
Journal of Network and Computer Applications 180 (2021) 103021

Available online 18 February 2021
1084-8045/© 2021 Elsevier Ltd. All rights reserved.

A scalable private Bitcoin payment channel network with 
privacy guarantees 

Enes Erdin a,*, Mumin Cebe b, Kemal Akkaya c, Eyuphan Bulut d, Selcuk Uluagac c 

a Computer Science Department, University of Central Arkansas, Conway, AR, USA 
b Computer Science Department, Marquette University, Milwaukee, WI, USA 
c Electrical and Computer Engineering Department, Florida International University, Miami, FL, USA 
d Computer Science Department, Virginia Commonwealth University, Richmond, VA, USA   

A R T I C L E  I N F O   

Keywords: 
Blockchain 
Bitcoin 
Payment channel networks 
Shortest path 
Lightning network 

A B S T R A C T   

While Bitcoin heavily dominates the cryptocurrency markets, its use in micropayments is still a challenge due to 
long transaction confirmation times and high fees. Recently, the concept of off-chain transactions is introduced 
that led to the idea of establishing a payment channel network called Lightning Network (LN), which utilizes 
multi-hop payments. Off-chain links provide the ability to make instant payments without a need to writing to 
Blockchain. However, LN’s design still favors fees, and it is creating hub nodes or relays that defeat the purpose 
of Blockchain. In addition, it is still not reliable, as not all transactions are guaranteed to be delivered to their 
destinations. These issues hinder its wide adoption by retailers. To address this issue, in this paper, we argue that 
the retailers could create a private payment channel network among them to serve their business needs, just like 
the concept of private Blockchains. The goal is to build a pure peer-to-peer topology that will prevent the for
mation of hub nodes while also eliminating the need for any relays to increase the robustness of the payments. 
Assuming off-chain links as edges and retailers as nodes, we formulate the problem as a multi-flow commodity 
problem where transactions represent the commodities from various sources to destinations. As the multi-flow 
commodity problem is NP-Complete, we propose a heuristic approach that utilizes Dijkstra’s shortest path al
gorithm for payments in a dynamic way by updating the edge weights when new paths need to be found. The 
order of transactions is randomized to provide fairness among the retailers. We further extend this approach to 
guarantee the privacy of payments by forcing all the payments to travel at least three hops. We utilized k-shortest 
path algorithm to choose from k options that will meet our criterion. The evaluations indicate that the proposed 
heuristic comes close to an optimal solution while providing scalability and guaranteeing user privacy.   

1. Introduction 

Some welcome Bitcoin as the next big innovation since the intro
duction of the Internet (Zebpay, 2017). Undoubtedly, Bitcoin has not 
only revolutionized the way payment systems can be designed in a 
purely distributed manner but it has also offered the novel Blockchain 
data structure that is now endorsed as an innovative solution in many 
areas such as healthcare, finance, government operations, logistics, etc. 
(Kuo, 2017; Hackius and Petersen, 2017; Cebe, 2018). 

The idea in Bitcoin is to process batches of transactions and once they 
are validated by miners, they are stored in a chain of blocks maintained 
as a distributed ledger. Therefore, once a transaction is written in a block 
in the Blockchain after a consensus, it cannot be deleted or changed. This 

persistent, transparent and append-only structure of the Blockchain 
uncovers a strong platform where the shareholders can store or transfer 
ownership of their assets in a trustless way. 

For sure, Bitcoin has unfolded many new opportunities. However, it 
has been widely criticized for its long transaction confirmation times 
and high fees charged for the transactions (Bloomberg, 2017; BitInfo
Charts, 2017). The Bitcoin network, by design, tries to adjust the 
confirmation time of a block to 10 min. In general, a block is accepted to 
be valid after the confirmation of the 6th subsequent block, which yields 
the confirmation time of a transaction to be around 60 min. Therefore, 
such long transaction confirmation times are not suitable for applica
tions where timely payment evidence is critical. In addition, the trans
action fees are not proportional to the amounts being transferred. These 
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challenges make Bitcoin impractical for many day-to-day micropayment 
schemes such as buying a cup of coffee or paying for lunch. 

Despite the mentioned impracticalities, Bitcoin is still the most 
widely used digital currency, and its market cap is above 50% among all 
digital currencies. So, it makes perfect sense to try to alleviate the above 
problems of Bitcoin. To this end, as a solution, the concept of off-chain 
payment channels (Poon and Dryja, 2015) was introduced where 
transactions are done through escrow-like accounts. In this way, in the 
duration of an agreement, two parties can perform many instant pay
ments in real-time without a need to always write them to the Block
chain. Thus, one can save the on-chain transaction fees that are 
conducted within the agreed term just because the off-chain mechanism 
requires typically two on-chain transactions; one for opening the escrow 
account and one for closing it. 

Due to such advantages of off-chain payments, payment channel net
works (PCNs) started to evolve by applying the off-chain concept widely 
such that a network of retailers and off-chain links can be created just 
like an Internet backbone to link every retailer and customer and allow 
multi-channel/multi-hop payments. A PCN is essentially a network to
pology that allows routing of payments from any source to any other 
destination. 

Lightning Network (LN) is a PCN proposed in 2016 and deployed for 
Bitcoin in late 2017 which serves for, as of today, more than 10,000 
nodes. The introduction of LN also introduced another level of privacy to 
the cryptocurrency users. In LN, when a channel is established between 
two parties for off-chain transactions, it has a certain capacity and can be 
either private or public. In the case of a private channel, the peers do not 
need to advertise their intent to the network. For a public channel, while 
it is known to everyone, the directional capacities (i.e., one-way trans
action capacity to the other party) of the channel are still not disclosed to 
the network. The capacity information advertised by the peers is the 
total capacity of the peers who own the channel. In this way, the total 
assets of the users are kept private to a certain extent. Additionally, 
when there is a transaction following a multi-hop path, the intermediary 
nodes do not know the source and the destination nodes of the payment. 
They only know the next hop. 

However, there are several issues with the current LN. First of all, 
instead of connecting retailers and customers directly, LN relies on relay 
nodes which act as bridges between retailers and customers. For the 
retailers this is a major shortcoming since this leads to a hub-and-spoke 
topology where some of the nodes hold the most of the connections and 
capacity of the network. Consequently, this defeats the very idea of 
decentralization. A recent experiment where a practitioner was ques
tioning the capacity of the channels in LN revealed interesting results 
(diar.co, 2018). During the time of that experiment, the average channel 
capacity was around $20 and the success rate for sending $5 and $0.43 
was around 50% and 90% respectively. These numbers indicate that 
adoption of LN by current retailers will not be possible if success rates do 
not improve significantly. Second, allowing the relay nodes to become 
monopolies in forwarding poses vulnerabilities for denial of service 
(DoS) attacks (TrustNodes, 2018) and privacy analysis of customers’ 
transactions assuming that some of these nodes are compromised to 
monitor transactions passing through them. 

Hence, we advocate formation of a private PCN that will bring 
together retailers under a consortium rather than opening it to public as 
in the case of LN. This suggests that there will be a need for developing a 
highly decentralized topology which will be reliable and can support the 
needed amount of transactions with additional privacy constraints for 
the participants. In this paper, we propose to build such a private PCN 
from scratch that will utilize off-chain payment channels with the ob
jectives of distributing the forwarding loads evenly among all the nodes 
while minimizing the number of their off-chain channels to decrease the 
total fee cost of the network. Inspired by the multi-commodity flow 
problem (Haghani and Oh, 1996), the problem can be modeled as such 
where commodities will be our transactions. However, since the 
multi-commodity flow problem is NP-complete (Even et al., 1975), an 

optimization model will not scale. 
We thus came up with a heuristic idea which will form a network 

topology by relying on the transaction intents between nodes using the 
shortest path algorithm. As nodes start to transfer money to each other, 
weights (or interchangeably referred to as costs) on the edges will be 
updated so that the shortest path formations can be influenced in such a 
way that existing channels are favored to a certain extent. There are 
three components in the weight of an edge, namely, link-establishment 
cost, transaction cost, and the new channel forcing cost. When all of the 
transactions are completed, we obtain a final topology by creating off- 
chain links on the used paths. We consider several criteria while 
initializing and changing the weights of the edges that will enable a 
highly decentralized topology. 

Finally, we propose to extend this approach for guaranteeing the 
privacy of the payments inspired by the approach in Tor where each 
message travels at least 3-hops. Similarly, we aim to achieve at least 3- 
hops for each payment path to satisfy privacy for the payments (Din
gledine et al., 2004). To force this, we utilized k-shortest path algorithm 
for the paths that have path length less than 3 and conduct a re-routing. 

The evaluations using Python and Gurobi solver indicate that our 
proposed heuristics can provide comparable performance to that of the 
optimal solution while allowing scalability and fairness. We also ach
ieved 3-hops payments with similar topology features with a slight in
crease in the computational time. 

This paper is organized as follows: The next section summarizes the 
related work and in Section 3 we provide the background for the related 
concepts and the motivation for the problem. Section 4 explains the 
proposed algorithm and Section 5 explains the extension of the proposed 
algorithm with guaranteed privacy. Section 6 presents the experimental 
setup and corresponding results. Paper is concluded in Section 7. 

2. Related work 

2.1. Payment channel networks 

High transaction fees and long confirmation times are the major is
sues for the cryptocurrencies and there is a substantial interest in these 
issues from both the industry and academic community. Most of these 
efforts are concentrated around Bitcoin. Building PCNs is a part of these 
efforts. PCNs can be classified into two categories. The first category 
relies on building a PCN for intra-blockchain operations. It allows 
transferring money between parties over already existing off-chain links 
without any confirmation delay but with some forwarding fees. LN and 
Raiden are examples that fall into this category (Poon and Dryja, 2015; 
Raiden, 2018). The second category of works relies on building 
inter-blockchain operations to allow transfers between different cryp
tocurrencies without expensive on-chain confirmation. Examples 
include Inter-Ledger (Thomas and Schwartz, 2015) and 
Atomic-CrossChain (Team). 

2.2. Lightning Network 

Among the current PCNs, LN is the most widely adopted solution 
since the introduction of the off-chain payment channel by the Bitcoin 
community (Bitcoin wiki). However, the LN framework is in its early 
phases and has many problems including reliability, scalability, privacy, 
and routing. While some of these problems such as privacy and efficient 
routing are being targeted by the Blockchain community (Roos, 2017; 
Malavolta and others, 2017; Prihodko, 2016; Miller et al., 2017), all of 
these solutions revolve around the existing LN structure and topology. In 
(Seres et al., 2019) the authors make a topological analysis of a snapshot 
of the LN taken in March 2018. They claim that LN is formed around a 
very small number of central nodes where periphery nodes are loosely 
connected to the center. The author of (Martinazzi, 2019) statistically 
looks at the development of the LN in the course of 12 months since its 
establishment. With the findings, he suggests the capacity development 
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of LN is not strongly correlated with the development of the size of the 
network where capacity grows more slowly. 

Works targeting the privacy of the LN is not common. Right now, due 
to being in the early development stage, LN enthusiasts have been dis
cussing the privacy brought by LN on public forums or in communica
tion channels. An attack to the undisclosed directional balance is 
introduced in (Herrera-Joancomarti et al., 2019). In this study, the au
thors send transactions with a never existing signature and observe the 
reaction of the nodes on the path. They increase the payment amount 
until they get an unsuccessful transfer information. Authors in (Rohrer 
et al., 2019) studies on three different snapshots of LN and calculates the 
robustness of the topology with respect to different known attacks and 
node failures in terms of privacy and transaction success rate. 

Our work in this paper has a different goal assuming that private 
PCNs can be created and offers efficient solutions from scratch to 
address the aforementioned issues. 

2.3. Multi-commodity flow problem 

The flow portion of our problem can be formulated similar to the 
multi-commodity flow problem which deals with the assignment of 
commodity flows from sources to destinations in a given network. 
However, multi-commodity flow problem has been shown to be NP- 
Complete (Even et al., 1975) even if the number of commodities is 
two. When the problem becomes fractional and can be modeled with 
linear programming, it can be solved in polynomial time (Karakostas, 
2008). Nonetheless, in a multi-commodity flow problem, the flows are 
optimized on a given network topology. Our problem is different from 
the multi-commodity flow problem as we do not have the topology in 
hand and try to jointly optimize the topology and the total costs by 
respecting the flow constraints. 

The same problem in the context of electric vehicle (EV) charging 

coordination has been studied and solved with an optimization model in 
(Erdin et al., 2018). However, as the number of charging stations, 
channels and EVs increase, the time for solving the problem increases 
dramatically. The solution in that work does not scale beyond 10 nodes. 
Our work in this paper aims to offer a scalable solution to the same 
problem through a heuristic approach. 

3. Background and motivation 

3.1. Background on off-chain links 

Off-chain transaction channels mechanism is used for saving trans
action fees and time in the current Bitcoin system which constitutes the 
main motivation of this study. Specifically, an in-advance payment 
transaction is provided to the Blockchain for establishing a 2-of-2 multi- 
signature trustless escrow account, and future successive transactions 
take place using this shared account. The account activities are signed 
and tracked by the peers without being written to Bitcoin’s public led
ger. The amount put in the multi-signature account is decided individ
ually by the participants and unless that amount is reached, the 
transactions can continue. In this scheme, the peers only pay fees for two 
on-chain transactions: one to open the channel and one to close it. 

The example shown in Fig. 1 depicts this concept. Alice opens an off- 
chain channel with Bob. They both sign the new account separately. 
Alice then deposits 5 Bitcoins to the escrow account by performing an 
on-chain transaction which determines a directional channel capacity, 
from Alice to Bob, as 5 Bitcoins. From now on, Alice can make payments 
to Bob simply by giving the ownership of some of her Bitcoins to Bob 
until the capacity of the channel is reached. In the figure, we see only 3 
transactions at different times: 1, 2, and 1 Bitcoins. Eventually, when the 
channel is closed, only the remaining Bitcoins and the total transferred 
Bitcoins are committed respectively to Alice and Bob and written to the 

Fig. 1. Off-chain mechanism between two Blockchain nodes.  

Fig. 2. An overview of the envisioned Payment Channel Network among retailers.  
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public ledger. The payment channel provides guarantees to Alice and 
Bob to refund the balance in the escrow account at any time or at a 
mutually agreed channel expiration time. This guarantee is satisfied by a 
smart contract called “Hash Time Locked Contracts (HTLC)” (Hash Time 
Locked Contracts). With every HTLC created by the peers, a peer gives 
ownership of some of her assets to the other if and only if she can fulfill 
the contract with a proof. The proof should be satisfied in a limited 
period of time. Keeping the state of the channel up-to-date is the duty of 
the channel owners. 

LN exploits the off-chain concept to create multi-hop payment paths 
between participants. To enable this idea in practice, users are supposed 
to route their payments to any destination through a series of payment 
channels in a network of nodes. If such a channel/link series exist among 
the nodes, then a user can utilize one or more of these links (i.e., multi- 
hop links) to reach another node for making a payment. A sample 
payment network is shown in Fig. 2. 

3.2. Privacy in Lightning Network 

Bitcoin network is believed to be completely private by some of the 
Bitcoin enthusiasts. On the other hand, people with sceptical thoughts 
criticize Bitcoin to have no privacy. Although they put tangible ideas to 
prove their claims denying or accepting both are not suitable. For 
example, in Bitcoin Network tracing a series of payments might give 
clues about the assets of a user to some extent, but hiding those infor
mation is also possible when the pseudonymity idea is utilized properly. 

By design, LN offers an additional level of anonymity for the user. In 
LN, the route for a payment is calculated by the sender by source-routing 
(Ethereum, 2019). The sender who has a topological view of the 
network, calculates the best route. The sender, then, encapsulates the 
route and sends the packet to the first node in the route. Thanks to 
encapsulation, all of the intermediary nodes only know the previous 
node from which the packet was sent and the next node to which the 
packet will be forwarded. This idea is very similar to the Tor network. 

3.3. Problem motivation and definition 

In this paper, we argue that current LN structure and features are not 
attractive for retailers to join it for their daily transactions. Specifically, 
we claim that retailers from certain business domains who would like to 
attract more business from cryptocurrency users could come together to 
form a private PCN that can be controlled and managed by them so that 
it can better satisfy customers’ needs. In what follows, we explain the 
shortcomings of LN and justify the need for such a private PCN:  

● Network connectivity: In LN there is a basic assumption that a 
payment network can be formed by ad-hoc connections and without 
a specific topology plan. This ad-hoc assumption is not effective since 
there will be a certain probability of connectivity success which 
means that the final payment network may not be connected. The 
proposed topology for a private PCN needs to guarantee network 
connectivity.  

● Network topology: Even though the concept of LN is very attractive, 
its current structure requires the deployment of relay nodes between 
payers and payees. These relay nodes will eventually become major 
hubs in the network creating the risk of experiencing DDoS attacks to 
stop the payments in the network at any time. Another risk here is 
regarding customer privacy. If these big relay nodes are compro
mised, the attackers can easily analyze the payments passing through 
them which will expose the privacy of the customers using them as 
relays. The proposed topology for a private PCN needs to carry P2P 
features to prevent these issues.  

● Investment for each channel: In LN, we mentioned that there is no 
guarantee for network connectivity. However, forming a connected 
network for our proposed PCN will not be free. A valid channel 
means two mandatory on-chain transactions. Hence, the number of 

channels established by a node should be kept in an optimum level, 
namely, high enough to keep the transaction requests in the network 
to flow through but low enough to decrease the total on-chain 
transaction fees. 

● Partial usage of available payment capacity: A node in our pro
posed PCN may assume that it needs, say 100 Bitcoins, worth of total 
transaction volume for its own business. However, that capacity will 
be used by other nodes which use this node as a relay. Thus, at a 
given time, only a portion of the capacity will be available for the 
node itself to accept transactions from its own customers. This im
plies that one should invest much more than its anticipated trans
action volume.  

● Diminishing channel capacity over time: The capacity of channels 
in LN diminishes over time and thus some transactions which are set 
to use those channels may get stuck. Therefore, there may not be any 
payment guarantee as already shown in (diar.co, 2018). For 
resolving this issue in the proposed PCN, either more investment 
should be planned in the channels in advance or there should be a 
reverse payment to balance the forward capacities. The proposed 
topology needs to guarantee that any payment will reach its desti
nation at any time. 

Based on these discussions, our problem can be formally defined as 
follows: Let us assume N nodes (retailers). Let us also assume that a PCN 
among these retailers can be represented as a graph G = (V, E), where V 
represents nodes (of N retailers) and E represents all payment channels 
among N retailers. Every edge between retailers has a capacity that denotes 
the amount of depositable Bitcoins. We assume that every vertex (retailer) v 
∈ V will make an initial total investment that represents the maximum Bit
coins that can be transmitted or forwarded over it. In other words, we are 
considering the maximum possible instantaneous payments that can be made 
from a retailer or forwarded by it. This can also be described as the maximum 
possible business capacity of a retailer within a certain time. Note that we 
assume that for each retailer there are N − 1 registered customers making a 
unique transaction to another retailer. So, for example from Node1, there 
exists N − 1 transactions to other N − 1 retailers. 

Based on these inputs, how can we create a scalable virtual topology 
PCN among the retailers in such a way that 1) the total investment made 
by a retailer for creating channels with its neighbors will be minimized; 
2) the topology will be close to an ideal P2P topology with no hub nodes 
but still satisfy all payment requests; and 3) the standard deviation of 
total investment costs among the retailers will be minimized to ensure 
fairness. 

4. Proposed heuristic algorithm 

In this section, we describe our proposed heuristic in more detail. 

4.1. Approach overview 

Our heuristic of PCN formation is based on the idea of in-advance 
planning of payments and flows. As every retailer has an idea of their 
business capacity and expectation, we use it to plan payment flows 
among the customers and retailers. We first start distributing the flows 
in advance from various retailers to others in the best way we can (i.e., 
fair load and P2P distribution) assuming that there are already available 
channels among them at the beginning. We then look at the final used 
channels among retailers, set up the actual off-chain links and remove 
any other channels. 

In this heuristic, finding the path between a source and a destination 
retailer is crucial. When we look at today’s LN, if there is a path between 
the payer and the payee, the payer can use that path if it is convenient to 
use, meaning, if there is enough capacity on the planned path. Other
wise, the other alternative is to establish a direct channel with the payee. 
However, in that case, there will be on-chain transaction fees for 
opening and closing channels. Therefore, one needs to weigh these two 
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options when finding a path. 
We follow a similar rationale for our heuristic. Specifically, if there is 

a path from one retailer to another one, our heuristic uses that path by 
relying on a shortest path algorithm, namely Dijkstra’s. If there is none, 
we open a new channel. Additionally, if total cost on the path will start 
to create inconveniences for intermediate retailers (i.e., adding a burden 
of forwarding), then we force our approach to open a new channel by 
adjusting the edge weights in the Dijkstra’s shortest path algorithm. In a 
sense, we strive to find a sub-optimal approach for opening channels so 
that the participants of the network neither suffer from unfair load 
distribution nor pay excessive on-chain transaction fees. Next, we 
describe our heuristic details. 

4.2. Finding paths 

In order to find the best possible routes, Dijkstra’s shortest path al
gorithm is used (Dijkstra, 1959). In Dijkstra’s algorithm, the path with 
the lowest total weight is found between a source and a destination 
node. In our case, we have an a priori payment list. From the payment 
list, transactions are read one by one. At each reading, meaning itera
tion, a shortest (i.e., lowest weight) path from the source to the desti
nation is found. After a path is found, the weights on the edges are 
updated according to the flow (i.e., payment amount) which will be 
detailed in the next subsection. The algorithm is shown in Algorithm 1 
which utilizes the notation in Table 1. 

Algorithm 1 
Network Establishment  

1: Input: P=Payment List, H=fully connected directed graph, Lc = Link establishment 
cost, Wi = New connection forcing cost 

2: for every edge, e, in H do 
3: He.weight = Wi + Lc 
4: He.flow = 0 
5: end for//Initial assignments are done 
6: for every payment in P do//A payment is defined by a source, a destination and the 

transfer amount Ta 
7: Path = ShortestPath(H, from = a, to = b) 
8: for Each edge, e, in Path do 
9: He.flow + = Ta 
10: He.weight = Wi + He.flow 
11: end for 
12: end for 
13: for All edges in H do 
14: if He.flow = 0 then 
15: Remove edge from H 
16: end if 
17: end for 
18: Output: H  

Note that here the payments are picked in a round-robin fashion (i.e., 
finish a particular retailer’s payments and move on to the next) which 
may greatly influence the resultant topology as we followed a certain 
order. This may create unfair load distributions and undesirable 

topologies. 
In order to come up with a topology in which the loads are more 

evenly distributed, the randomly selected customers execute their 
transactions in a random round-robin fashion. Specifically, in order to 
minimize the impact of dependence on the order, at each round, the 
order of the retailers is renewed with a new distribution. This approach 
is shown in Algorithm 2. 

Algorithm 2 
List Establishment.  

1: Input: S=Set of Retailers 
2: while All required payments are not fulfilled do 
3: TempS=S 
4: while TempS is not Empty do 
5: Pick 2 random retailers (a,b) from TempS 
6: if Transaction from a to b was not fulfilled then 
7: Add a as source, b as target in P 
8: Remove (a,b) from TempS 
9: end if 
10: end while 
11: end while 
12: Output: P=Payment List  

According to this approach, first, two nodes are selected randomly, 
one of which is the source, a, and the other is the destination, b. If there 
is an intended transaction from a to b, and if it is not fulfilled yet, a 
transaction from a to b with the transaction amount is added to a pay
ment list, P. Afterward, a, b pair is removed from the list of retailers. This 
removal is important because we want every node to be visited equally 
either as a source or as a destination. Whenever every retailer visit is 
complete, meaning the list of retailers is an empty set, the procedure is 
repeated. This new random list of payments is then fed to Algorithm 1. 

4.3. Defining edge weights 

As mentioned, after finding a path the edge weights need to be 
updated to inject the desired influence to topology formation. To ach
ieve this, we define a sophisticated weight function, on an edge, e.g., 
the weight between A and B, WAB. Specifically, three components of the 
WAB are defined: link establishment cost, transaction cost, and new 
connection forcing cost. Below, we explain them next in more detail. 

Link Establishment Cost (Lc): In LN, establishing a channel means 
doing at least two on-chain transactions on Bitcoin blockchain, which 
incur on-chain transaction fees. For a fully connected mesh network of N 
nodes, there will be N × (N − 1)/2 edges. With increasing N, the total fee 
paid by the network participants will be tremendously high. Instead of 
full connection in the network, a lower number of edges will be more 
acceptable as it lowers the total on-chain transaction fee. The edges 
should be reused cleverly to distribute the transactions among nodes in 
an acceptable way. 

In order to encourage the reuse of the edges, a parameter called 
LinkCost, denoted as Lc is introduced. Lc mainly relates to the on-chain 
transaction fee. In the proposed heuristic, all edges in the network 
have a non-negative Lc set to some value. Whenever an edge is used (i.e., 
there is a flow on the edge), the Lc on that edge is nullified (set to 0 to 
indicate that the channel is already open). So further transactions can 
use that edge on their paths. Nullifying the Lc encourages other trans
actions in such a way that other transactions will prefer low-cost edges 
instead of opening a new one. 

Transaction Cost: When an edge is used (or channel is established), 
Lc will be nullified, and thus all later transactions will tend to use that 
channel since other yet-never-used channels will have a higher weight 
due to higher Lc. As some edges will have lower weight due to nullified 
Lc, they will be used heavily. This high usage of the channel contradicts 
with the aim of establishing a flat network to execute all of the trans
actions. For that reason, whenever there is a transaction through an 

Table 1 
Notations and their explanations.  

Symbol Meaning 

H Directed Graph 
He Edge e in graph H 
Lc Link establishment cost 
Wi New connection forcing cost 
γ Parameter to control unfairness between the nodes 
Ta Transaction amount 
TAB Transaction amount on edge (A, B) 
He.weight Weight of edge e 
He.flow Flow on edge e 
UAB Binary var. represents existence of flow on edge (A, B) 
E Initial number of edges in the experiments  
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edge, the amount transferred incurs a weight on that edge which is 
basically a transaction cost induced by channel usage. So, when there are 
edges with heavier loads, the transactions will start to look for new 
routes or open new channels. This helps to distribute the loads more 
evenly. Hence the weight, WAB, is revised as follows to accommodate 
this transaction cost: 

WAB = Lc(1 − UAB) +
∑

TAB (1)  

where UAB is a binary variable and equals to 1 if there happens to be a 
flow on edge AB anytime during the procedure, and 0 otherwise, and TAB 
is the amount of all transactions (from all nodes in the network) passing 
on edge (A, B). 

New Connection Forcing Cost: In some cases, when the links are 
established, during the algorithm run, the future transactions in the list 
tend to use those links which will increase the investment need to be 
made by intermediate nodes for maintaining these links. In such cases, 
we need an additional force to further increase these links’ weights so 
that the Dijkstra’s algorithm will not choose these links anymore. 

As an example consider an initially fully connected mesh network 
topology shown in Fig. 3(a) where all of the edge weights are initialized 
accordingly, with Lc = 500. If we look at the established links after the 
first run of payments, we see that half of the nodes initiate transactions 
to the remaining half of the nodes randomly in one hop as shown in 
Fig. 3(b), and the effect of Lc is nullified and the weights are updated 
with the flows on the edges. Note that, for simplicity, not all of the Lc =

500 wt are shown in the figures. In the second round of transactions, 
new randomly selected half of the nodes will initiate new transactions to 
other nodes. This will form new connections as shown in Fig. 3(c) but 
still the opened links will be in use. However, now unused edges in the 
topology will still have a higher weight of Lc (500 in this example), while 
other edges will have the weights only created by the transaction 
amounts. In the later rounds, no matter how random the nodes are 
picked, all of the transactions will follow the already established edges 
since they will have lower weights due to their Lc being set to 0. Thus, 

the topology will continue to be as shown in Fig. 3(c), resulting in no 
significant change. For a larger N, we will observe longer paths in the 
network and the topology will stay unchanged although more trans
actions are added. In order to prevent transactions traversing always 
through the same paths, we introduce a constant weight, Wi, for each 
edge to increase the total weight on the path and thus surpass the edges 
with Lc ((i.e., forcing new connections). In this way, the longer paths will 
be hampered. Thus, the weight on edge (A, B) will be updated as follows: 

WAB = Lc(1 − UAB) +
∑

TAB + Wi (2) 

The effect of Wi can be better seen with an example shown in Fig. 4. 
In this sample experiment Lc is set to 3000, and the number of nodes, N, 
is 20. The payment lists are the same for both of the resulting topologies. 
Basically, without Wi, we will get a topology in Fig. 4(a). Introducing Wi 
and setting it to 1000 causes the topology to change to the one in Fig. 4 
(b). We argue that Fig. 4(a) is not a desired topology because it is weak 
against node failures, and some nodes are highly centralized. 

5. Extending the heuristic for privacy guarantees 

The higher the number of hops a payment is traversing through, the 
better the privacy is. This is inspired by the idea of privacy in the Tor 
network where each message needs to traverse at least 3-hops (Dingle
dine et al., 2004). In LN the payments are transferred from a source to a 
destination within encapsulated messages. If a node in the center knows 
that it is the node in between the source and the destination it will be 
able to gather information about the users. This also comes with addi
tional traceability of the payments because there is a possibility that the 
nodes can be traced back from the Bitcoin network. However, if at least 
3-hops transaction mechanism is utilized or enforced by the users, a 
node on the route of the payment will not be able to get a clear view of 
the source and the destination about the payment (Dingledine et al., 
2004). 

While the Dijkstra’s shortest path algorithm is highly efficient in 
finding the shortest path from a source to a target in weighted directed 
graphs, it cannot guarantee a minimum number of hops for a path. In 
order to increase the privacy of payments, we propose an extension to it 
by relying on re-routing. Specifically, the proposed extension method is 
comprised of two steps. In the first step, Dijkstra’s algorithm is run with 

Fig. 3. Initially fully connected mesh network topology.  

Fig. 4. Effect of Wi for a network of 20 nodes, Lc = 3000.  

Fig. 5. Explanation of the rerouting mechanism.  
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the default configuration as defined Algorithm 1, and all the shortest 
paths for payments are found. Note that, in this configuration, there is no 
dictated number of hops requirement. Among all of those paths, the ones 
with lower than R hops are saved in a temporary list, which will be used 
in the second step of the method. 

In the second step, the shortest path algorithm is run again for the 
payments in the temporary list. However, in this case, instead of finding 
the shortest path, k-shortest paths algorithm is utilized. k-shortest path 
algorithm basically lists top k shortest paths from a source to destination 
which requires more computation. The computational complexity of the 
k-shortest path algorithm is shown to be O(E + kNlogN) (Bouillet et al., 
2007) where E represents the number of edges and N is the number of 
vertices in the graph, and k is the number of hops required. The goal here 
is to look for paths with at least R-hops, essentially forcing the paths that 
are in our list to perform a re-routing. Among all of the paths with R or 
more hops, the path with the minimum weight is picked as the solution. 
This process is hypothetically shown in Fig. 5. Based on this figure, 
during the Dijkstra’s algorithm run, a 3-hop path between node-1 and 
node-4 is found as shown in Fig. 5(a). As the iterations carry on, a 1-hop 
algorithm is found between node-1 and node-5 as shown in Fig. 5(b) and 
in the next iteration another 3-hop path is found between node-1 and 
node-7 as illustrated in Fig. 5(c). Thus, when the first step is over, the 
re-routing with the k-shortest path algorithm starts for the 1-hop path 
found in Fig. 5(b). This 1-hop path should be forced for a re-route via 
more than R hops between node-1 and node-5 as shown in Fig. 5(d). 

One might question why the first step of the proposed method is not 
directly utilizing k-shortest paths algorithm instead of following a two- 
step approach. This choice is due to the computational complexity 
that comes with k-shortest path algorithm with the initial topology. It 
takes a lot of time to find a path for the payments essentially turning the 
approach into a brute force search. The proposed privacy guaranteed 
method is shown in Algorithm 3. 

Algorithm 3 
Network Establishment for Privacy Guarantees.  

1: Input: P=Payment List, H=fully connected directed graph, Lc = Link establishment 
cost, Wi = New connection forcing cost 

2: for every edge, e, in H do 
3: He.weight = Wi + Lc 
4: He.flow = 0 
5: He.Tempflow = 0 
6: end for//Initial assignments are done 
7: for every payment in P do//A payment is defined by a source, a destination and the 

transfer amount Ta 
8: Path = ShortestPath(H, from = a, to = b) 
9: if length(Path) < R then  

10: Add payment to Temp list 
11: for Each edge, e, in Path do 
12: He.Tempflow + = Ta 
13: He.weight = Wi + He.Tempflow + He.flow 
14: end for 
15: else 
16: for Each edge, e, in Path do 
17: He.flow + = Ta 
18: He.weight = Wi + He.flow + He.Tempflow 
19: end for 
20: end if 
21: end for 
22://Remove effect of He.Tempflow in H 
23://Nullify Tempflow and make edge weights Lc + Wi of edges with only positive Tempflow 
24: for every payment in Temp do 
25: AllPaths = AllSimplePaths(H, from = a, to = b) 
26: Path = x where x ∈ AllPaths if length(x) ≥ R and weightx is the minimum 
27: for Each edge, e, in Path do 
28: He.flow + = Ta 
29: He.weight = Wi + He.flow 
30: end for 
31: end for 
32: for All edges in H do 

(continued on next column) 

Algorithm 3 (continued ) 

33: if He.flow = 0 then 
34: Remove edge from H 
35: end if 
36: end for 
37: Output: H  

6. Evaluation 

In this section, we describe the experiment setup, performance 
metrics and discuss the evaluation results. 

6.1. Experimental setup and implementation 

N nodes (retailers) are assumed in the network. A single customer is 
assumed to be attached to a single node and it will create 10 unit worth 
transactions to every other node. So, the supply from a single customer 
to the network is (N − 1) × 10. Total money traversing in the network is 
N × (N − 1) × 10. In LN channel formation, the peers can independently 
decide on the amount they want to put in the channel. However, for the 
completeness of the study, we assume that peers of a channel put the 
same amount in the channel they created. The proposed approach is 
implemented in Python and its performance is assessed extensively 
through various experiments. All the experiments are carried out on a 
computer with an Intel Xeon E5-2630 v4 @ 2.20 GHz CPU and 64 GB of 
RAM. 

6.2. Metrics and benchmarks 

The results of the experiments are assessed based on the following 
metrics:  

● Betweenness Centrality of nodes: Betweenness centrality of a node 
in a network is a measurement showing how many times a node is 
visited while traveling between other nodes using the shortest path 
traversal. In a hub-and-spoke network model, hubs will have the 
highest betweenness score.  

● Total Capacity of the Network: This metric shows the total amount 
of investment to be put by the vendors to the channels for the for
mation of the network.  

● Number of Edges: This metric shows the number of edges established 
in the resultant topology. 

● Standard deviation among the nodes: This metric shows the stan
dard deviation among the outbound flows of the nodes. A high 
standard deviation hints that some of the nodes are used more like a 
relay compared to the other nodes. A zero standard deviation means 
all of the loads on the nodes are equal.  

● Total Computation time: This metric is the measure to show how 
long it takes, in seconds, to finish all necessary computations for the 
final results.  

● Utilization: This metric is the ratio of the total flow in the network to 
the total capacity of the network. It is calculated by dividing the sum 
of all transactions to sum of all established capacity in the network.  

● Histogram of Number of Hops: This metric shows the histogram of 
the transactions in terms of the number of hops they follow calcu
lated in percentage.  

● Cut Nodes: Cut nodes are the nodes whose removal entirely makes 
the network disconnected. The higher the better for a topology since 
this means more nodes need to be removed/failed to disconnect the 
network. 

We compared our approach against certain benchmarks and methods 
as listed below: 
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● MIOP model: The results of the heuristic are compared with an 
optimization model in (Erdin et al., 2018).  

● Random network topology: The results of the heuristic are also 
compared with the results of a randomly connected network. The 
heuristic is run on the random network to get the flows in the 
network. 

6.3. Experiment results and discussion 

6.3.1. Comparison of heuristic with the MIOP model 
In this section, the results of the proposed heuristic approach are 

presented and compared with that of the MIOP model studied in (Erdin 
et al., 2018). The objective is to assess our approach’s performance with 
respect to the ideal one. The optimization model was solved by Gurobi 
Solver. However, in the setup of this experiment, only 10 nodes are used 
since the MIOP model does not scale beyond 10 and thus in practice is 
not useable. Only for this experiment, different than the general scenario 
assumption, we assumed that these 10 nodes are serving to 80 customers 
which are distributed to these nodes randomly. Each customer sends 
money to 6 different nodes and each is of a value of 10 units. Hence, the 
total supply by the customers to the network is 4800 units. From the 
experiment results of the MIOP model, best ones are used in regards to 
betweenness centrality, standard deviation and number of edges. For the 
results of the heuristic approach, the same scenario is inherited. All the 

related results are shown in Fig. 6. In those figures, γ is a control 
parameter for the unfairness among node outbound flows, and linkcost is 
the link establishment cost, Lc in MIOP. 

As can be seen from Fig. 6(b) and (c), our heuristic’s performance 
almost matches the performance of the MIOP solution in terms of total 
capacity and edges. It is also only 20% short of the utilization of MIOP 
(Fig. 6(d)). For the standard deviation metric, as MIOP has a significant 
control on unfairness, the standard deviation in MIOP solutions is lower 
than that of the heuristic approach as seen in Fig. 6(e). However, when 
Wi is 100 and Lc is 650 in the heuristic approach, standard deviation 
comes to a more comparable level, where the number of edges has a 
significant effect on this. This is because as the number of edges in
creases, the flows tend to be distributed more evenly since the flows can 
find shorter routes compared to a network with a lower number of edges. 
Finally, compared to MIOP solutions the betweenness centrality for our 
approach in Fig. 6(a) is slightly increasing but still maintains a topology 
close to P2P. 

The obvious advantage of our approach is computational overhead. 
It reduces the computational time 100 to thousands folds (i.e., it scales 
much better) while still getting very close to the MIOP’s overall per
formance (Fig. 6(f)). In summary, the proposed approach provides the 
same features as MIOP in a much faster/scalable manner but with some 
slight deviation from an ideal P2P topology. 

Fig. 6. Optimal vs. Heuristic Comparisons.  

Fig. 7. Ideal parameter selection.  
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6.3.2. Ideal Parameter Selection for the heuristic 
Apparently, picking different parameters highly affects the resulting 

network topology for the heuristic approach. In this section, we con
ducted a series of experiments to determine the ideal parameters for our 
heuristic to run. The experiments are evaluated for different Lc and Wi 
cases and a fixed number of nodes, N = 100, which yields traversal of 
99000 units of money in the network, with an exact amount of 990 units 
per node. The results are shown in Fig. 7. 

Considering all of the different parameters visited in the course of 
this experiment, with the payment scenario assumption and under 100 
nodes, we obtain a good topology when Lc is 4000 and Wi is 700. We call 
the topology good because, the standard deviation is around 600, with 
an average load per node around 3000. The total number of edges in the 
network is close to 300 implying on average every node has 6 connec
tions. Additionally, the maximum number of hops does not exceed 6 and 
resides around 3. These parameters are used in the remaining 

experiments. 

6.3.3. Scalability of the heuristic 
In this experiment, we assessed the scalability features of the pro

posed heuristic. Specifically, the heuristic approach is run with different 
numbers of nodes, namely 250 and 500 nodes. However, as the number 
of nodes increases, the computation time required to finish the calcu
lations increases drastically due to the time complexity of Dijkstra al
gorithm which is, if implemented in simple form, O(|E|log|N|), where E 
is the number of edges and N is the number of nodes. Since our heuristic 
starts with the assumption that all nodes are connected to each other, the 
number of edges becomes E = N2. So the time complexity of the heuristic 
translates into O(N2logN). In order to decrease the effect of the 
assumption of an initially fully connected mesh network, we also created 
networks with random initial connections as an alternative approach for 
comparison. To differentiate these two, in the figures, the initial number 

Fig. 8. Scalability test results.  

Fig. 9. Results for the Privacy aware method for 500 nodes.  
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of edges are depicted with the E parameter where E = All indicates our 
approach with a fully connected network. 

The results are shown in Fig. 8. Pre-pruned topologies (i.e., randomly 
connected) give an advantage in terms of total computation time, as 
expected, especially with 500 nodes. However, other results are gener
ally slightly better for the initially fully connected mesh network setup. 
In particular, standard deviation of our approach with a fully connected 
topology is significantly reduced. Additionally, based on the results, we 
argue that making random connections may not degrade the total in
vestment capacity in the network but comes with unfairness among the 
nodes as standard deviation among nodes changes too much. 

As part of this experiment, we also looked at the number of cut nodes. 
Fig. 8(g) represents the results of the cut nodes for different parameters. 
As can be seen, when the network is randomly connected, we observe a 
lower number of cut nodes compared to our heuristic topology. That 
means, for a randomly connected network, the possibility of taking 
down the network is easier because attacking fewer nodes will be 
enough. This is not the case in our heuristic with the fully connected 
mesh network as its betweenness centrality is more stable and thus more 
nodes need to be taken down in order to disconnect the network. As the 
network size doubles, this number also increases linearly indicating that 
our heuristic maintains a similar behavior as new nodes are added. This 
is one of the main strengths of our approach in terms of producing a good 
topology against DDoS attacks. We can conclude that up to a certain 
number fully connected topology might be a better choice. However, 
when we move beyond a certain number of nodes, for time savings, pre- 
pruned topologies may be preferred based on their cut node 
performance. 

6.4. Heuristic with privacy considerations 

In this subsection, we present results related to privacy extension of 
our approach presented in Section 5 which guarantees payment privacy 
with at least 3-hop payments. In these experiments, we compared two 
other baseline approaches with ours: The first baseline approach utilizes 
our Dijkstra heuristic without any privacy guarantees starting with a 
fully connected initial topology shown with E = All in the figures. The 
second baseline is the same as the first except that it starts with a 
randomly connected initial topology with 4500 edges (shown as E =
4500). Our approach which guarantees privacy is shown as E = All, 
Reflow. We conducted the experiments with 500 nodes. The results are 
shown in Fig. 9 for the following metrics: betweenness centrality, total 
investment capacity, the total number of edges, the number of hops, the 
standard deviation and total processing time. 

As seen in Fig. 9(a), with a randomly connected initial topology, the 
betweenness centralities of the nodes change drastically, which is ex
pected. This is because with the random connection some of the nodes 
will be apparently dominant compared to others. However, betweenness 
centrality of the initially fully connected mesh network topologies gives 
a more flat measure. This behavior assures that the dominance of some 
of the nodes is decreased significantly. The initial fully connected mesh 
network topology and pseudo-random payment distribution is effective 
in getting that result. However, our approach with privacy guarantees is 
slightly better than the one without privacy for betweenness centrality. 
As shown in 9(c), while the number of edges did not change, the 
betweenness centrality measure is maintained. This is because some of 
the channels opened in the first step of the privacy approach are dis
carded in the second step which eventually helped in establishing a more 
balanced network. 

The other results for the experiment with the privacy guarantee are 
promising too. Although the number of edges does not change, the main 
factor for the slight increase in the total capacity with respect to the 
approach where privacy is not guaranteed is the forcing of minimum 3 
hops in the transfers which causes each node to invest more, meaning an 
additional investment for the others’ payments too. Nonetheless, our 
privacy-guaranteed approach comes with the best standard deviation, 

even surpassing the non-privacy one as shown in Fig. 9(e). The one-time 
cost for these improvements comes with some time overhead as seen in 
Fig. 9(f). The total calculation time for the setup with the random 
connection network is the lowest because the complexity of the Dijkstra 
is directly related to the number of edges. For the privacy guaranteed 
approach, the time is the highest because all of the 1 and 2 hops pay
ments were converted to at least 3 hops transfers by the k-shortest path 
algorithm which in turn brings an additional overhead to the total 
computation time. 

7. Conclusion 

Cryptocurrency based payment channel networks using the idea of 
off-chain payments has been emerging recently. This is not only because 
they reduce confirmation times but they also let users send micro- 
payments in a very affordable way. Therefore, forming a reliable and 
scalable P2P payment network is an open question assuming a private 
consortium of retailers (nodes). In this study, based on some scenarios 
and assumptions, we developed a heuristic approach to form such a 
payment network topology using Bitcoin’s off-chain concept and 
Dijkstra’s shortest path routing and compared the results with the results 
of an optimal solution. We further extended this heuristic to guarantee 
privacy-aware routing in the network with at least 3 hops and compared 
its performance with the non-privacy case. 

Compared to the optimal solution, the heuristic reduces the 
computational time significantly. Additionally, the fair distribution of 
the load among nodes, centrality measures and the total number of 
edges obtained in the networks are satisfying to ensure a truly P2P 
network topology features. When privacy is to be guaranteed with at 
least 3 hops, the results show that the network topology becomes even 
better in terms of the considered topological metrics with some addi
tional computation time overhead. 
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