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Abstract—Precision agriculture uses precise sensor data col-
lected throughout farmland to give farmers better insight into
their land, allowing for greater crop yields and reduced resource
usage. However, existing solutions require high hardware costs
thus limiting large scale deployments. To address that, we propose
a low-cost and scalable solution for sensing physical attributes
of soil using IoT based WiFi sensing devices. By understanding
variations in WiFi radio signals with channel state information
(CSI) and machine learning models, we evaluate the proposed soil
sensing system through experiments on physical soil traits such
as soil moisture content, soil texture and position. Moreover, we
also demonstrate how a mesh network of WiFi sensing devices
allows us to predict the physical traits of the soil in the area
between each pair of sensors, allowing for an increase in sensing
area coverage as nodes are added.

Index Terms—WiFi sensing, sensor networks, soil sensing, soil
moisture, precision agriculture.

I. INTRODUCTION

Growing global population paired with environmental
changes requires the development of innovative solutions to
ensure sufficient future food production. Projections propose
that by 2050, agricultural food production will need to increase
upwards of 70% [1]. Precision agriculture aims to increase
commercial farmland yields while using available resources
(e.g., water) efficiently through sensor data collection and
advanced prediction models [2]-[4]. One group of important
metrics for farmland sensing are the physical soil attributes
such as the moisture content and texture, where the latter
is usually described by the mixture of silt, clay, sand, and
stones. While the soil texture is generally static over time,
some attributes of the soil are time variant. For example, soil
moisture content will vary depending on the time since the last
rain fall or last manual irrigation. Additionally, these attributes
will vary based on unique soil texture properties and based on
the time of day as moisture evaporates from the soil.

A key issue in data collection for precision agriculture is the
sparseness of sensor deployment. Direct methods for measur-
ing soil moisture are considered the most accurate option [5]
because they directly measure water content, while indirect
methods measure some related property such as resistance or
capacitance. Even so, direct methods such as the gravimetric
method require soil samples to be physically removed from
the environment resulting in destructive and non-continuous
sensing of the moisture level. Furthermore, this method re-
quires a 24 hour oven drying time for every measurement.

Alternatively, there are some sensors that can sense the soil
moisture continuously and provide measurements over time.
However, they can only sense data in the immediate region
where the sensor is placed. Moreover, such sensors are mostly
expensive (e.g., Tensiometers ranging from $100 to upwards
of $1,000 [6] per sensor) thus their dense deployment across
large farmlands is not affordable by most farmers. While
some low-cost sensors exist for sensing soil moisture, they
are mostly unreliable and do not provide commercial-grade
accurate measurements, thus are only used by hobbyist.

Radio frequency-based sensing methods have appeared as
alternatives for tracking soil attributes such as moisture con-
tent [7]. However, most of the signal-based systems (e.g.,
ground penetrating radar (GPR) [7], [8]) require high cost
transmitting and receiving equipment. A more recent work
addresses this by considering commodity WiFi devices [9] as
a lower cost solution for wireless soil sensing. Even so, the
cost and size of the required hardware is still quite significant
and as such, only a single receiver device was deployed
within the soil. With our recently developed ESP32 CSI
Toolkit [10], we can collect channel state information (CSI)
of WiFi signals from a very low-cost (< $5), standalone ToT
microcontroller. This allows for wider deployments of WiFi
sensing devices enabling soil sensing within a network of these
devices. Soil properties can then be tracked between each pair
of WiFi sensing transceiver devices. Furthermore, the WiFi
network can be used to communicate this sensed data without
requiring additional hardware to a centrally located database
for further processing and analysis thus further reducing the
costs associated with deploying our proposed system.

In this work, we explore the use of our proposed WiFi sens-
ing system for tracking soil attributes using machine learning.
We evaluate the use of CSI for predicting soil properties such
as soil moisture levels, soil texture and positioning. Finally, we
evaluate how our proposed sensing system architecture shown
in Fig. 1c can distinguish soil properties with greater coverage
compared to standard sensor-based approaches through the use
of a mesh WiFi sensing network.

The rest of the paper is organized as follows. In Section II,
we discuss background information about precision agriculture
and WiFi sensing. In Section III, we discuss our proposed
system including details about the hardware and machine
learning architectures as well as information about our ex-
perimental methods using this system. We continue with the



analysis and evaluation of the experiments in Section IV. Then
we show how IoT WiFi soil sensing nodes can be used to
develop a mesh network with exponentially growing coverage
in Section V. Lastly, we conclude this work with our final
remarks in Section VL.

II. BACKGROUND

Precision agriculture (PA) aims to gather large amounts of
analytical data about farmland through the use of IoT sensing
devices distributed throughout the farmland. After processing
this data, the goal is to give farmers more insight into temporal
characteristics of their farms as well as spatially localized
suggestions such as in precision irrigation decision making [2].
PA covers all aspects of farmland management through sensors
and advanced information technology techniques such as field
tracking through UAVs [4] as well as modeling spatial and
temporal crop yield predictions through machine learning [11].
Wireless sensor networks (WSN) are typically deployed [3] to
aggregate the data from the distributed sensors to a single
central location such as a cloud storage for further processing
using cloud computation platforms.

WiFi sensing uses the signal data collected from WiFi
devices such as laptops, phones and routers to understand
physical attributes of the environment through signal variations
caused by Line-of-Sight (LoS) obstructions, Non-LOS multi-
path interference as well as phase shifts caused by time
delay. Using WiFi for soil sensing in PA is useful because
it can reduce the hardware cost while also increasing sensing
coverage because the area between each pair of transceiver
devices is sensed. Furthermore, WiFi can be used for dual
purposes, first for wireless sensing of soil traits and second
as a communication method in a WSN. One common metric
used for WiFi sensing is channel state information (CSI) [10].
CSI is used in orthogonal frequency division multiplexing
(OFDM) systems to estimate signal propagation information
details over multiple subcarrier frequencies. CSI (H) is given
as an M x N matrix where M is the number of antennas
and N is the number of subcarriers. To identify the value
for H, we consider the equation y = Hx 4 n where z is
the transmitted signal, y is the received signal and 7 is some
noise from the environment. Given the real component (h,.)
and imaginary component (h;,,) for each subcarrier ¢ within
H, we can calculate the amplitude (A) and phase (¢) by:

A=/ (h)* + (him)?, (1)

¢ = atan2 (him, hy) . 2)

For our experiments, we use a single antenna for both the
transmitter and receiver using standard 2.4GHz channels with
a bandwidth of 20MHz which allows us to collect values for
64 subcarriers where 52 are non-null. Signal propagation for
frequency f at a distance d can be modeled as

E(f.d) = Ae~ (T84, 3)

where « is an attenuation coefficient due to the physical en-
vironment between the transmitter and receiver resulting from
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Fig. 1: (a) ESP32 transmitter (TX) and receiver (RX) in
waterproof container. (b) TX and RX placed in soil-filled
container for an experiment. (c) Architecture diagram for our
proposed WiFi sensing mesh network for soil sensing.

soil content, and 3 is a phase coefficient caused by propagation
in the soil environment. Both & and 3 can be modeled as
functions of permittivity (a complex value ¢* = ¢’ + j¢”') and
electrical conductivity (o) by:

a:27;f\/€2;[\/1+tan25—1], 4)
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as described in [9]. Permittivity and electrical conductivity
metrics have long been used for understanding many soil
attributes as discussed in [12].

III. PROPOSED SOIL SENSING SYSTEM

In this work, we propose a low-cost system to understand
physical attributes of soil using standard 2.4 GHz WiFi signals.
To accomplish this, we need a tool to collect CSI data for both
training and evaluating our machine learning models as well
as for deploying our system in a network in the field. Our
proposed system architecture together with the devices used
is shown in Fig. 1.

CSI Collection Tool: To collect CSI, we use ESP32 WiFi-
enabled microcontrollers and run our ESP32 CSI Toolkit!.
This low-cost microcontroller can be used for initial data
collection experiments and can be deployed into full networks
as a standalone device. During our initial experiments, the
CSI receiver is connected directly to an Android smartphone
running our custom CSI annotation application to record and
annotate all CSI data and associated metadata for future
analysis. In large scale deployments, the ESP32 devices can
use their WiFi hardware not only for WiFi soil sensing but
also for communicating results between neighbors and to edge
devices for data aggregation and precision mapping [4].

Thttps://stevenmhernandez.github.io/ESP32-CSI-Tool/



Machine Learning Architecture: To make our predictions, we
select a Dense Neural Network (DNN) classifier architecture
with two hidden dense layers with identical number of hidden
neurons, each followed by a dropout layer used to prevent
overfitting by setting the output of neurons randomly to 0 with
a probability of Pyopour = 0.2. We use a softmax activation
function and Stochastic Gradient Descent (SGD) to optimize
our loss function

L(wy) = 5 Do (Fwr) — . @

where F is the model, x; is the i-th input sample for the
model and y; is the label for the i-th sample. We use learning
rate 7 € {0.001,0.01,0.1} to control the speed at which the
model converges during training. As input to the classifier
we give a matrix of size w X n, where w is a window of
CSI measurements and n = 64 is the number of subcarriers.
Our preprocessing and machine learning steps are written in
Python using the Keras [13] deep learning library. Hyper-
parameter optimization was used to balance model accuracy
with computation time. For reproducibility in our experiments,
we use the Sacred experiment database Python library [14]
to capture results for each experiment along with the chosen
hyperparameter values.

Experiment Process: To evaluate the proposed system for soil
sensing tasks, we use our ESP32 toolkit to collect and annotate
CSI to predict the following physical soil traits: depth in soil,
distance in soil between the transmitter (TX) and receiver
(RX), soil moisture level, and soil texture. For each experi-
ment, we use two ESP32s, one TX and one RX which are both
housed inside waterproof enclosures as shown in Fig. la. For
soil depth and TX/RX distance experiments, the enclosures are
placed directly in the soil for each position as shown in Fig. 1b.
For soil texture and soil moisture experiments, we constructed
a jig to hold the ESP32s stationary across multiple repetitions.
We collect CSI for each state in an experiment using a timer
to ensure a similar number of samples are collected per class.
Annotated data for each experiment is split such that the first
50% of samples per class are used for training and the final
50% of samples are used for testing.

IV. EXPERIMENTAL RESULTS

To explore the use of WiFi for soil sensing, we evaluate
our CSI collection system and machine learning prediction
models for the following tasks. First, we identify if the model
is able to recognize different depths and distances between
transmitter and receiver in different soil types in Section IV-A.
This first set of experiments is useful to ensure that the model
is able to detect the physical location even when devices are
placed underground. Next, we look at how well our model
is able to distinguish moisture levels in Section IV-B. Soil
moisture is a dynamic metric which changes over time and
must be maintained through precision irrigation to ensure
proper crop growth. Following this, we also look at how soil
texture can be detected with our model in Section IV-C. Soil
texture is defined by the distribution of clay, sand and silt
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Fig. 2: Confusion matrix for soil depth sensing.

content and is an important factor which affects temporal soil
moisture properties. Next, we perform two null hypothesis
experiments in Section IV-D to ensure that our model classifi-
cation results are valid and not due to other spurious physical
attributes within the environment. The importance of these
null hypothesis experiments stems from our goal to achieve
generalizable results for our soil sensing experiments. Finally,
we also provide long-term moisture sensing results with the
proposed system in Section IV-E.

A. Detecting TX Depth and TX-RX Distance

When WiFi sensing devices are deployed in real world
scenarios, each device will be subject to unique physical
placement throughout the farmland. As such, we want to
see how well the models will be able to judge depth within
the soil as well as distance between transmitter and receiver.
Additionally, because each sensor location will be unique, the
soil texture will also be diverse. As such, we want to make
sure that our model is not confused or tricked by the presence
of different soil types. To check this, we experiment with two
distinct soil types: pure sand and pure silt.

First, we consider the question of recognizing depth in soil.
We record three depths 10 cm, 20 cm and 30 cm in both sand
and silt environments. The RX is placed above the soil while
the TX is placed in the soil at the given depths. In Fig. 2a we
can see that the prediction accuracy for each depth is 99.9%
for the silt environment while the sand environment in Fig. 2b
achieves an accuracy of 99.5%, 99.8% and 99.4% across each
respective depth. This demonstrates that WiFi CSI can be used
to easily distinguish the depth of the node within the soil. To
further evaluate these experiments, we consider the case where
our model should distinguish both depth and soil type. Fig. 2¢
shows that the model can achieve accuracy above 98.1% across
each of these six classes.

Next, we look at the performance of the model in predicting
distances between TX and RX. Both TX and RX are placed in
the soil at distances d € {0, 10, 20, 30, 40,50} cm (with depth
5 cm). For the silt environment, we achieve an overall accuracy
of 90.77% while the sand environment achieves an overall
accuracy of 93.15%. For the silt environment, the confusion
matrix in Fig. 3a shows that the true class 50 cm achieves the
lowest prediction accuracy of 74.4% while each of the other
distances achieves greater than 89.0%. The sand environment
on the other hand reaches a low accuracy of 76.7% for the
20 cm class while each of the other classes in the experiment
are able to achieve greater than 89.4% as shown in Fig. 3b.
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d(sand)
dlsilt) Ocm 10cm | 20cm | 30cm | 40cm | 50cm
Ocm 88.7 96.2 100.0 99.8 99.9 100.0
10cm 98.6 99.9 100.0 99.9 100.0 99.8
20cm 99.1 99.8 100.0 99.9 100.0 | 100.0
30cm 99.4 100.0 | 100.0 99.8 99.9 99.9
40cm 99.9 100.0 | 100.0 99.7 99.4 100.0
50cm 100.0 97.3 98.8 99.8 99.5 98.4

TABLE I: Binary classification accuracy as distance changes
for sand versus silt when both TX and RX are under the soil.

In order to ensure that the model is able to distinguish be-
tween the two environments of silt versus sand, we also com-
pare the binary classification accuracy for different distances
d™) for distance in the silt environment and d***® for dis-
tance in the sand environment. When d(**) = q(s274) — () cm,
we find the lowest accuracy of 88.7%. This is because there
is no soil between the TX and RX, thus the direct LOS signal
is not directly affected by the soil content. We might expect
that the model would achieve only 50% binary classification
accuracy as a result, however, because our CSI metric is
affected by the multipath environment, some received signal
is still able to bounce into the soil environment which then
bounces back to the receiver antenna. Thus, the model is able
to still distinguish the two soil types. As the values for d(*%*)
and d*%"9 vary, the binary classification accuracy achieves
greater than 96.2% for each other position. Looking down
the diagonal of the table, we can see that similar distances
for the silt and sand environments are distinguishable from
one another with an accuracy of 98.4% and greater other
than when d() = d(send) — (), This shows that similarly
positioned nodes in different soil mediums can distinguish the
soil medium best when there is soil in the LOS, but NLOS
can also achieve relatively high accuracy through the received
multipath signals. Overall the accuracy is 99.26% on average
for these binary classifiers.

B. Detecting Soil Moisture

Soil moisture is an important dynamic metric to track over
time for general agricultural tasks. Direct methods for collect-
ing water content in soil such as the gravimetric method [5]
measures the weight of a soil sample taken from the envi-
ronment before and after a 24 hour oven drying sequence.
The difference in weights before and after drying corresponds
directly to the amount of water lost during the drying step.
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Fig. 4: Moisture sensing accuracy when using different mois-
ture level increments. (a) 240z mL increments (overall ac-
curacy: 99.19%), (b) 120z mL increments (overall accuracy:
92.09%), (c¢) 60x mL increments (overall accuracy: 98.49%).

For our experiments, we begin by drying the soil for 3 hours
in an oven set to 100° Celsius to ensure a consistent baseline
moisture content. Then, for each unique moisture level, we
mix 1200 mL of dry soil with v mL of water. CSI is collected
for 10 seconds per container in consecutive order over 10
repetitions. For the water content, we begin with large distinct
level increments of 240 mL (i.e., around a cup) where v = 0
mL is the default dry soil and v = 720 mL is our highest
moisture level. The confusion matrix for this first experiment
given in Fig. 4a shows that the accuracy for each class ranges
from 98.4% to 99.9%, and the overall accuracy for the model
on all four classes together is 99.19%.

As a result of this high predictive accuracy, we reduce the
moisture level increments down to 120 mL which achieves an
overall accuracy of 92.09% in Fig. 4b and again reduce to
60 mL increments in Fig. 4c which gives an overall accuracy
of 98.49%. The experiment with 120 mL increments achieves
the lowest accuracy of 92.09% compared to the other two soil
moisture experiments. From the confusion matrix, we can see
that this is the result of relatively low predictive accuracy on
two classes: 120 mL and 600 mL. For the 120 mL class, we
can see that the accuracy for the class is 84.1% where 15.9%
of class samples are incorrectly predicted as the 0 mL class
while for 600 mL, the accuracy is lower at 74.5% where 23.0%
of samples are predicted to be class 480 mL. From this, we
can see that the misclassification for these classes is typically
found in the adjacent moisture levels showing that there is
some overlap in the data distributions of nearby moisture
levels. The relatively lower performance for 120 mL can also
be found in Fig. 4c which shows a lower predictive accuracy
(92.4%) relative to other classes in the same 60 mL increments
experiment due to the confusion with 0 mL class. Since the
error is found in both cases at 120 mL, this could be a result
of slight inaccuracies in that specific soil moisture sample.
Collecting more data with more samples can potentially ensure
a better accuracy from the model, however we leave this for
our future work.

C. Detecting Soil Texture

Soil texture descriptions are composed of the percentage
of clay separate, silt separate and sand separate found within
a given sample of soil. Variations in soil texture for an
environment directly affect the hydraulic properties of the soil
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o % Clay | Silty Clay | Silty Clay Lm. | Silt Lm.
Silt 100.00% 99.99% 100.00% 97.60%
Silt Lm. 73.53% 65.58% 85.60%
Silty Clay Lm. 94.95% 79.06%
Silty Clay 54.64%

TABLE II: Binary classification accuracy (Clay to Silt).

in the environment [15] and thus have an important impact on
soil moisture. The soil texture triangle in Fig. 5 is commonly
used to label different types of soil. To evaluate our system
on soil texture recognition, we create individual soil samples
representing different classes found in the soil texture. As a
large number of classes are present in the soil texture triangle,
we look at the binary classification accuracy between pairs
of texture classes to identify how well the system is able to
distinguish the classes.

We begin by evaluating the accuracy of our system on five
classes along the “Silt Separate” axis on the soil triangle.
Specifically, we create a model which predicts from the
following five classes: Clay, Silty Clay, Silty Clay Loam, Silt
Loam and Silt. The results in Table II show that our model
can easily distinguish the two furthest classes (clay and silf). In
fact, if we look at the silt row from the table we can see that silt
can be distinguished from every other class with an accuracy
greater than or equal to 97.60%. Clay on the other hand can be
confused with Silt Loam (i.e., 73.53% accuracy) and Silty Clay
(i.e., 54.64% accuracy) indicating that the binary classification
model is unable to detect any distinguishing features between
the two classes. On average, the binary classification models
are able to achieve an accuracy of 85.10%.

We continue evaluation of texture classes from the “Sand
Separate” axis of the soil triangle, namely classes Silt, Silt
Loam, Loam, Sandy Loam and Sand®. The results for these
models are shown in Table III. Similar to the previous results,
the furthest classes Silt and Clay are able to be classified by
the model with an accuracy of 99.98%. Also similarly, if we
consider the silt column, we can see that silt can easily be

’Loamy sand is not considered as we find it very similar to sand.

o “ Silt Silt Lm. Loam Sandy Lm.
Sand 99.98% 95.60% 76.61% 80.00%
Sandy Lm. 99.79% 73.20% 99.90%
Loam 100.00% 86.56%
Silt Lm. 97.60%

TABLE III: Binary classification accuracy (Silt to Sand).

. 1 Sand Sandy Lm. San. Cl. Lm. | Sandy Clay
Clay 76.95% 64.35% 60.53% 63.95%
Sandy Clay 60.28% 91.72% 99.17%
San. CL. Lm. 99.58% 99.75%
Sandy Lm. 80.00%

TABLE IV: Binary classification accuracy (Sand to Clay).

distinguished between all other classes with a minimum of
97.60% accuracy. On average, the binary classification models
for these classes are able to achieve 90.93% accuracy.

Finally, we consider the “Clay Separate” axis with classes
Sand, Sandy Loam, Sandy Clay Loam, Sandy Clay and Clay
with results shown in Table IV. We find that sand and clay
are not able to achieve as high accuracy as the other two pairs
of furthest classes (i.e., only 76.95% accuracy). The overall
binary classification accuracy for all class pairs is also low
(i.e., 79.63%) compared to previous axis classes. Our initial
insight for these lower results is due to the similarity of visual
appearance and feel of the sand and clay soils. However, we
will look into this further in our future work.

D. Null Hypothesis

To ensure that our model is predicting the unique soil
traits that we specified rather than some other temporal
traits in the environment, we take two precautions. First,
as mentioned previously, we repeat all sets of classes over
multiple repetitions for each experiment. This ensures that
temporal changes in the signal are not what is being detected
by the model and also adds variety to the samples in both
the training and testing phases. Second, we perform two
additional experiments here to check the null hypothesis. We
follow the same setup as the previous experiments but this
time in the first null hypothesis experiment, each container
is empty and in the second experiment, each container is
filled with the same homogeneous mixture of soil. Similar to
the moisture experiments we perform, we use 6 containers
for both experiments. For the empty container experiment,
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Fig. 6: Null hypothesis results. (a) Empty containers. (b) Filled
containers.
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as it is shown in Fig. 6a, the accuracy of the model on
the training set achieves 58.46% while the accuracy on the
unseen validation set is much lower at 21.54%. Similarly, the
experiment with filled containers achieves 75.83% accuracy on
the seen training set while unseen validation set achieves only
15.54% accuracy. With 6 classes, we would expect a randomly
predicting model that achieves around 16.67% accuracy, which
is approximately what we are seeing in the validation accuracy
for both experiments. On the other hand, the training accuracy
is able to achieve higher accuracy because the model is trained
directly on this data which allows the model to memorize the
data rather than learn distinct generalizable traits of the data
distribution. This shows that in the previous experiments the
model is in fact learning the physical attributes from the soil.

E. Long-Term Moisture Sensing

To evaluate our system for more realistic conditions, we
perform a long running experiment using our system where
moisture is allowed to naturally evaporate over time. To ac-
complish this, we begin by placing one TX, one RX and three
capacitive moisture sensors into a large bucket of gardening
soil. Since the soil remained indoors for the duration of the
experiment, a dehumidifier and a fan are used to increase
the speed of drying. Three capacitive moisture sensors are
connected to an Arduino Pro Micro which is then connected
through USB serial along with the ESP32 TX and RX into
a Raspberry Pi 4 Model B running our custom data logger
software. A photo of our system is shown in Fig. 7a. For
this experiment, CSI and moisture values are recorded for 30
second segments every 1 hour over a timespan of 5 days. At the
beginning of the experiment, water is mixed thoroughly into
the soil to ensure a homogeneous moisture level throughout.
Over the experiment timespan, the capacitance value (C)
increases from 300 up to 350. In Fig. 7b we look at the
distribution of the change in capacitance (AC') over different
periods of time. This shows that over most of the one-
hour segments, C' increased 0 or 1 units with an average of
approximately AC' = 0.6. Subsequently, over all of the 2 hour
segments, the capacitance increased by 2 and similarly for
the 6 hour segments, we see a peak at AC' = 6.1. For the
12 hour segments, the peak shows that most of the 12 hour
segments that we recorded show an increase of capacitance

[ Soil Property [ Accuracy | Figure [ #Reps. [ Time/Rep. |

Depth (Silt) 99.91% Fig. 2a 3 30 sec.
Depth (Sand) 99.58% Fig. 2b 3 30 sec.
Depth (Silt/Sand) 99.13% Fig. 2¢ 3 30 sec.
Distance (Silt) 90.77% Fig. 3a 6 30 sec.
Distance (Sand) 93.15% Fig. 3b 6 30 sec.
Distance (Silt/Sand) 99.26% Table 1 12 30 sec.
Moisture (240 mL) 99.19% Fig. 4a 10 10 sec.
Moisture (120 mL) 92.09% Fig. 4b 10 10 sec.
Moisture (60 mL) 98.49% Fig. 4c 10 10 sec.
Texture (clay/silt) 85.10% Table 11 10 10 sec.
Texture (silt/sand) 90.03% Table IIT 10 10 sec.
Texture (sand/clay) 79.63% Table IV 10 10 sec.
Null Hyp. (empty) 23.82% Fig. 6a 10 10 sec.
Null Hyp. (filled) 15.54% Fig. 6b 10 10 sec.
[ Moisture (Long) [ 74-97% [ Fig.7c [ 1 [ ©5days |

TABLE V: Overview of performed soil sensing experiments.

AC = 11.1. Interestingly though, we can see a long tail to
these distributions showing that, for example, some 12 hour
segments can result in an increase close to AC = 20.

We train our model over 1,000 epochs on our training
dataset and show the accuracy for our validation dataset over
these epochs in Fig. 7c. After training, the model achieves
an accuracy of 74.48% for predicting the capacitance value
between 300 < C' < 350. As we noted in Fig. 7b, a small
change in capacitance (i.e., AC 1) is only related to
approximately 1 hour of drying time. As such, we can allow
our model some additional margin of error when making
predictions. The red line in Fig. 7c shows the case when we
allow a margin of error |err| < 1 where err = §j — y such that
g is the predicted capacitance value and y is the true recorded
capacitance value. After training fully, when |err] < 1 we
achieve an accuracy of 87.83% while we achieve an even
higher accuracy of 96.84% when |err| < 5. In Fig.7d, we show
the final accuracy after training for different margin of errors
(lerr|). We observe that increasing |err| from 0 to 1 offers
an increase of +13.35%. Similarly, increasing |err| from 2
to 3 offers an increase of +8.13% going from 88.06% up to
96.19%. Beyond this, increasing from |err| = 3 up to 10 only
offers an increase of +2.29%. Thus, by allowing a margin of
error of just AC' = £3 we achieve a high accuracy of 96.19%.

Results Summary. Table V shows a summary of the experi-
mental results in this section together with the settings used.



V. SCALABLE MESH NETWORK

Thanks to the low cost of the ESP32 microcontrollers used
in our proposed system, a large number of devices can be
deployed to cover large areas of farmland. Through a mesh
network, sensed data can be routed to an aggregation location
for further processing without requiring each device to be
directly connected to a router. This is important because in
large farmland deployments, it is not expected that WiFi
signals of standard routers will cover the entire area. Instead,
each ESP32 can perform both WiFi sensing and WiFi routing
to share information. Moreover, each ESP32 can also act as
both transmitter and CSI receivers. As a result of this, each
ESP32 can then capture raw CSI from multiple neighboring
transmitters. Preprocessing this raw CSI and inputting it into
pretrained machine learning models allows us to perform
moisture sensing, texture sensing and positioning tasks which
can then be used together to calculate precision mapping [4].

A. Communication within Soil

When radios are placed into soil, signal attenuation in-
creases compared to the case where devices are placed in
open air line-of-sight positions. As such, we must consider
the maximum distance that devices are able to communicate
before the signal is overrun by environmental noise. We
perform this experiment with a depth of 0 cm (overground) and
a depth of 25 cm (underground) in an outside garden as shown
in Fig. 8a. In Fig. 8b we plot the Received Signal Strength
Indicator (RSSI) for each distance. RSSI is a more course-
grained signal metric than CSI, but gives us a single metric
value for each received frame and go_l}eos\glls the log-distance
path model [16] such that d = 10 Tx» | where d is the
predicted distance, A is a baseline RSSI measurement at 1
meter, RSST is the current RSSI measurement and n is the
path-loss exponent for the given environment. From Fig. 8b,
we can see that the underground value has a lower RSSI
for all distances compared to the overground setting. This
is because the signal is more attenuated in the underground
case. A more important metric in particular for WiFi soil
sensing is the maximum distance until WiFi CSI frames can
no longer be received. In the overground case, frames can
be received beyond 7 m, while in the underground case, no
frames can be received at or beyond 6 m. The lowest average
RSSI value for the underground scenario is RSSI = —91.64
dBm at d = 4.5 m. This lowest RSSI value also corresponds
to a decrease in received CSI frames as shown in Fig. 8c.
The transmitter sends frames at a consistent 100Hz but at
d = 4.5 m, the receiving rate decreases to an average of
57Hz. This is likely because the signal strength of the frames
are dropping below the noise floor which makes it harder for
the receiver to successfully decode the transmitted frame thus
resulting in dropped frames. Interestingly, with d € {5.0,5.5},
the CSI frame rate returns back to 100Hz before dropping
down to OHz at d > 6.0. This return to normal corresponds
to the slight rise in average RSSI back above —90 dBm. We
can also see that the lowest average RSSI (—76.94 dBm) for
the overground scenario is recorded at d = 4.5 m, as in the
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Fig. 8: Signal attenuation is greater within soil than through
air. (a) Photo of the experiment taking place in a garden with
tilled soil. (b) RSSI measurements between TX and RX, when
TX is placed overground (depth = 0 cm) and underground
(depth = 25 cm). (c) CSI frames collected per second at
different distances.

underground scenario. Similarly we can see some relationship
between the peaks and valleys in both experiments. These
variations occur as a result of the multipath environment as
well as Fresnel Zones [10] which can have both constructive
and destructive impacts on the signal amplitude.

B. Scalability of Wireless Sensing

Using this knowledge, we propose the use of a mesh
network of WiFi soil sensing nodes. In typical sensor deploy-
ments, each additional sensor increases the sensing coverage
linearly, however with our mesh network, because each device
can act as both TX and RX, each added sensor can increase
the coverage exponentially. We consider 16 sensor locations
within an 18 m x 18 m area where the sensors are laid out in a
4 x 4 grid with a distance of d m between neighboring nodes.
For our simulation, we design this area as a bitmap where
each 100 x 100 pixel section is equivalent to a one meter
square area. For the WiFi sensing evaluation, each location
corresponds to an ESP32 transceiver node which can act as
both TX and RX. Thus, each device within communication
distance deomm. = 5.5 m can perform soil sensing in the
areas between the two devices. To model the coverage between
pairs of nodes, an ellipse is placed such that the major vertices
correspond to the position of the TX node (Prx) and RX node
(Prx) with a width w = 50 cm on the minor axis and a height
h = ||Prx — Prx||, the euclidean distance between them.

In Fig. 9a, we can see that as the grid distance d increases
between neighboring nodes, the number of pairwise connec-
tions decreases. When 0 < d < 1.29 m, all devices are within
communication range of each other and thus WiFi sensing
can be performed between each pair. With 16 nodes, there are
120 unique connections possible. When d = 0, the number
of connections is very high, but the sensed area for each of
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Fig. 9: Results of mesh grid coverage simulation as the
distance (d) between neighboring nodes increases. (a) Number
of connections between pairs of WiFi devices. (b) Percent of
area covered by WiFi-sensing and sensor-based method.

these device pairs contains many overlapping regions; thus,
a very low coverage is achieved as shown in Fig. 9b. After
d = 1.29 m, the number of connections begins to decrease,
however we do not see a decrease in coverage until d = 2.46 m
as only overlapping sensing areas are lost. After the sudden
decrease at d = 2.46 m an even higher peak is reached at
d = 3.88 m with 25.3% area coverage even though the number
of connections is reduced to only 42 connections. This is
because with smaller d, there are more overlapping sensing
areas while with larger d, each pair of devices covers more
distinct areas. After d = 3.88 m, another dip occurs followed
by a rise up until d = 5.5 m where WiFi signals are no longer
able to be reliably received in the soil. Thus, after d = 5.5 m,
the coverage drops immediately to 0%.

Unlike our proposed soil sensing mesh network, standard
sensor-based approaches use multiple sensors which collect
readings in small localized area. Thus, to compare with sensor-
based systems, we use the same grid and set the sensing
diameter to 1 m around each node. Note that we allow this
diameter to be larger than the 50 cm width used for the
ellipse-based coverage in our WiFi sensing simulation. Fig. 9b
shows that the coverage of the sensor approach begins slightly
higher than the WiFi approach before quickly plateauing at
a coverage percentage of 4.4% after d = 1 m at which
point coverage neither increases nor decreases because of the
localized sensing provided by each sensor. On the other hand,
the sensor-based approach can still achieve some coverage
(4.4%) even after d = 5.5 m but it is far lower than the highest
coverage value that can be obtained with the proposed WiFi
sensing approach (25.3%).

VI. CONCLUSION

Future precision agriculture techniques will allow for better
crop growth tracking and thus increase crop yield globally.
Through our proposed system, the placement of WiFi sensing
devices can increase the sensing coverage density while re-
ducing the number of deployed sensors. This allows for high
precision mapping of sensor data across farmland while also
reducing the cost of deployment. We do this by leveraging
low-cost WiFi-enabled microcontrollers to reduce the costs for
deploying the system and simplifying the deployment. In this
work, we demonstrate how our proposed WiFi soil sensing
system can be used for sensing soil moisture, soil texture and

position within the soil. Furthermore, we demonstrate how
our system can be used in long-term deployments to track
moisture levels over time. In a real-world field we evaluate
the WiFi transmission capability of our system underground to
understand limits of the signal communication range. Finally,
we show how the use of WiFi soil sensing allows for greater
coverage of a given area by leveraging multiple neighboring
transceivers compared to standard sensor deployments which
can only sample sensor data in very localized areas.
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