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Abstract—Energy is a scarce resource in mobile networks
consisting of devices running on batteries. Thus, many studies
have looked at the energy management issue in these networks
from different aspects. Thanks to the recent advances in wireless
power transfer (WPT) technology, the wireless charging of
the mobile devices has been considered for their continuous
operation. While most of the research efforts have focused on
the scheduling of mobile chargers for charging of the devices
(e.g., sensor) in the field, interesting research problems such as
energy balancing among a population of nodes have also emerged
with the consideration of bidirectional wireless charging among
nodes. Energy balancing aims to balance the energy among
nodes towards prolonging the network lifetime especially when
external energy sources are not available. Previous studies target
an energy balance among the devices as fast as possible but
they waste energy in the network during this process due to
the excessive interactions between nodes. Moreover, they do not
take into account the heterogeneous contact relations between
the nodes in the network. In this paper, we address these
issues and present efficient and loss-aware energy balancing
protocols considering the contact graph heterogeneity between
nodes and a time threshold for completing the energy balancing.
Simulation results show that the proposed algorithms outperform
the previous work by reaching a better energy balance with a
lower energy loss within the restricted relations among nodes in
the network.

Index Terms—Energy balancing, wireless energy transfer,
mobile opportunistic network.

I. INTRODUCTION

The most critical resource for mobile networks consisting
of battery-powered devices is the energy. Thus, efficient
utilization and management of energy is vital for collaborative
network operations. There have been many research efforts
performed to provide solutions based on different methods
(e.g., harvesting [1], battery replacement [2]) to this problem
so that network lifetime can be prolonged.

With the recent advances in wireless power transfer (WPT)
technology and increasing efforts from both the academia
and industry, numerous studies have considered WPT based
energy replenishment of nodes in mobile networks. Most
of these studies have been performed for wireless sensor
networks [3]–[5], but there are some recent studies for smart-
phones [6]–[8], electric vehicles [9]–[11] and Internet-of-
Things (IoT) devices [12], [13]. For example, in the sensor
networks domain, most of the time mobile chargers, which are
special vehicles (e.g., robot, Unmanned Aerial Vehicle (UAV))

with high energy supplies are employed to periodically charge
the sensors in the field.

The one-way charging of mobile devices from chargers
has recently been extended to bidirectional energy sharing
between the regular nodes in the network and several applica-
tion specific problems have been studied benefiting from this.
For example, in mobile social networks domain, thanks to the
recent products (e.g., Samsung Galaxy S10, Huawei Mate 20
Pro) in the market and also some prototypes developed by
research community [8], [14] bidirectional wireless charging
between smartphones has been considered for crowdcharging
of smartphones by other users [15]–[19]. While current form
of wireless charging used in these products only happen in
very close distances (i.e., almost touching), it provides a
convenient process without the hassle of cables. On the other
hand, peer-to-peer energy sharing has triggered a new set
of research studies in different mobile network applications.
For example, for an opportunistic content delivery, energy
has been considered as an incentive [20]–[22] to the devices
to carry the message. Similarly, an interesting problem of
energy balancing [23]–[25] among nodes has been studied
towards prolonging the lifetime of the network, which could
be vital especially when there is no access to external energy
sources. In this paper, we study the energy balancing problem
utilizing the peer-to-peer energy sharing among the nodes in
the network during their opportunistic encounters. Our goal is
to address the deficiencies in the state-of-the-art solutions and
provide loss-aware and efficient energy balancing protocols
considering the heterogeneous relations between nodes.

A. Energy Balancing and Motivating Example

Energy balancing is the process of equalizing the energy
at each node or minimizing the sum of the differences of
their energy from the average energy (i.e., variation distance
as will be detailed in the next section) in the network as
much as possible. As the nodes interact and exchange energy
between each other, there will be an energy loss due to the
wireless charging inefficiency. Thus, the energy balancing
process should consider not only the balancing of energy
among nodes but also the minimization of the loss during
this process.

In the very few studies [23]–[25] that look at this problem,
it has been shown that the variation distance among the target
energy levels of nodes and current energy levels will decrease
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Fig. 1: (a) Energy balancing in a fully connected contact
graph. (b) Energy balancing in a partially connected contact
graph. (c) Energy Balancing with time limit of 50. Edges
represent that the nodes meet each other opportunistically with
an average intermeeting time shown as edge weight.

only if the nodes in the opposite sides of the average energy in
the network interact and exchange energy. While this is true
and help reach an energy balance among the devices as fast as
possible, the presented results and conclusion rely on a very
restrictive scenario on node interactions. It is assumed that
each pair of nodes interact with equal probability, however,
this is not always true in mobile opportunistic networks. In
a realistic scenario, some pairs of nodes might not have any
interaction opportunity with other nodes and some pairs of
nodes might have large intermeeting times incurring huge
waiting times for some possible interactions to occur. Another
major problem with the current approaches is that they do
not consider the final optimal target that can be reached after
the interactions between nodes and the resulting energy loss.
Instead, they rely on the initial distribution of energy and
target the initial average energy in the network. Thus, a perfect
energy balance (i.e., all nodes having energy equal to the
average energy in the network) can not be achieved since the
average energy in the network will change after some energy
exchanges between nodes. In our previous work [26], we have
addressed this problem for homogeneous networks, however,
for heterogeneous networks a more comprehensive solution
should be provided.

Consider the example in Fig. 1 with six nodes in the
network and with corresponding energy levels. If each node
on the negative side (i.e., having energy less than the average
energy) has an opportunity to meet with each node on the
positive side as in Fig. 1a, the energy sharing process will
be relatively easy. The initial average energy in the network
is 53.5%, however, this cannot be reached by all nodes as
due to the imperfect transfer efficiency there will be a loss
during energy transfers between nodes. For example, for an
energy loss rate of β = 0.2 (i.e., 80% transfer efficiency),
the optimal average energy reachable by all nodes will be
50%, which happens when node 5 transfers 35% to node 1
(which only gets 28% due to loss), node 4 transfers 50%
to node 2 (which only gets 40%) and node 6 transfers 20%
to node 3 (which only gets 16%). When there is no energy
exchange opportunity (i.e., meeting) between some negative
and positive side node pairs, the optimal energy achievable

can be less than this. For example, for the case in Fig. 1b,
the most achievable average energy is 48.94%, which happens
when node 5 transfers 48.68% to node 2, making its energy
10 + 48.68× (1− 0.2) = 48.94%. Similarly, node 6 transfers
21.05% to node 3 which gets 16.84%, node 4 transfers 51.05%
to node 1 which gets 40.84%. Then, node 1 and node 3
transfer 13.89% and 1.89% to node 5 respectively, making
node 5’s and their own energy levels reach 48.94%. So, in this
case, reaching a perfect balance was also possible but due to
the incomplete contact graph between nodes, it was less than
the complete contact graph case. Finally, there can be a time
threshold for reaching an energy balance. In that case, we
can simply ignore the edges with average intermeeting time
higher than this threshold and recalculate the optimal energy
balance. Fig. 1c shows the situation where the deadline for
energy balance is set to 50. The dotted edges shown in the
figure are ignored; hence, nodes cannot use these edges for
energy exchanges. In this case, the optimal target reachable
is 49.09%. However, due to the lack of meeting opportunities
before the deadline, all the nodes cannot reach 49.09%. This
happens when node 5 transfers 35.90% to node 2 which only
gets 28.72% making node 2’s energy level 38.72%. Also, node
1 transfers 13.63% to node 6, node 4 transfers 50.90% to node
1 and node 6 transfers 31.81% to node 3 which gets 25.45%
and reaches an energy level of 59.45%. Overall, all nodes
except 2 and 3 reach a final energy level of 49.09%, which is
the average energy in the network. This example shows that
with sparse contact graphs, the optimal energy balance can
change and not all nodes may reach that.

B. Contributions

In this paper, we study the energy balancing problem among
a population of mobile nodes that interact opportunistically.
We aim to minimize both the energy difference between
nodes and the energy loss during this process. However, in
some cases obtaining the energy balance among all nodes in
the network may not be feasible due to the limited energy
exchange opportunities (i.e., meeting). Thus, we first target
energy balancing as much as possible and later minimize
the energy loss. The main contributions of this paper can be
summarized as follows:

• We analytically find the optimal energy level in a large
scale network with uniform energy distribution for a
given energy transfer efficiency or loss rate.

• For a given network of any size with energy distributions
at nodes, contact graph and intermeeting times between
nodes, we find the optimal energy balance achievable by
Mixed Integer Linear Programming (MILP).

• We propose two different energy balancing protocols
based on optimal energy exchange schedules found by
MILP results and based on opportunistic energy ex-
changes towards optimal energy balance in MILP results.

• We perform extensive simulations using meeting patterns
from synthetic and real traces and show that the proposed
approaches perform better than the state-of-the-art.



Notation Description
m Number of nodes in the network.
P Interaction protocol between nodes for energy exchange.
β Energy loss rate.
τ Time threshold to finish energy balancing.
Et(u) Energy of user u’s device at time t.
λi,j Average intermeeting time between nodes i and j.
Et Average energy in the network at time t.
Eopt Optimal average energy achievable in the network with

minimum variation distance possible.
δ(P,Q) Total variation distance between two distributions, P , Q.
Et(u) Ratio of node u’s energy to the total energy in the

network at time t.
Et Energy distribution at time t on a sample space M.
ϵu,u′ The amount of energy exchanged from u to u′.
L The total energy loss in the network due to the energy

exchanges.
Ef (u) The final energy level of node u at the end of energy

balancing process.

TABLE I: Notations

The rest of the paper is structured as follows. In Section II,
we provide our assumptions on the system model and the
problem statement. In Section III we elaborate on the analysis,
MILP solution and the proposed energy balancing algorithms.
In Section IV, we present the simulation settings and compare
the proposed algorithms with the state-of-the-art solution.
Finally, we conclude the paper and outline the future work
in Section V.

II. SYSTEM MODEL

A. Assumptions

We assume a set of m nodes denoted by M =
{u1, u2, ..., um} in a mobile network. Each node is assumed
to have equal battery capacity and necessary hardware for
energy sending and receiving. We assume that each node
knows the energy levels of other nodes, which could be simply
achieved via cellular communication over a centralized server.
As in previous work [23]–[25], for simplicity, we also do not
consider energy loss due to mobility or other activities of the
nodes. The nodes just need to send update about their energy
level only after they interact and exchange energy with other
nodes in the network. Thus, such updates rarely happen in
mobile opportunistic networks.

When two nodes meet, they exchange energy according to
an interaction protocol P . The energy level of a node u at
time t is denoted by Et(u). We assume each pair of nodes,
(ui, uj), meets in an exponentially distributed manner with an
average mean of λuiuj

. We also assume an energy loss rate,
β ∈ [0, 1), which is assumed a constant and depends on the
technology and the equipment used. When two nodes u and
u′ interact at time t and node u transfers ϵ energy to node
u′, node u′ will receive (1−β)ϵ energy and their new energy
levels will be:

(Et(u), Et(u
′)) = P(Et−1(u), Et−1(u

′))

= (Et−1(u)− ϵ, Et−1(u
′) + (1− β)ϵ)

As the interaction between u, and u′ doesn’t affect the energy
levels of any other nodes, the energy levels of all other nodes
remain unchanged. The notations used throughout the paper
are summarized in Table I.

B. Problem Description

The goal is to achieve an energy balance among a popu-
lation of nodes with a very low variation while minimizing
the energy loss due to the energy transfers among nodes.
We define the energy difference among nodes using the total
variation distance from probability theory as in [23]–[25].

Let P, Q be two probability distributions defined on a
sample space M. The total variation distance is calculated
as:

δ(P,Q) =
∑
x∈M

|P (x)−Q(x)| (1)

Note that for the sake of keeping the actual differences,
we do not divide the sum by two as in standard definition
of variation distance. In our context, we consider the total
variation distance between the current energy distribution of
nodes and the target energy distribution, where ideally all
nodes have the same energy. The target energy level will
not be equal to the initial average energy in the network, as
there will be some energy loss during the energy exchanges
performed to balance energy among nodes. Moreover, it may
not be possible to have all nodes reach the same energy level.
The goal in those cases will be to minimize the variation
distance between the final energy levels and the average
energy in the network. We denote the energy distribution at
time t on a sample space M by Et where

Et(u) =
Et(u)

Et(M)
,where, Et(M) =

∑
x∈M

Et(x)

for any u ∈ M. We also define the average energy in the
network at time t by

Et =
Et(M)

m
. (2)

III. MOBILE ENERGY BALANCING

In this section, we give the details of the proposed energy
balancing protocols. We first find the optimal energy level
in a large scale network with many nodes for a given loss
rate. Then, we discuss a Mixed Integer Linear Programming
(MILP) solution to find the optimal energy level for a given
network of any size and limits on node relations. Utilizing
MILP results, we then propose two different energy balancing
protocols.

A. Ideal Energy Balance with Minimum Loss

Previous work [23]–[25] have shown that the energy vari-
ation distance in the network will decrease if and only if the
nodes in the opposite sides of the average energy level interact
and exchange energy. That is, if a node u with Et(u) < Et and
a node u′ with Et(u

′) > Et interact at time t and balance their
energy, δ(Et,U) < δ(Et−1,U), where U denotes the uniform
distribution on M (i.e., Et(u) = Et ∀u).



In order to reduce the variation distance at every opportu-
nity, the best algorithm in previous work (i.e., POA standing
for online average protocol [23]–[25]) suggested that when-
ever a pair of nodes from opposite sides meet, they should split
their total energy equally. While this will help reduce variation
distance, it is assumed that the opposite sides are determined
by the current average energy level in the network. However,
as nodes interact and there occurs energy loss, the average
energy level, Et, in the network decreases. Thus, this may
cause nodes move between the negative and positive side of
the current average energy level in the network, resulting in
unnecessary energy loss in the network. In order to prevent
this, the decision of opposite sides should be made based on
the final average energy level that will reached at the end.

When each of the nodes in the network has a contact
opportunity with all other nodes in the network, all nodes
in the network can make their energy converge to the same
average energy level in the network. To achieve this, the
energy provided by the nodes with excessive energy should
be sufficient to increase the energy levels of nodes in the
negative side after loss. Consider a large scale network with
many nodes. Also assume that the energy levels of nodes
(denoted by y below) are uniformly distributed in [0,1]. The
final optimal energy balance, Eopt (denoted by x) can be
calculated as follows:∫ x

y=0

(x− y)dy =

∫ 1

x

(y − x)(1− β)dy

x2 = (x2 − 2x+ 1)(1− β)

f(x) = βx2 + 2(1− β)x− (1− β) = 0

This function, f(x) is strictly increasing function when x ∈
[0,1] and β ∈ [0,1], as f ′(x) > 0. The solution is equal to
the positive root at,

Eopt =
−(1− β) +

√
(1− β)

β

As (1 − β) ≤
√

(1− β) when β ∈ [0,1], Eopt will always
be a positive number in [0,1]. For example, when the energy
loss rate β is 20% (or transfer efficiency is 80%), the optimal
energy balance with minimum loss and zero variation distance
is 47.21%, while it is 41.42% for β = 50%.

In an ideal scenario, the energy of all nodes can reach a
perfect balance at Eopt with a minimum of m/2 interactions
between nodes. This happens when the energy need of a node
in the negative side is perfectly provided by a node in the
positive side during a single interaction and they both reach
the target. This requires equal number of nodes in the opposite
sides of the target energy level as well as a perfect meeting
schedule between corresponding pairs that can complement
each other. However, this may not be the case in practice
most of the time. The energy distribution among nodes as
well as the heterogeneous contact relations (i.e., meeting or
not meeting, and meeting with different average intermeeting
times) between nodes may result in different number of nodes
in the opposite sides of the optimal average energy and affect
the energy balancing process.

B. Optimal Energy Balance

In a real setting, the ideal scenario will not be the case as
opportunistic interactions will be limited to only some pairs of
nodes and the distribution of energy levels of nodes may not
be uniform. However, in a given mobile opportunistic network
contact graph1 and the initial energy levels of nodes, we can
find the optimal energy balance achievable among nodes by
Mixed Integer Linear Programming (MILP).

In this paper, we target an energy balance with minimum
possible energy variation distance first. Then, we target min-
imum loss without sacrificing the variation distance. Espe-
cially, when there are multiple ways (i.e., energy exchange
schedules between nodes) of reaching a zero variation dis-
tance, utilizing the one that will result in the minimum energy
loss is important. Note that depending on the application re-
quirements, it is possible to consider other objective functions
with weighted combinations of variation distance and loss in
a similar way.

Let ϵu,u′ denote the amount of energy exchanged from u
to u′ and Ef (u) denote the final energy level of node u at
the end of energy balancing process. Then,

Ef (u) = E0(u)−
∑
∀u′

ϵu,u′ +
∑
∀u′

ϵu′,u(1− β)

Let also L denote the total energy loss in the network due
to the energy exchanges between nodes during the balancing
process. Then,

L =
∑

∀u,u′,s.t.u ̸=u′

ϵu,u′β

The objective is to minimize to the variation distance
between the final energy distribution of nodes, Ef , and the
final uniform energy distribution, Uf , where all nodes have
energy equal to the average energy in the final network (i.e.,
Ef (u) = Ef ∀u), as much as possible and then minimize the
total loss in the network. More formally:

min δ(Ef ,Uf )m+ L (3)
s.t. 0 ≤ ϵu,u′ ≤ Et(u)lu,u′ (4)

kuu′ + ku′u ≤ 1 (5)
where ϵu,u′ is a decimal in [0, 1] (6)

kuu′ =

{
1, if ϵu,u′ > 0

0, otherwise
(7)

luu′ =

{
1, if λuu′ ≤ τ

0, otherwise
(8)

In objective function (3), as we give priority to the mini-
mization of variation distance over minimization of loss, we
multiply the former with a constant (i.e., m) that is larger than
the maximum possible value for L. Thus, the optimization
prefers a decrease in variation distance over any decrease in

1This can be obtained from historical meeting patterns of nodes and thanks
to the long-term regularities [27]–[29] in node relations, it can be used for
predicting future meetings.



loss. (4) allows energy sharing between the nodes with average
intermeeting times less than the time threshold (τ ) and limits
the energy sharing from each node up to its available energy.
Note that energy levels of nodes are assumed to be between
0 and 1. Also, we do not allow unnecessary two way energy
exchanges between nodes via (5).

Note that the optimal average energy level in this case will
be equal to the average energy in the final network. That is,

Eopt =

∑
x∈M Ef (x)

m
. (9)

C. Energy Balancing Protocols

Once the optimal energy balance as well as the required
energy exchanges between nodes to reach that target balance
is found, we propose two different energy balancing protocols
to define the actual energy exchanges during the opportunistic
meetings between pairs of nodes.

In the first protocol, we urge each node to follow the
exact energy exchange schedule found by the MILP solution
(hence named Linear Exact or PLE in short). That is, each
node waits for meeting with the nodes that it is supposed to
perform an energy exchange with and exchanges energy only
in the amount it is allowed to do so with them. This protocol
will let the nodes reach the optimal variation distance in the
network eventually but due to the non-deterministic nature of
opportunistic meeting patterns, it may cause nodes wait longer
than expected as well as cause them miss the advantage of any
earlier meeting opportunity with some unexpected nodes.

In the second protocol, we aim to benefit from the non-
deterministic meetings between nodes and let the nodes reach
target energy level as soon as possible without following the
suggested energy exchange schedule. Optimal target average
energy level, Eopt is found by MILP (using (9)) as in the case
of first protocol, however, the nodes do not wait specifically
for the nodes that they are supposed to exchange energy with.
Instead, whenever two nodes from opposite sides of Eopt

meet, they utilize this opportunity and update their energy
towards the target. Here, in order to prevent nodes from
switching their sides as in the case of previous work and
causing unnecessary additional energy loss, we give priority
to the node whose energy is closer to the target and let it
reach that target by receiving or sharing energy with the other
node. We name this protocol Opportunistic Closer or POC

in short. Note that while this protocol takes the benefit of
any opportunistic meeting for energy exchange besides the
scheduled ones, it can cause nodes not reach to the optimal
energy levels due to the divergence from the schedule that
will make them reach the optimal energy balance. This may
especially adversely affect the performance when the contact
graph in the network is sparse.

Algorithm 1 shows the details of energy balancing process
based on these two protocols. For POC protocol (lines 10-
17), if the node in the negative side, u−, needs less than the
energy that the node in the positive side, u+, can give after
loss, u− is given priority to reach the target. The amount
of energy that u+ has to transfer should consider the loss;

Algorithm 1: Energy Balancing (P , u, u′, t)
Input: (u, u′): Interacting nodes

t: Time of interaction
Eopt: Optimal average energy from MILP

1 (u+, u−) ← (null, null)
2 if (Et−1(u) > Eopt and Et−1(u

′) < Eopt) then
3 (u+, u−) ← (u, u′)
4 else
5 if (Et−1(u) < Eopt and Et−1(u

′) > Eopt) then
6 (u+, u−) ← (u′, u)
7 end
8 end
9 if (u+, u−) is not null then

10 if P = POC then
11 δt−1(u

+) = Et−1(u
+)− Eopt

12 δt−1(u
−) = Eopt − Et−1(u

−)
13 if δt−1(u

+)(1− β) > δt−1(u
−) then

14 POC(Et−1(u
+), Et−1(u

−)) = (Et−1(u
+) -

δt−1(u
−)

(1−β) , Eopt)
15 else
16 POC(Et−1(u

+), Et−1(u
−)) = (Eopt,

Et−1(u
−) + (1− β)δt−1(u

+))
17 end
18 else
19 if ϵu+,u− > 0 then
20 PLE(Et−1(u

+), Et−1(u
−)) = (Et−1(u

+) -
ϵu+,u− , Et−1(u

−) + (1− β)ϵu+,u− )
21 else
22 if ϵu−,u+ > 0 then
23 PLE(Et−1(u

+), Et−1(u
−)) =

(Et−1(u
+) + (1− β)ϵu−,u+ ,

Et−1(u
−) - ϵu−,u+ )

24 end
25 end
26 end
27 end

thus, it should be more than what u− will actually need (lines
13-14). Otherwise, u+ is given priority to reach the target
and the energy of u− is increased accordingly (line 16). For
PLE protocol (lines 18-26), the energy of nodes are simply
updated based on the scheduled energy exchanges between
nodes. Note that by MILP formulation design either ϵu+,u−

or ϵu−,u+ will be more than zero at the same time, however,
it is possible that both could be zero as the optimal schedule
may not recommend an interaction between them even though
they are in opposite sides of the average energy level.

IV. SIMULATIONS

In this section, we evaluate the performance of the proposed
energy balancing protocols. Next, we list the algorithms
compared, performance metrics used, and describe how the
simulations are set. Then, we provide the simulation results
and analyze the impact of several parameters on results.



A. Algorithms in Comparison

We compare the proposed two algorithms with the best
protocol claimed in [23]–[25]. Below are the key points in
these protocols:

• P∗
OA: This Online Average protocol is updated version

of the state-of-the-art protocol POA proposed in [23]–
[25]. In the original POA, each node locally estimates the
average energy level in the network using the ratio of the
total energy seen in the encountered nodes to the number
of encountered nodes, which may not be accurate. As we
assume each node has the information about the energy
levels of other nodes, for a fair comparison we assume
the same for POA and name it as P∗

OA. The protocol
simply lets the nodes in opposite sides of the current
average energy in the network interact and equally split
their energies. For fair comparison, we also use Eopt here
to decide the boundary between opposite sides.

• PLE : In the Linear Exact protocol, when the nodes meet,
they only share the exact amount of energy that MILP
solution (obtained by IBM CPLEX solver [30]) finds to
reach the Eopt with minimum possible variation and loss
after that.

• POC : In the Opportunistic Closer protocol, Eopt is
obtained via MILP similar to PLE , but the nodes op-
portunistically try to reach that target. That is, they do
not wait for the other nodes that they are supposed
to exchange energy found by MILP, but utilize every
meeting opportunity with the nodes in the opposite side.
The one with the closer energy level to the target is given
priority to reach the target first.

B. Performance Metrics

We use the following metrics in the performance compari-
son of the aforementioned algorithms:

• Total variation distance: This is calculated by δ(Et,Ut).
That is, we find the ratio of the energy levels of nodes
to the total energy in the network at each time, take the
absolute difference from uniform distribution at that time
and sum it for all nodes.

• Total energy in the network: This is the sum of energies at
all nodes. Note that as the nodes interact and lose energy,
the total available energy in the network decreases.

• Number of interactions: This shows the number of inter-
actions between nodes during which an energy exchange
happened towards reaching a balance.

• Total variation distance at a given total energy: As the
performance of the protocols may vary based on total
variation distance and total energy in the network, we use
this combined metric as an indicator of true performance.

• Total variation distance at a given number of interac-
tions: Similarly, we use this metric to understand the
impact of necessary interactions towards reaching the
minimum possible total variation distance.

C. Datasets

We use both real and synthetic traces to define the meeting
relations between the nodes in the network. Real traces are
obtained from one of the commonly used datasets in DTN
literature [31] for performance analysis of routing algorithms.
With synthetic traces, we aim to generate different contact
graphs with various sparsity levels.

• Cambridge dataset: These are the Bluetooth recordings
between the iMotes carried by 36 students from Cam-
bridge University for a duration of almost two months.

• Synthetic dataset: This is a dataset generated randomly
among 30 nodes with a mean intermeeting time (λi,j) of
a random value between [1000, 15000] minutes. We use
different time thresholds to generate graphs with different
average neighbor counts in the contact graph as well.

Note that depending on the energy sharing technology used
between nodes, the proximity requirements and corresponding
energy transfer efficiency might be different. For example, for
wireless energy sharing between smartphones, they need to
be very close to each other as if they are touching. On the
other hand, for example in the real traces we used above,
the interactions between nodes happen through Bluetooth
communication which has a range in the order of several
meters. However, we assume that such interactions can still
be considered as an indication of nodes in close proximity of
each other so that they can communicate and come closer to
perform energy exchange operation if needed. We also assume
that when nodes meet, they stay close enough to each other
until they can achieve the required energy transfer under the
energy balancing protocol in use. We look at the impact of
transfer efficiency in our results, which can be considered as
the relaxation of this assumption to some extent. Enhancing
the proposed protocols considering the partial energy transfers
between nodes during meetings with limited duration will also
be the subject of our future work.

D. Performance Results

In this section, we present the results of our evaluation
through simulations. First of all, we assign an initial energy
level to each node between 0 and 100. From the beginning
of the simulation, we let the devices interact following their
exponentially distributed intermeeting times and exchange
energy based on the characteristics of each energy balancing
protocol compared. Each simulation is repeated 100 times for
statistical smoothness. For main simulations we use an energy
loss rate, β, of 0.2. But we also show the impact of β on
results.

In Fig. 2, we first show the optimal energy balance in
graphs with different sparsity. To this end, we use the synthetic
dataset and contact graph and for different time thresholds (τ )
and loss rates (β) we calculate the optimal average energy
reachable (Eopt) and corresponding variation distance and
total loss at Eopt. Note that τ simply causes removal of
edges between pairs with intermeeting time higher than τ ,
yielding a sparser contact graph. As the results show, optimal
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Fig. 2: Impact of time threshold (τ ) and loss rate (β) on optimal average energy achievable (Eopt) and corresponding variation
distance and total loss at Eopt.
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Fig. 3: Comparison of all algorithms in terms of (a) variation distance, (b) total energy remaining in the network, (c) total
number of interactions, (d) variation distance at each total energy level and (e) variation distance at each total number of
interactions (when β=0.2, τ=4000) using synthetic dataset.

variation distance gets lower as τ increases and hits zero
around τ = 4000 min. The loss associated with this optimal
variation distance on the other hand increases initially and
gets smaller later. This is because with smaller τ values, the
existing pairwise relations is trimmed further and some nodes
either have very small contacts or are totally isolated from
others. Thus, perfect energy balancing giving zero variation
distance was not possible. However, once this threshold is
exceeded, the loss could be lowered by finding better energy
exchange schedules. Note that Eopt results also are inline
with this reasoning. Moreover, we see that as β increases,
the optimal average energy achievable with different time
thresholds decreases but it follows a similar pattern at different
loss rates.

In Fig. 3, we show the performance comparison of all
algorithms using the aforementioned performance metrics in
synthetic traces. In Fig. 3a, we see that PLE can achieve the

lowest variation distance among others. P ∗
OA and POC have

a similar variation distance which is slightly higher than the
variation distance of PLE . However, when we look at the total
energy levels in the network shown in Fig. 3b, we observe that
P ∗
OA sacrifices a lot of energy during the energy balancing

process. On the other hand, POC keeps more energy in the
network even more than PLE . This is because as it also uses
some unscheduled energy exchange opportunities towards
the optimal average energy level, it diverges from optimal
variation distance but this does not cause losing energy in the
network unnecessarily. Moreover, the number of interactions
between nodes in P ∗

OA is the highest among all compared
algorithms, as shown in Fig. 3c, while proposed algorithms
limit the interactions. When we compare the variation distance
at the same total energy in the network in Fig. 3d, we observe
that P ∗

OA indeed has the worst performance. On the other
hand, PLE reaches the optimal energy level and decreases
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Fig. 4: Comparison of all algorithms in terms of (a) total energy remaining in the network, (b) variation distance at each total
energy level and (c) variation distance at each total number of interactions (when β=0.2, τ=10000) using synthetic dataset.
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Fig. 5: Comparison of all algorithms in terms of (a) variation distance, (b) total energy remaining in the network, (c) total
number of interactions, (d) variation distance at each total energy level and (e) variation distance at each total number of
interactions (when β=0.2, τ=4000) using Cambridge dataset.

the total variation distance gradually. Here, POC shows an
interesting behavior as it achieves a better variation distance
at a given total energy in the network but it cannot reach
the smallest possible variation distance as PLE does. Thus, if
some variation distance is tolerable, POC can be considered
performing better than PLE . Moreover, POC achieves this
with smaller variation distance at a given interaction count
than other algorithms, as it is shown in Fig. 3e. P ∗

OA again
performs the worst due to its design.

In the results shown in Fig. 4, we relaxed the time threshold
and set it to 10000 min in order to increase the contact
graph density and the energy exchange opportunities. Here,
results for only three metrics are shown for the sake of
brevity. We observe that with this increased time threshold, the
total energy that could be kept in the network has increased
(i.e., loss decreased). POC has also caused more loss initially
which was not the case in earlier results. Another significant

change is that the performances of POC and PLE get closer
in terms of total variation distance at a given total energy
and number of interactions. These can be explained by the
increased energy exchange opportunities.

In Fig. 5, we show the performance comparison of all
algorithms in Cambridge traces. In Fig. 5a, we see that even
PLE cannot reach a variation distance of zero, but it is
still the best compared to others. Interestingly, P ∗

OA achieves
better variation distance than POC , which was not the case in
synthetic data. However, as it is shown in Fig. 5b, P ∗

OA causes
more loss in the network compared to POC . PLE reaches
the optimal energy in the network with the smallest possible
variation distance. In terms of total variation distance at a
given total energy level, POC performs better than others for
earlier energy levels, but it cannot reach the variation distance
others can do, as shown in Fig. 5d. The interactions for P ∗

OA

is the highest again among all algorithms while POC has



the smallest interactions that is also considerably less than
the interactions of PLE which was not the case in synthetic
data. This is because in Cambridge dataset, the contact graph
density is smaller than it is in synthetic traces and POC stops
interacting further when nodes greedily reaches the target.

V. CONCLUSION

In this paper, we study the energy balancing problem among
the nodes in a mobile opportunistic network. We aim to
both balance the energy levels of nodes and minimize the
energy loss during this process considering the heterogeneous
relations among nodes as well as a time threshold to finish the
balancing. We first find the optimal average energy achievable
using a MILP based formulation then propose two different
energy balancing protocols utilizing its results. In the former,
we use the exact energy exchanges suggested by the MILP
solution to reach the optimal target while we opportunistically
try to reach that target in the latter. Simulation results in both
synthetic and real traces show that the proposed algorithms
perform better than the previous work and they have advan-
tages to one another in different performance metrics and
contact graph densities. In our future work, we will relax the
availability of energy level information at nodes and consider
the impact of limited meeting duration during energy sharing.
We will also integrate the energy consumption of nodes due
to other activities and the social network relations between
users [32] to the proposed energy balancing protocols.
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