (LoS) for all the ac-
tions, different CNN models have different recognition capabilities
for different activities. For example, if the apartment entrance is
far from the kitchen area, then the WiFi link covering the kitchen
area is observed to yield better accuracy in recognizing kitchen
activities in comparison to the apartment entrance and exit actions.
Therefore, when analyzed over the whole set of annotations, in-
dividual CNN models give poor accuracy independently. These
activity recognition accuracies vary from 41.48% to 72.18% for dif-
ferent participants and WiFi links. This observation leads us to
design the residual calculation per action during the training phase.
This strategy yields better ensemble results as shown in Table 2
and discussed in the following subsection.

Table 2: Comparison of CNN and GB Ensemble Model Accu-
racies for Different Participants and RX-TX Pairs

Participant RX-TX CNN GB Ensemble
No. Pair Accuracy (%) Accuracy (%)

P03 1 71.53 74.532 51.72
3 57.94

P05
1 72.18

76.902 41.48
3 66.52

P09
1 54.68

69.822 55.71
3 44.42

4.4.2 Results with Multi-pair data. Once we train and optimize
different CNN models with individual WiFi link’s CSI amplitude
data, we pass those prediction results through the Gradient Boosting
(GB) model. This whole training process takes more time as there
are several models in different phases to train, but, eventually, it
yields better results. The Fig. 5 depicts the performance of our
final GB Ensemble model having accuracies of 74.53%, 76.90%, and
69.82% respectively for the participants named P03, P05, and P09
with the considered six activities, e.g., enter apartment (enapt),
exit apartment (exapt), enter private area (enpri), exit private area
(expri), kitchen activities (kit), and open or close refrigerator (fri).
Each of the accuracies is better than any of their respective base
CNN learners’ accuracies. Therefore, we can claim that our use of
Gradient Boosting is a success in this case.

However, we admit that the activity recognition accuracy is still
very low in comparison to existing WiFi sensing studies. This is
due to the real-life deployment in a practical environment for a
longer period. The room setup, furniture alignment, weather condi-
tions, movement speed, etc. factors differ over the long duration of
our deployment, which impacts the WiFi signals and so CSI data
gets different for even the same activity done similarly over time.
The surrounding wireless functions like emissions from microwave
ovens, electromagnetic induction from television, refrigerators and
other electrical equipment, moving objects due to fan or human
movements, etc. interrupt our WiFi signals unexpectedly. More-
over, we observed that different repetitions of the same activity are
performed differently by the occupant, which also makes it very
difficult for any machine learning model to learn as a single activity.
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Figure 5: Confusion matrices of ensemble model for three participants

We plan to utilize various other signal processing techniques such
as detrending and include CSI phase information to reduce these
effects and increase the accuracy and reliability of the system.

Furthermore, our annotation is ongoing for more days of data for
the referred three participants. We observe that participant P09’s
accuracy is the worst among the three, which is due to the lower
number of action repetitions for the participant as numbered in
Table 1. The better results for the other two participants with higher
repetition counts increase our expectation of better accuracy as we
annotate more data for the participants.

5 FUTUREWORKS
This is an ongoing study, and we have plans to perform experi-
ments with more participants’ data to strengthen our findings and
improve the robustness of our system. By incorporating a larger
and more diverse dataset, we aim to validate the generalizability
of our approach and ensure that the system performs well across
different demographic groups and usage scenarios. This expansion
will help us identify potential limitations and areas for improve-
ment, contributing to a more comprehensive understanding of our
system’s capabilities and limitations.

We aim to analyze the effect of temporal changes in the envi-
ronment and the WiFi chip to understand their impact on sensing
accuracy. Environmental factors such as furniture rearrangement,
seasonal changes, and varying human activities can significantly
influence WiFi signals. Similarly, the used ESP32 WiFi chip may
have unique characteristics for long-term deployment that affect
data consistency and accuracy. By systematically studying these
variables, we can identify how they affect our system’s performance
and develop strategies to mitigate any adverse effects.

Additionally, we plan to apply an adversarial network, as done
in [16], to neutralize any such effects, thereby making our system
more resilient to environmental variations. Advanced machine-
learning techniques, such as adversarial networks, offer promising
solutions to enhance the robustness of our system against unpre-
dictable changes. Further research will explore these techniques
to refine activity recognition and reduce false positives. Through
these efforts, we aim to enhance the practicality and reliability of

WiFi sensing systems for real-life applications, particularly in se-
nior housing settings, where accurate and unobtrusive monitoring
is crucial for ensuring the safety and well-being of the residents.

6 CONCLUSION
In this research, we have presented the deployment and evaluation
of our WiFi sensing system in senior housing settings to monitor
daily activities in real life. We have discussed the details of our
setup and the deployment process, the issues we faced, and the
results obtained. Our findings demonstrate the potential of WiFi
sensing systems in monitoring daily activities in a non-invasive
way, which can also be leveraged to enhance the safety and well-
being of seniors by detecting unusual activities or emergencies. The
results indicate that our system can effectively capture and analyze
daily activities, but there are areas for improvement to enhance
accuracy and reliability and we will be working on them as part of
our future efforts. As an ongoing study, this research project has
immense potential to provide solutions to track the well-being of
elderly people. Thanks to the low-cost setup we developed using
microcontroller based devices, it also offers an affordable solution
for low-income older adults, thus can be used widely.
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