
Journal of Network and Computer Applications 180 (2021) 103021

Available online 18 February 2021
1084-8045/© 2021 Elsevier Ltd. All rights reserved.

A scalable private Bitcoin payment channel network with
privacy guarantees

Enes Erdin a,*, Mumin Cebe b, Kemal Akkaya c, Eyuphan Bulut d, Selcuk Uluagac c

a Computer Science Department, University of Central Arkansas, Conway, AR, USA
b Computer Science Department, Marquette University, Milwaukee, WI, USA
c Electrical and Computer Engineering Department, Florida International University, Miami, FL, USA
d Computer Science Department, Virginia Commonwealth University, Richmond, VA, USA

A R T I C L E I N F O

Keywords:
Blockchain
Bitcoin
Payment channel networks
Shortest path
Lightning network

A B S T R A C T

While Bitcoin heavily dominates the cryptocurrency markets, its use in micropayments is still a challenge due to
long transaction confirmation times and high fees. Recently, the concept of off-chain transactions is introduced
that led to the idea of establishing a payment channel network called Lightning Network (LN), which utilizes
multi-hop payments. Off-chain links provide the ability to make instant payments without a need to writing to
Blockchain. However, LN’s design still favors fees, and it is creating hub nodes or relays that defeat the purpose
of Blockchain. In addition, it is still not reliable, as not all transactions are guaranteed to be delivered to their
destinations. These issues hinder its wide adoption by retailers. To address this issue, in this paper, we argue that
the retailers could create a private payment channel network among them to serve their business needs, just like
the concept of private Blockchains. The goal is to build a pure peer-to-peer topology that will prevent the for
mation of hub nodes while also eliminating the need for any relays to increase the robustness of the payments.
Assuming off-chain links as edges and retailers as nodes, we formulate the problem as a multi-flow commodity
problem where transactions represent the commodities from various sources to destinations. As the multi-flow
commodity problem is NP-Complete, we propose a heuristic approach that utilizes Dijkstra’s shortest path al
gorithm for payments in a dynamic way by updating the edge weights when new paths need to be found. The
order of transactions is randomized to provide fairness among the retailers. We further extend this approach to
guarantee the privacy of payments by forcing all the payments to travel at least three hops. We utilized k-shortest
path algorithm to choose from k options that will meet our criterion. The evaluations indicate that the proposed
heuristic comes close to an optimal solution while providing scalability and guaranteeing user privacy.

1. Introduction

Some welcome Bitcoin as the next big innovation since the intro
duction of the Internet (Zebpay, 2017). Undoubtedly, Bitcoin has not
only revolutionized the way payment systems can be designed in a
purely distributed manner but it has also offered the novel Blockchain
data structure that is now endorsed as an innovative solution in many
areas such as healthcare, finance, government operations, logistics, etc.
(Kuo, 2017; Hackius and Petersen, 2017; Cebe, 2018).

The idea in Bitcoin is to process batches of transactions and once they
are validated by miners, they are stored in a chain of blocks maintained
as a distributed ledger. Therefore, once a transaction is written in a block
in the Blockchain after a consensus, it cannot be deleted or changed. This

persistent, transparent and append-only structure of the Blockchain
uncovers a strong platform where the shareholders can store or transfer
ownership of their assets in a trustless way.

For sure, Bitcoin has unfolded many new opportunities. However, it
has been widely criticized for its long transaction confirmation times
and high fees charged for the transactions (Bloomberg, 2017; BitInfo
Charts, 2017). The Bitcoin network, by design, tries to adjust the
confirmation time of a block to 10 min. In general, a block is accepted to
be valid after the confirmation of the 6th subsequent block, which yields
the confirmation time of a transaction to be around 60 min. Therefore,
such long transaction confirmation times are not suitable for applica
tions where timely payment evidence is critical. In addition, the trans
action fees are not proportional to the amounts being transferred. These

* Corresponding author.
E-mail address: eerdin@uca.edu (E. Erdin).

Contents lists available at ScienceDirect

Journal of Network and Computer Applications

journal homepage: www.elsevier.com/locate/jnca

https://doi.org/10.1016/j.jnca.2021.103021
Received 13 July 2020; Accepted 6 February 2021

mailto:eerdin@uca.edu
www.sciencedirect.com/science/journal/10848045
https://www.elsevier.com/locate/jnca
https://doi.org/10.1016/j.jnca.2021.103021
https://doi.org/10.1016/j.jnca.2021.103021
https://doi.org/10.1016/j.jnca.2021.103021
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2021.103021&domain=pdf

Journal of Network and Computer Applications 180 (2021) 103021

2

challenges make Bitcoin impractical for many day-to-day micropayment
schemes such as buying a cup of coffee or paying for lunch.

Despite the mentioned impracticalities, Bitcoin is still the most
widely used digital currency, and its market cap is above 50% among all
digital currencies. So, it makes perfect sense to try to alleviate the above
problems of Bitcoin. To this end, as a solution, the concept of off-chain
payment channels (Poon and Dryja, 2015) was introduced where
transactions are done through escrow-like accounts. In this way, in the
duration of an agreement, two parties can perform many instant pay
ments in real-time without a need to always write them to the Block
chain. Thus, one can save the on-chain transaction fees that are
conducted within the agreed term just because the off-chain mechanism
requires typically two on-chain transactions; one for opening the escrow
account and one for closing it.

Due to such advantages of off-chain payments, payment channel net
works (PCNs) started to evolve by applying the off-chain concept widely
such that a network of retailers and off-chain links can be created just
like an Internet backbone to link every retailer and customer and allow
multi-channel/multi-hop payments. A PCN is essentially a network to
pology that allows routing of payments from any source to any other
destination.

Lightning Network (LN) is a PCN proposed in 2016 and deployed for
Bitcoin in late 2017 which serves for, as of today, more than 10,000
nodes. The introduction of LN also introduced another level of privacy to
the cryptocurrency users. In LN, when a channel is established between
two parties for off-chain transactions, it has a certain capacity and can be
either private or public. In the case of a private channel, the peers do not
need to advertise their intent to the network. For a public channel, while
it is known to everyone, the directional capacities (i.e., one-way trans
action capacity to the other party) of the channel are still not disclosed to
the network. The capacity information advertised by the peers is the
total capacity of the peers who own the channel. In this way, the total
assets of the users are kept private to a certain extent. Additionally,
when there is a transaction following a multi-hop path, the intermediary
nodes do not know the source and the destination nodes of the payment.
They only know the next hop.

However, there are several issues with the current LN. First of all,
instead of connecting retailers and customers directly, LN relies on relay
nodes which act as bridges between retailers and customers. For the
retailers this is a major shortcoming since this leads to a hub-and-spoke
topology where some of the nodes hold the most of the connections and
capacity of the network. Consequently, this defeats the very idea of
decentralization. A recent experiment where a practitioner was ques
tioning the capacity of the channels in LN revealed interesting results
(diar.co, 2018). During the time of that experiment, the average channel
capacity was around $20 and the success rate for sending $5 and $0.43
was around 50% and 90% respectively. These numbers indicate that
adoption of LN by current retailers will not be possible if success rates do
not improve significantly. Second, allowing the relay nodes to become
monopolies in forwarding poses vulnerabilities for denial of service
(DoS) attacks (TrustNodes, 2018) and privacy analysis of customers’
transactions assuming that some of these nodes are compromised to
monitor transactions passing through them.

Hence, we advocate formation of a private PCN that will bring
together retailers under a consortium rather than opening it to public as
in the case of LN. This suggests that there will be a need for developing a
highly decentralized topology which will be reliable and can support the
needed amount of transactions with additional privacy constraints for
the participants. In this paper, we propose to build such a private PCN
from scratch that will utilize off-chain payment channels with the ob
jectives of distributing the forwarding loads evenly among all the nodes
while minimizing the number of their off-chain channels to decrease the
total fee cost of the network. Inspired by the multi-commodity flow
problem (Haghani and Oh, 1996), the problem can be modeled as such
where commodities will be our transactions. However, since the
multi-commodity flow problem is NP-complete (Even et al., 1975), an

optimization model will not scale.
We thus came up with a heuristic idea which will form a network

topology by relying on the transaction intents between nodes using the
shortest path algorithm. As nodes start to transfer money to each other,
weights (or interchangeably referred to as costs) on the edges will be
updated so that the shortest path formations can be influenced in such a
way that existing channels are favored to a certain extent. There are
three components in the weight of an edge, namely, link-establishment
cost, transaction cost, and the new channel forcing cost. When all of the
transactions are completed, we obtain a final topology by creating off-
chain links on the used paths. We consider several criteria while
initializing and changing the weights of the edges that will enable a
highly decentralized topology.

Finally, we propose to extend this approach for guaranteeing the
privacy of the payments inspired by the approach in Tor where each
message travels at least 3-hops. Similarly, we aim to achieve at least 3-
hops for each payment path to satisfy privacy for the payments (Din
gledine et al., 2004). To force this, we utilized k-shortest path algorithm
for the paths that have path length less than 3 and conduct a re-routing.

The evaluations using Python and Gurobi solver indicate that our
proposed heuristics can provide comparable performance to that of the
optimal solution while allowing scalability and fairness. We also ach
ieved 3-hops payments with similar topology features with a slight in
crease in the computational time.

This paper is organized as follows: The next section summarizes the
related work and in Section 3 we provide the background for the related
concepts and the motivation for the problem. Section 4 explains the
proposed algorithm and Section 5 explains the extension of the proposed
algorithm with guaranteed privacy. Section 6 presents the experimental
setup and corresponding results. Paper is concluded in Section 7.

2. Related work

2.1. Payment channel networks

High transaction fees and long confirmation times are the major is
sues for the cryptocurrencies and there is a substantial interest in these
issues from both the industry and academic community. Most of these
efforts are concentrated around Bitcoin. Building PCNs is a part of these
efforts. PCNs can be classified into two categories. The first category
relies on building a PCN for intra-blockchain operations. It allows
transferring money between parties over already existing off-chain links
without any confirmation delay but with some forwarding fees. LN and
Raiden are examples that fall into this category (Poon and Dryja, 2015;
Raiden, 2018). The second category of works relies on building
inter-blockchain operations to allow transfers between different cryp
tocurrencies without expensive on-chain confirmation. Examples
include Inter-Ledger (Thomas and Schwartz, 2015) and
Atomic-CrossChain (Team).

2.2. Lightning Network

Among the current PCNs, LN is the most widely adopted solution
since the introduction of the off-chain payment channel by the Bitcoin
community (Bitcoin wiki). However, the LN framework is in its early
phases and has many problems including reliability, scalability, privacy,
and routing. While some of these problems such as privacy and efficient
routing are being targeted by the Blockchain community (Roos, 2017;
Malavolta and others, 2017; Prihodko, 2016; Miller et al., 2017), all of
these solutions revolve around the existing LN structure and topology. In
(Seres et al., 2019) the authors make a topological analysis of a snapshot
of the LN taken in March 2018. They claim that LN is formed around a
very small number of central nodes where periphery nodes are loosely
connected to the center. The author of (Martinazzi, 2019) statistically
looks at the development of the LN in the course of 12 months since its
establishment. With the findings, he suggests the capacity development

E. Erdin et al.

Journal of Network and Computer Applications 180 (2021) 103021

3

of LN is not strongly correlated with the development of the size of the
network where capacity grows more slowly.

Works targeting the privacy of the LN is not common. Right now, due
to being in the early development stage, LN enthusiasts have been dis
cussing the privacy brought by LN on public forums or in communica
tion channels. An attack to the undisclosed directional balance is
introduced in (Herrera-Joancomarti et al., 2019). In this study, the au
thors send transactions with a never existing signature and observe the
reaction of the nodes on the path. They increase the payment amount
until they get an unsuccessful transfer information. Authors in (Rohrer
et al., 2019) studies on three different snapshots of LN and calculates the
robustness of the topology with respect to different known attacks and
node failures in terms of privacy and transaction success rate.

Our work in this paper has a different goal assuming that private
PCNs can be created and offers efficient solutions from scratch to
address the aforementioned issues.

2.3. Multi-commodity flow problem

The flow portion of our problem can be formulated similar to the
multi-commodity flow problem which deals with the assignment of
commodity flows from sources to destinations in a given network.
However, multi-commodity flow problem has been shown to be NP-
Complete (Even et al., 1975) even if the number of commodities is
two. When the problem becomes fractional and can be modeled with
linear programming, it can be solved in polynomial time (Karakostas,
2008). Nonetheless, in a multi-commodity flow problem, the flows are
optimized on a given network topology. Our problem is different from
the multi-commodity flow problem as we do not have the topology in
hand and try to jointly optimize the topology and the total costs by
respecting the flow constraints.

The same problem in the context of electric vehicle (EV) charging

coordination has been studied and solved with an optimization model in
(Erdin et al., 2018). However, as the number of charging stations,
channels and EVs increase, the time for solving the problem increases
dramatically. The solution in that work does not scale beyond 10 nodes.
Our work in this paper aims to offer a scalable solution to the same
problem through a heuristic approach.

3. Background and motivation

3.1. Background on off-chain links

Off-chain transaction channels mechanism is used for saving trans
action fees and time in the current Bitcoin system which constitutes the
main motivation of this study. Specifically, an in-advance payment
transaction is provided to the Blockchain for establishing a 2-of-2 multi-
signature trustless escrow account, and future successive transactions
take place using this shared account. The account activities are signed
and tracked by the peers without being written to Bitcoin’s public led
ger. The amount put in the multi-signature account is decided individ
ually by the participants and unless that amount is reached, the
transactions can continue. In this scheme, the peers only pay fees for two
on-chain transactions: one to open the channel and one to close it.

The example shown in Fig. 1 depicts this concept. Alice opens an off-
chain channel with Bob. They both sign the new account separately.
Alice then deposits 5 Bitcoins to the escrow account by performing an
on-chain transaction which determines a directional channel capacity,
from Alice to Bob, as 5 Bitcoins. From now on, Alice can make payments
to Bob simply by giving the ownership of some of her Bitcoins to Bob
until the capacity of the channel is reached. In the figure, we see only 3
transactions at different times: 1, 2, and 1 Bitcoins. Eventually, when the
channel is closed, only the remaining Bitcoins and the total transferred
Bitcoins are committed respectively to Alice and Bob and written to the

Fig. 1. Off-chain mechanism between two Blockchain nodes.

Fig. 2. An overview of the envisioned Payment Channel Network among retailers.

E. Erdin et al.

Journal of Network and Computer Applications 180 (2021) 103021

4

public ledger. The payment channel provides guarantees to Alice and
Bob to refund the balance in the escrow account at any time or at a
mutually agreed channel expiration time. This guarantee is satisfied by a
smart contract called “Hash Time Locked Contracts (HTLC)” (Hash Time
Locked Contracts). With every HTLC created by the peers, a peer gives
ownership of some of her assets to the other if and only if she can fulfill
the contract with a proof. The proof should be satisfied in a limited
period of time. Keeping the state of the channel up-to-date is the duty of
the channel owners.

LN exploits the off-chain concept to create multi-hop payment paths
between participants. To enable this idea in practice, users are supposed
to route their payments to any destination through a series of payment
channels in a network of nodes. If such a channel/link series exist among
the nodes, then a user can utilize one or more of these links (i.e., multi-
hop links) to reach another node for making a payment. A sample
payment network is shown in Fig. 2.

3.2. Privacy in Lightning Network

Bitcoin network is believed to be completely private by some of the
Bitcoin enthusiasts. On the other hand, people with sceptical thoughts
criticize Bitcoin to have no privacy. Although they put tangible ideas to
prove their claims denying or accepting both are not suitable. For
example, in Bitcoin Network tracing a series of payments might give
clues about the assets of a user to some extent, but hiding those infor
mation is also possible when the pseudonymity idea is utilized properly.

By design, LN offers an additional level of anonymity for the user. In
LN, the route for a payment is calculated by the sender by source-routing
(Ethereum, 2019). The sender who has a topological view of the
network, calculates the best route. The sender, then, encapsulates the
route and sends the packet to the first node in the route. Thanks to
encapsulation, all of the intermediary nodes only know the previous
node from which the packet was sent and the next node to which the
packet will be forwarded. This idea is very similar to the Tor network.

3.3. Problem motivation and definition

In this paper, we argue that current LN structure and features are not
attractive for retailers to join it for their daily transactions. Specifically,
we claim that retailers from certain business domains who would like to
attract more business from cryptocurrency users could come together to
form a private PCN that can be controlled and managed by them so that
it can better satisfy customers’ needs. In what follows, we explain the
shortcomings of LN and justify the need for such a private PCN:

● Network connectivity: In LN there is a basic assumption that a
payment network can be formed by ad-hoc connections and without
a specific topology plan. This ad-hoc assumption is not effective since
there will be a certain probability of connectivity success which
means that the final payment network may not be connected. The
proposed topology for a private PCN needs to guarantee network
connectivity.

● Network topology: Even though the concept of LN is very attractive,
its current structure requires the deployment of relay nodes between
payers and payees. These relay nodes will eventually become major
hubs in the network creating the risk of experiencing DDoS attacks to
stop the payments in the network at any time. Another risk here is
regarding customer privacy. If these big relay nodes are compro
mised, the attackers can easily analyze the payments passing through
them which will expose the privacy of the customers using them as
relays. The proposed topology for a private PCN needs to carry P2P
features to prevent these issues.

● Investment for each channel: In LN, we mentioned that there is no
guarantee for network connectivity. However, forming a connected
network for our proposed PCN will not be free. A valid channel
means two mandatory on-chain transactions. Hence, the number of

channels established by a node should be kept in an optimum level,
namely, high enough to keep the transaction requests in the network
to flow through but low enough to decrease the total on-chain
transaction fees.

● Partial usage of available payment capacity: A node in our pro
posed PCN may assume that it needs, say 100 Bitcoins, worth of total
transaction volume for its own business. However, that capacity will
be used by other nodes which use this node as a relay. Thus, at a
given time, only a portion of the capacity will be available for the
node itself to accept transactions from its own customers. This im
plies that one should invest much more than its anticipated trans
action volume.

● Diminishing channel capacity over time: The capacity of channels
in LN diminishes over time and thus some transactions which are set
to use those channels may get stuck. Therefore, there may not be any
payment guarantee as already shown in (diar.co, 2018). For
resolving this issue in the proposed PCN, either more investment
should be planned in the channels in advance or there should be a
reverse payment to balance the forward capacities. The proposed
topology needs to guarantee that any payment will reach its desti
nation at any time.

Based on these discussions, our problem can be formally defined as
follows: Let us assume N nodes (retailers). Let us also assume that a PCN
among these retailers can be represented as a graph G = (V, E), where V
represents nodes (of N retailers) and E represents all payment channels
among N retailers. Every edge between retailers has a capacity that denotes
the amount of depositable Bitcoins. We assume that every vertex (retailer) v
∈ V will make an initial total investment that represents the maximum Bit
coins that can be transmitted or forwarded over it. In other words, we are
considering the maximum possible instantaneous payments that can be made
from a retailer or forwarded by it. This can also be described as the maximum
possible business capacity of a retailer within a certain time. Note that we
assume that for each retailer there are N − 1 registered customers making a
unique transaction to another retailer. So, for example from Node1, there
exists N − 1 transactions to other N − 1 retailers.

Based on these inputs, how can we create a scalable virtual topology
PCN among the retailers in such a way that 1) the total investment made
by a retailer for creating channels with its neighbors will be minimized;
2) the topology will be close to an ideal P2P topology with no hub nodes
but still satisfy all payment requests; and 3) the standard deviation of
total investment costs among the retailers will be minimized to ensure
fairness.

4. Proposed heuristic algorithm

In this section, we describe our proposed heuristic in more detail.

4.1. Approach overview

Our heuristic of PCN formation is based on the idea of in-advance
planning of payments and flows. As every retailer has an idea of their
business capacity and expectation, we use it to plan payment flows
among the customers and retailers. We first start distributing the flows
in advance from various retailers to others in the best way we can (i.e.,
fair load and P2P distribution) assuming that there are already available
channels among them at the beginning. We then look at the final used
channels among retailers, set up the actual off-chain links and remove
any other channels.

In this heuristic, finding the path between a source and a destination
retailer is crucial. When we look at today’s LN, if there is a path between
the payer and the payee, the payer can use that path if it is convenient to
use, meaning, if there is enough capacity on the planned path. Other
wise, the other alternative is to establish a direct channel with the payee.
However, in that case, there will be on-chain transaction fees for
opening and closing channels. Therefore, one needs to weigh these two

E. Erdin et al.

Journal of Network and Computer Applications 180 (2021) 103021

5

options when finding a path.
We follow a similar rationale for our heuristic. Specifically, if there is

a path from one retailer to another one, our heuristic uses that path by
relying on a shortest path algorithm, namely Dijkstra’s. If there is none,
we open a new channel. Additionally, if total cost on the path will start
to create inconveniences for intermediate retailers (i.e., adding a burden
of forwarding), then we force our approach to open a new channel by
adjusting the edge weights in the Dijkstra’s shortest path algorithm. In a
sense, we strive to find a sub-optimal approach for opening channels so
that the participants of the network neither suffer from unfair load
distribution nor pay excessive on-chain transaction fees. Next, we
describe our heuristic details.

4.2. Finding paths

In order to find the best possible routes, Dijkstra’s shortest path al
gorithm is used (Dijkstra, 1959). In Dijkstra’s algorithm, the path with
the lowest total weight is found between a source and a destination
node. In our case, we have an a priori payment list. From the payment
list, transactions are read one by one. At each reading, meaning itera
tion, a shortest (i.e., lowest weight) path from the source to the desti
nation is found. After a path is found, the weights on the edges are
updated according to the flow (i.e., payment amount) which will be
detailed in the next subsection. The algorithm is shown in Algorithm 1
which utilizes the notation in Table 1.

Algorithm 1
Network Establishment

1: Input: P=Payment List, H=fully connected directed graph, Lc = Link establishment
cost, Wi = New connection forcing cost

2: for every edge, e, in H do
3: He.weight = Wi + Lc
4: He.flow = 0
5: end for//Initial assignments are done
6: for every payment in P do//A payment is defined by a source, a destination and the

transfer amount Ta
7: Path = ShortestPath(H, from = a, to = b)
8: for Each edge, e, in Path do
9: He.flow + = Ta
10: He.weight = Wi + He.flow
11: end for
12: end for
13: for All edges in H do
14: if He.flow = 0 then
15: Remove edge from H
16: end if
17: end for
18: Output: H

Note that here the payments are picked in a round-robin fashion (i.e.,
finish a particular retailer’s payments and move on to the next) which
may greatly influence the resultant topology as we followed a certain
order. This may create unfair load distributions and undesirable

topologies.
In order to come up with a topology in which the loads are more

evenly distributed, the randomly selected customers execute their
transactions in a random round-robin fashion. Specifically, in order to
minimize the impact of dependence on the order, at each round, the
order of the retailers is renewed with a new distribution. This approach
is shown in Algorithm 2.

Algorithm 2
List Establishment.

1: Input: S=Set of Retailers
2: while All required payments are not fulfilled do
3: TempS=S
4: while TempS is not Empty do
5: Pick 2 random retailers (a,b) from TempS
6: if Transaction from a to b was not fulfilled then
7: Add a as source, b as target in P
8: Remove (a,b) from TempS
9: end if
10: end while
11: end while
12: Output: P=Payment List

According to this approach, first, two nodes are selected randomly,
one of which is the source, a, and the other is the destination, b. If there
is an intended transaction from a to b, and if it is not fulfilled yet, a
transaction from a to b with the transaction amount is added to a pay
ment list, P. Afterward, a, b pair is removed from the list of retailers. This
removal is important because we want every node to be visited equally
either as a source or as a destination. Whenever every retailer visit is
complete, meaning the list of retailers is an empty set, the procedure is
repeated. This new random list of payments is then fed to Algorithm 1.

4.3. Defining edge weights

As mentioned, after finding a path the edge weights need to be
updated to inject the desired influence to topology formation. To ach
ieve this, we define a sophisticated weight function, on an edge, e.g.,
the weight between A and B, WAB. Specifically, three components of the
WAB are defined: link establishment cost, transaction cost, and new
connection forcing cost. Below, we explain them next in more detail.

Link Establishment Cost (Lc): In LN, establishing a channel means
doing at least two on-chain transactions on Bitcoin blockchain, which
incur on-chain transaction fees. For a fully connected mesh network of N
nodes, there will be N × (N − 1)/2 edges. With increasing N, the total fee
paid by the network participants will be tremendously high. Instead of
full connection in the network, a lower number of edges will be more
acceptable as it lowers the total on-chain transaction fee. The edges
should be reused cleverly to distribute the transactions among nodes in
an acceptable way.

In order to encourage the reuse of the edges, a parameter called
LinkCost, denoted as Lc is introduced. Lc mainly relates to the on-chain
transaction fee. In the proposed heuristic, all edges in the network
have a non-negative Lc set to some value. Whenever an edge is used (i.e.,
there is a flow on the edge), the Lc on that edge is nullified (set to 0 to
indicate that the channel is already open). So further transactions can
use that edge on their paths. Nullifying the Lc encourages other trans
actions in such a way that other transactions will prefer low-cost edges
instead of opening a new one.

Transaction Cost: When an edge is used (or channel is established),
Lc will be nullified, and thus all later transactions will tend to use that
channel since other yet-never-used channels will have a higher weight
due to higher Lc. As some edges will have lower weight due to nullified
Lc, they will be used heavily. This high usage of the channel contradicts
with the aim of establishing a flat network to execute all of the trans
actions. For that reason, whenever there is a transaction through an

Table 1
Notations and their explanations.

Symbol Meaning

H Directed Graph
He Edge e in graph H
Lc Link establishment cost
Wi New connection forcing cost
γ Parameter to control unfairness between the nodes
Ta Transaction amount
TAB Transaction amount on edge (A, B)
He.weight Weight of edge e
He.flow Flow on edge e
UAB Binary var. represents existence of flow on edge (A, B)
E Initial number of edges in the experiments

E. Erdin et al.

Journal of Network and Computer Applications 180 (2021) 103021

6

edge, the amount transferred incurs a weight on that edge which is
basically a transaction cost induced by channel usage. So, when there are
edges with heavier loads, the transactions will start to look for new
routes or open new channels. This helps to distribute the loads more
evenly. Hence the weight, WAB, is revised as follows to accommodate
this transaction cost:

WAB = Lc(1 − UAB) +
∑

TAB (1)

where UAB is a binary variable and equals to 1 if there happens to be a
flow on edge AB anytime during the procedure, and 0 otherwise, and TAB
is the amount of all transactions (from all nodes in the network) passing
on edge (A, B).

New Connection Forcing Cost: In some cases, when the links are
established, during the algorithm run, the future transactions in the list
tend to use those links which will increase the investment need to be
made by intermediate nodes for maintaining these links. In such cases,
we need an additional force to further increase these links’ weights so
that the Dijkstra’s algorithm will not choose these links anymore.

As an example consider an initially fully connected mesh network
topology shown in Fig. 3(a) where all of the edge weights are initialized
accordingly, with Lc = 500. If we look at the established links after the
first run of payments, we see that half of the nodes initiate transactions
to the remaining half of the nodes randomly in one hop as shown in
Fig. 3(b), and the effect of Lc is nullified and the weights are updated
with the flows on the edges. Note that, for simplicity, not all of the Lc =

500 wt are shown in the figures. In the second round of transactions,
new randomly selected half of the nodes will initiate new transactions to
other nodes. This will form new connections as shown in Fig. 3(c) but
still the opened links will be in use. However, now unused edges in the
topology will still have a higher weight of Lc (500 in this example), while
other edges will have the weights only created by the transaction
amounts. In the later rounds, no matter how random the nodes are
picked, all of the transactions will follow the already established edges
since they will have lower weights due to their Lc being set to 0. Thus,

the topology will continue to be as shown in Fig. 3(c), resulting in no
significant change. For a larger N, we will observe longer paths in the
network and the topology will stay unchanged although more trans
actions are added. In order to prevent transactions traversing always
through the same paths, we introduce a constant weight, Wi, for each
edge to increase the total weight on the path and thus surpass the edges
with Lc ((i.e., forcing new connections). In this way, the longer paths will
be hampered. Thus, the weight on edge (A, B) will be updated as follows:

WAB = Lc(1 − UAB) +
∑

TAB + Wi (2)

The effect of Wi can be better seen with an example shown in Fig. 4.
In this sample experiment Lc is set to 3000, and the number of nodes, N,
is 20. The payment lists are the same for both of the resulting topologies.
Basically, without Wi, we will get a topology in Fig. 4(a). Introducing Wi
and setting it to 1000 causes the topology to change to the one in Fig. 4
(b). We argue that Fig. 4(a) is not a desired topology because it is weak
against node failures, and some nodes are highly centralized.

5. Extending the heuristic for privacy guarantees

The higher the number of hops a payment is traversing through, the
better the privacy is. This is inspired by the idea of privacy in the Tor
network where each message needs to traverse at least 3-hops (Dingle
dine et al., 2004). In LN the payments are transferred from a source to a
destination within encapsulated messages. If a node in the center knows
that it is the node in between the source and the destination it will be
able to gather information about the users. This also comes with addi
tional traceability of the payments because there is a possibility that the
nodes can be traced back from the Bitcoin network. However, if at least
3-hops transaction mechanism is utilized or enforced by the users, a
node on the route of the payment will not be able to get a clear view of
the source and the destination about the payment (Dingledine et al.,
2004).

While the Dijkstra’s shortest path algorithm is highly efficient in
finding the shortest path from a source to a target in weighted directed
graphs, it cannot guarantee a minimum number of hops for a path. In
order to increase the privacy of payments, we propose an extension to it
by relying on re-routing. Specifically, the proposed extension method is
comprised of two steps. In the first step, Dijkstra’s algorithm is run with

Fig. 3. Initially fully connected mesh network topology.

Fig. 4. Effect of Wi for a network of 20 nodes, Lc = 3000.

Fig. 5. Explanation of the rerouting mechanism.

E. Erdin et al.

Journal of Network and Computer Applications 180 (2021) 103021

7

the default configuration as defined Algorithm 1, and all the shortest
paths for payments are found. Note that, in this configuration, there is no
dictated number of hops requirement. Among all of those paths, the ones
with lower than R hops are saved in a temporary list, which will be used
in the second step of the method.

In the second step, the shortest path algorithm is run again for the
payments in the temporary list. However, in this case, instead of finding
the shortest path, k-shortest paths algorithm is utilized. k-shortest path
algorithm basically lists top k shortest paths from a source to destination
which requires more computation. The computational complexity of the
k-shortest path algorithm is shown to be O(E + kNlogN) (Bouillet et al.,
2007) where E represents the number of edges and N is the number of
vertices in the graph, and k is the number of hops required. The goal here
is to look for paths with at least R-hops, essentially forcing the paths that
are in our list to perform a re-routing. Among all of the paths with R or
more hops, the path with the minimum weight is picked as the solution.
This process is hypothetically shown in Fig. 5. Based on this figure,
during the Dijkstra’s algorithm run, a 3-hop path between node-1 and
node-4 is found as shown in Fig. 5(a). As the iterations carry on, a 1-hop
algorithm is found between node-1 and node-5 as shown in Fig. 5(b) and
in the next iteration another 3-hop path is found between node-1 and
node-7 as illustrated in Fig. 5(c). Thus, when the first step is over, the
re-routing with the k-shortest path algorithm starts for the 1-hop path
found in Fig. 5(b). This 1-hop path should be forced for a re-route via
more than R hops between node-1 and node-5 as shown in Fig. 5(d).

One might question why the first step of the proposed method is not
directly utilizing k-shortest paths algorithm instead of following a two-
step approach. This choice is due to the computational complexity
that comes with k-shortest path algorithm with the initial topology. It
takes a lot of time to find a path for the payments essentially turning the
approach into a brute force search. The proposed privacy guaranteed
method is shown in Algorithm 3.

Algorithm 3
Network Establishment for Privacy Guarantees.

1: Input: P=Payment List, H=fully connected directed graph, Lc = Link establishment
cost, Wi = New connection forcing cost

2: for every edge, e, in H do
3: He.weight = Wi + Lc
4: He.flow = 0
5: He.Tempflow = 0
6: end for//Initial assignments are done
7: for every payment in P do//A payment is defined by a source, a destination and the

transfer amount Ta
8: Path = ShortestPath(H, from = a, to = b)
9: if length(Path) < R then

10: Add payment to Temp list
11: for Each edge, e, in Path do
12: He.Tempflow + = Ta
13: He.weight = Wi + He.Tempflow + He.flow
14: end for
15: else
16: for Each edge, e, in Path do
17: He.flow + = Ta
18: He.weight = Wi + He.flow + He.Tempflow
19: end for
20: end if
21: end for
22://Remove effect of He.Tempflow in H
23://Nullify Tempflow and make edge weights Lc + Wi of edges with only positive Tempflow
24: for every payment in Temp do
25: AllPaths = AllSimplePaths(H, from = a, to = b)
26: Path = x where x ∈ AllPaths if length(x) ≥ R and weightx is the minimum
27: for Each edge, e, in Path do
28: He.flow + = Ta
29: He.weight = Wi + He.flow
30: end for
31: end for
32: for All edges in H do

(continued on next column)

Algorithm 3 (continued)

33: if He.flow = 0 then
34: Remove edge from H
35: end if
36: end for
37: Output: H

6. Evaluation

In this section, we describe the experiment setup, performance
metrics and discuss the evaluation results.

6.1. Experimental setup and implementation

N nodes (retailers) are assumed in the network. A single customer is
assumed to be attached to a single node and it will create 10 unit worth
transactions to every other node. So, the supply from a single customer
to the network is (N − 1) × 10. Total money traversing in the network is
N × (N − 1) × 10. In LN channel formation, the peers can independently
decide on the amount they want to put in the channel. However, for the
completeness of the study, we assume that peers of a channel put the
same amount in the channel they created. The proposed approach is
implemented in Python and its performance is assessed extensively
through various experiments. All the experiments are carried out on a
computer with an Intel Xeon E5-2630 v4 @ 2.20 GHz CPU and 64 GB of
RAM.

6.2. Metrics and benchmarks

The results of the experiments are assessed based on the following
metrics:

● Betweenness Centrality of nodes: Betweenness centrality of a node
in a network is a measurement showing how many times a node is
visited while traveling between other nodes using the shortest path
traversal. In a hub-and-spoke network model, hubs will have the
highest betweenness score.

● Total Capacity of the Network: This metric shows the total amount
of investment to be put by the vendors to the channels for the for
mation of the network.

● Number of Edges: This metric shows the number of edges established
in the resultant topology.

● Standard deviation among the nodes: This metric shows the stan
dard deviation among the outbound flows of the nodes. A high
standard deviation hints that some of the nodes are used more like a
relay compared to the other nodes. A zero standard deviation means
all of the loads on the nodes are equal.

● Total Computation time: This metric is the measure to show how
long it takes, in seconds, to finish all necessary computations for the
final results.

● Utilization: This metric is the ratio of the total flow in the network to
the total capacity of the network. It is calculated by dividing the sum
of all transactions to sum of all established capacity in the network.

● Histogram of Number of Hops: This metric shows the histogram of
the transactions in terms of the number of hops they follow calcu
lated in percentage.

● Cut Nodes: Cut nodes are the nodes whose removal entirely makes
the network disconnected. The higher the better for a topology since
this means more nodes need to be removed/failed to disconnect the
network.

We compared our approach against certain benchmarks and methods
as listed below:

E. Erdin et al.

Journal of Network and Computer Applications 180 (2021) 103021

8

● MIOP model: The results of the heuristic are compared with an
optimization model in (Erdin et al., 2018).

● Random network topology: The results of the heuristic are also
compared with the results of a randomly connected network. The
heuristic is run on the random network to get the flows in the
network.

6.3. Experiment results and discussion

6.3.1. Comparison of heuristic with the MIOP model
In this section, the results of the proposed heuristic approach are

presented and compared with that of the MIOP model studied in (Erdin
et al., 2018). The objective is to assess our approach’s performance with
respect to the ideal one. The optimization model was solved by Gurobi
Solver. However, in the setup of this experiment, only 10 nodes are used
since the MIOP model does not scale beyond 10 and thus in practice is
not useable. Only for this experiment, different than the general scenario
assumption, we assumed that these 10 nodes are serving to 80 customers
which are distributed to these nodes randomly. Each customer sends
money to 6 different nodes and each is of a value of 10 units. Hence, the
total supply by the customers to the network is 4800 units. From the
experiment results of the MIOP model, best ones are used in regards to
betweenness centrality, standard deviation and number of edges. For the
results of the heuristic approach, the same scenario is inherited. All the

related results are shown in Fig. 6. In those figures, γ is a control
parameter for the unfairness among node outbound flows, and linkcost is
the link establishment cost, Lc in MIOP.

As can be seen from Fig. 6(b) and (c), our heuristic’s performance
almost matches the performance of the MIOP solution in terms of total
capacity and edges. It is also only 20% short of the utilization of MIOP
(Fig. 6(d)). For the standard deviation metric, as MIOP has a significant
control on unfairness, the standard deviation in MIOP solutions is lower
than that of the heuristic approach as seen in Fig. 6(e). However, when
Wi is 100 and Lc is 650 in the heuristic approach, standard deviation
comes to a more comparable level, where the number of edges has a
significant effect on this. This is because as the number of edges in
creases, the flows tend to be distributed more evenly since the flows can
find shorter routes compared to a network with a lower number of edges.
Finally, compared to MIOP solutions the betweenness centrality for our
approach in Fig. 6(a) is slightly increasing but still maintains a topology
close to P2P.

The obvious advantage of our approach is computational overhead.
It reduces the computational time 100 to thousands folds (i.e., it scales
much better) while still getting very close to the MIOP’s overall per
formance (Fig. 6(f)). In summary, the proposed approach provides the
same features as MIOP in a much faster/scalable manner but with some
slight deviation from an ideal P2P topology.

Fig. 6. Optimal vs. Heuristic Comparisons.

Fig. 7. Ideal parameter selection.

E. Erdin et al.

Journal of Network and Computer Applications 180 (2021) 103021

9

6.3.2. Ideal Parameter Selection for the heuristic
Apparently, picking different parameters highly affects the resulting

network topology for the heuristic approach. In this section, we con
ducted a series of experiments to determine the ideal parameters for our
heuristic to run. The experiments are evaluated for different Lc and Wi
cases and a fixed number of nodes, N = 100, which yields traversal of
99000 units of money in the network, with an exact amount of 990 units
per node. The results are shown in Fig. 7.

Considering all of the different parameters visited in the course of
this experiment, with the payment scenario assumption and under 100
nodes, we obtain a good topology when Lc is 4000 and Wi is 700. We call
the topology good because, the standard deviation is around 600, with
an average load per node around 3000. The total number of edges in the
network is close to 300 implying on average every node has 6 connec
tions. Additionally, the maximum number of hops does not exceed 6 and
resides around 3. These parameters are used in the remaining

experiments.

6.3.3. Scalability of the heuristic
In this experiment, we assessed the scalability features of the pro

posed heuristic. Specifically, the heuristic approach is run with different
numbers of nodes, namely 250 and 500 nodes. However, as the number
of nodes increases, the computation time required to finish the calcu
lations increases drastically due to the time complexity of Dijkstra al
gorithm which is, if implemented in simple form, O(|E|log|N|), where E
is the number of edges and N is the number of nodes. Since our heuristic
starts with the assumption that all nodes are connected to each other, the
number of edges becomes E = N2. So the time complexity of the heuristic
translates into O(N2logN). In order to decrease the effect of the
assumption of an initially fully connected mesh network, we also created
networks with random initial connections as an alternative approach for
comparison. To differentiate these two, in the figures, the initial number

Fig. 8. Scalability test results.

Fig. 9. Results for the Privacy aware method for 500 nodes.

E. Erdin et al.

Journal of Network and Computer Applications 180 (2021) 103021

10

of edges are depicted with the E parameter where E = All indicates our
approach with a fully connected network.

The results are shown in Fig. 8. Pre-pruned topologies (i.e., randomly
connected) give an advantage in terms of total computation time, as
expected, especially with 500 nodes. However, other results are gener
ally slightly better for the initially fully connected mesh network setup.
In particular, standard deviation of our approach with a fully connected
topology is significantly reduced. Additionally, based on the results, we
argue that making random connections may not degrade the total in
vestment capacity in the network but comes with unfairness among the
nodes as standard deviation among nodes changes too much.

As part of this experiment, we also looked at the number of cut nodes.
Fig. 8(g) represents the results of the cut nodes for different parameters.
As can be seen, when the network is randomly connected, we observe a
lower number of cut nodes compared to our heuristic topology. That
means, for a randomly connected network, the possibility of taking
down the network is easier because attacking fewer nodes will be
enough. This is not the case in our heuristic with the fully connected
mesh network as its betweenness centrality is more stable and thus more
nodes need to be taken down in order to disconnect the network. As the
network size doubles, this number also increases linearly indicating that
our heuristic maintains a similar behavior as new nodes are added. This
is one of the main strengths of our approach in terms of producing a good
topology against DDoS attacks. We can conclude that up to a certain
number fully connected topology might be a better choice. However,
when we move beyond a certain number of nodes, for time savings, pre-
pruned topologies may be preferred based on their cut node
performance.

6.4. Heuristic with privacy considerations

In this subsection, we present results related to privacy extension of
our approach presented in Section 5 which guarantees payment privacy
with at least 3-hop payments. In these experiments, we compared two
other baseline approaches with ours: The first baseline approach utilizes
our Dijkstra heuristic without any privacy guarantees starting with a
fully connected initial topology shown with E = All in the figures. The
second baseline is the same as the first except that it starts with a
randomly connected initial topology with 4500 edges (shown as E =
4500). Our approach which guarantees privacy is shown as E = All,
Reflow. We conducted the experiments with 500 nodes. The results are
shown in Fig. 9 for the following metrics: betweenness centrality, total
investment capacity, the total number of edges, the number of hops, the
standard deviation and total processing time.

As seen in Fig. 9(a), with a randomly connected initial topology, the
betweenness centralities of the nodes change drastically, which is ex
pected. This is because with the random connection some of the nodes
will be apparently dominant compared to others. However, betweenness
centrality of the initially fully connected mesh network topologies gives
a more flat measure. This behavior assures that the dominance of some
of the nodes is decreased significantly. The initial fully connected mesh
network topology and pseudo-random payment distribution is effective
in getting that result. However, our approach with privacy guarantees is
slightly better than the one without privacy for betweenness centrality.
As shown in 9(c), while the number of edges did not change, the
betweenness centrality measure is maintained. This is because some of
the channels opened in the first step of the privacy approach are dis
carded in the second step which eventually helped in establishing a more
balanced network.

The other results for the experiment with the privacy guarantee are
promising too. Although the number of edges does not change, the main
factor for the slight increase in the total capacity with respect to the
approach where privacy is not guaranteed is the forcing of minimum 3
hops in the transfers which causes each node to invest more, meaning an
additional investment for the others’ payments too. Nonetheless, our
privacy-guaranteed approach comes with the best standard deviation,

even surpassing the non-privacy one as shown in Fig. 9(e). The one-time
cost for these improvements comes with some time overhead as seen in
Fig. 9(f). The total calculation time for the setup with the random
connection network is the lowest because the complexity of the Dijkstra
is directly related to the number of edges. For the privacy guaranteed
approach, the time is the highest because all of the 1 and 2 hops pay
ments were converted to at least 3 hops transfers by the k-shortest path
algorithm which in turn brings an additional overhead to the total
computation time.

7. Conclusion

Cryptocurrency based payment channel networks using the idea of
off-chain payments has been emerging recently. This is not only because
they reduce confirmation times but they also let users send micro-
payments in a very affordable way. Therefore, forming a reliable and
scalable P2P payment network is an open question assuming a private
consortium of retailers (nodes). In this study, based on some scenarios
and assumptions, we developed a heuristic approach to form such a
payment network topology using Bitcoin’s off-chain concept and
Dijkstra’s shortest path routing and compared the results with the results
of an optimal solution. We further extended this heuristic to guarantee
privacy-aware routing in the network with at least 3 hops and compared
its performance with the non-privacy case.

Compared to the optimal solution, the heuristic reduces the
computational time significantly. Additionally, the fair distribution of
the load among nodes, centrality measures and the total number of
edges obtained in the networks are satisfying to ensure a truly P2P
network topology features. When privacy is to be guaranteed with at
least 3 hops, the results show that the network topology becomes even
better in terms of the considered topological metrics with some addi
tional computation time overhead.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgment

This study was partially funded by the National Science Foundation
under award number NSF-CNS-1663051.

References

Bitcoin wiki. Bitcoin Contract. en.bitcoin.it/wiki/Contract.
BitInfoCharts, 2017. bitinfocharts.com/comparison/bitcoin-transactionfees.
Bloomberg, 2017. www.bloomberg.com/view/articles/2017-11-14/bitcoin-s-high-tra

nsaction-fees-show-its-limits.
Bouillet, E., Ellinas, G., Labourdette, J.F., Ramamurthy, R., 2007. Path Routing–Part 2:

Heuristics.
Cebe, M., others, 2018. Block4forensic: An integrated lightweight blockchain framework

for forensics applications of connected vehicles. IEEE Commun. Mag. 56 (10), 50–57.
diar.co, 2018. Lightning Strikes, but Select Hubs Dominate Network Funds. https://diar.

co/volume-2-issue-25.
Dijkstra, E.W., 1959. A note on two problems in connexion with graphs. Numer. Math. 1

(1), 269–271. https://doi.org/10.1007/BF01386390.
Dingledine, R., Mathewson, N., Syverson, P., 2004. Tor: the second-generation onion

router. In: SSYM’04. USENIX Association. Berkeley, CA, USA: 21–21.
Erdin, E., Cebe, M., Akkaya, K., Solak, S., Bulut, E., Uluagac, S., 2018. Building a private

Bitcoin-based payment network among electric vehicles and charging stations. IEEE
International Conference on Blockchain.

Ethereum, 2019. BOLT 4: Onion Routing Protocol. https://github.com/lightningnetwor
k/lightning-rfc/blob/master/04-onion-routing.md.

Even, S., Itai, A., Shamir, A., 1975. On the complexity of time table and multi-commodity
flow problems. IEEE 184–193.

Hackius, N., Petersen, M., 2017. Blockchain in logistics and supply chain: trick or treat?
epubli 3–18.

Haghani, A., Oh, S.C., 1996. Formulation and solution of a multi-commodity, multi-
modal network flow model for disaster relief operations. Transport. Res. Pol. Pract.
30 (3), 231–250.

E. Erdin et al.

http://en.bitcoin.it/wiki/Contract
http://bitinfocharts.com/comparison/bitcoin-transactionfees
http://www.bloomberg.com/view/articles/2017-11-14/bitcoin-s-high-transaction-fees-show-its-limits
http://www.bloomberg.com/view/articles/2017-11-14/bitcoin-s-high-transaction-fees-show-its-limits
http://refhub.elsevier.com/S1084-8045(21)00048-5/sref4
http://refhub.elsevier.com/S1084-8045(21)00048-5/sref4
http://refhub.elsevier.com/S1084-8045(21)00048-5/sref5
http://refhub.elsevier.com/S1084-8045(21)00048-5/sref5
https://diar.co/volume-2-issue-25
https://diar.co/volume-2-issue-25
https://doi.org/10.1007/BF01386390
http://refhub.elsevier.com/S1084-8045(21)00048-5/sref8
http://refhub.elsevier.com/S1084-8045(21)00048-5/sref8
http://refhub.elsevier.com/S1084-8045(21)00048-5/sref9
http://refhub.elsevier.com/S1084-8045(21)00048-5/sref9
http://refhub.elsevier.com/S1084-8045(21)00048-5/sref9
https://github.com/lightningnetwork/lightning-rfc/blob/master/04-onion-routing.md
https://github.com/lightningnetwork/lightning-rfc/blob/master/04-onion-routing.md
http://refhub.elsevier.com/S1084-8045(21)00048-5/sref11
http://refhub.elsevier.com/S1084-8045(21)00048-5/sref11
http://refhub.elsevier.com/S1084-8045(21)00048-5/sref12
http://refhub.elsevier.com/S1084-8045(21)00048-5/sref12
http://refhub.elsevier.com/S1084-8045(21)00048-5/sref13
http://refhub.elsevier.com/S1084-8045(21)00048-5/sref13
http://refhub.elsevier.com/S1084-8045(21)00048-5/sref13

Journal of Network and Computer Applications 180 (2021) 103021

11

Hash Time Locked Contracts. en.bitcoin.it/wiki/Hash_Time_Locked_Contracts.
Herrera-Joancomarti, J., Navarro-Arribas, G., Pedrosa, A.R., Cristina, P.S., Garcia-

Alfaro, J., 2019. On the Difficulty of Hiding the Balance of Lightning Network
Channels. AsiaCCS.

Karakostas, G., 2008. Faster approximation schemes for fractional multicommodity flow
problems. ACM Trans. Algorithm 4 (1), 13.

Kuo, T.T., others, 2017. Blockchain distributed ledger technologies for biomedical and
health care applications. J. Am. Med. Inf. Assoc. 24 (6), 1211–1220.

Malavolta, G., others, 2017. Concurrency and privacy with payment-channel networks.
In: ACM, pp. 455–471.

Martinazzi, S., 2019. The Evolution of Lightning Network’s Topology during its First
Year and the Influence over its Core Values arXiv preprint arXiv:1902.07307.

Miller, A., Bentov, I., Kumaresan, R., McCorry, P., 2017. Sprites: Payment Channels that
Go Faster than Lightning. CoRR abs/1702.05812.

Poon, J., Dryja, T., 2015. The Bitcoin Lightning Network: Scalable Off-Chain Instant
Payments. Technical Report (draft).

Prihodko, P., others, 2016. Flare: an Approach to Routing in Lightning Network.
Raiden, 2018. raiden.network/.
Rohrer, E., Malliaris, J., Tschorsch, F., 2019. Discharged payment channels: quantifying

the lightning network’s resilience to topology-based attacks. In: 2019 IEEE European
Symposium on Security and Privacy Workshops.

Roos, S., others, 2017. Settling Payments Fast and Private: Efficient Decentralized
Routing for Path-Based Transactions arXiv preprint arXiv:1709.05748.

Seres, I.A., Gulyás, L., Nagy, D.A., Burcsi, P., 2019. Topological Analysis of Bitcoin’s
Lightning Network arXiv preprint arXiv:1901.04972.

Team LN. Atomic Cross-Chain Trading….
Thomas, S., Schwartz, E., 2015. A Protocol for Interledger Payments interledger.org/

interledger.pdf.
TrustNodes, 2018. Lightning Network DDoS Sends 20% of Nodes Down trustnodes.com/

2018/03/21/lightning-network-ddos-sends-20-nodes.
Zebpay, 2017. Bitcoin the Next Big Thing since the Internet Itself: Christine Lagarde. htt

ps://blog.zebpay.com/bitcoin-the-next-big-thing-since-the-internet-itself-christine
-lagarde-4d4ba71d80dc.

Enes Erdin is an Assistant Professor in the Computer Science Department at University of
Central Arkansas, Conway. He conducts research in the areas of hardware security,
blockchain technology, and cyber-physical systems. Erdin received a Ph.D. in Electrical

and Computer Engineering from Florida International University, Miami where he was a
NSF CyberCorps fellow.

Mumin Cebe is an Assistant Professor in the Computer Science Department at Marquette
University, Milwaukee. He conducts research in the areas of blockchain, wireless
networking, and security/privacy that relates to the Internet of Things and cyber-physical
systems, particularly in smart grids and vehicular networks. Cebe received a Ph.D. in
Electrical and Computer Engineering from Florida International University, Miami.

Kemal Akkaya (A′08–M′08–SM′15) received the Ph.D. degree in computer science from
the University of Maryland, Baltimore, MD, USA, in 2005. He joined, as an Assistant
Professor, the Department of Computer Science, Southern Illinois University Carbondale
(SIU), Carbondale, IL, USA, where he was an Associate Professor from 2011 to 2014. He
was also a Visiting Professor with George Washington University, Washington, DC, USA, in
2013. He is currently a Professor with the Department of Electrical and Computer Engi
neering, Florida International University, Miami, FL, USA. His current research interests
include security and privacy, energy aware routing, topology control, and quality of ser
vice issues in a variety of wireless networks. He was the recipient of the Top Cited Article
Award from Elsevier in 2010. He is currently an Area Editor for the Elsevier Ad Hoc
Network journal, and is on the Editorial Board of the IEEE Communication surveys and
tutorials.

Eyuphan Bulut (M′08) received the Ph.D. degree in computer science from Rensselaer
Polytechnic Institute, Troy, NY, USA, in 2011. He was then a Senior Engineer with Mobile
Internet Technology Group group, Cisco Systems, Richardson, TX, USA, for 4.5 years. He is
currently an Assistant Professor with the Department of Computer Science, Virginia
Commonwealth University, Richmond, VA, USA. His research interests include mobile and
wireless computing, network security and privacy, mobile social networks, and crowd-
sensing. He has been an Associate Editor for IEEE Access.

Selcuk Uluagac (suluagac@fiu.edu) is an associate professor in the Department of Elec
trical and Computer Engineering at Florida International University, Miami, where he
leads the Cyber-Physical Systems Security Lab. His research focuses on security and pri
vacy for the Internet of Things and cyberphysical systems, and he has many publications
on the practical and applied aspects of these areas. Uluagac received a Ph.D. in electrical
and computer engineering from the Georgia Institute of Technology, Atlanta.

E. Erdin et al.

http://en.bitcoin.it/wiki/Hash_Time_Locked_Contracts
http://refhub.elsevier.com/S1084-8045(21)00048-5/sref15
http://refhub.elsevier.com/S1084-8045(21)00048-5/sref15
http://refhub.elsevier.com/S1084-8045(21)00048-5/sref15
http://refhub.elsevier.com/S1084-8045(21)00048-5/sref16
http://refhub.elsevier.com/S1084-8045(21)00048-5/sref16
http://refhub.elsevier.com/S1084-8045(21)00048-5/sref17
http://refhub.elsevier.com/S1084-8045(21)00048-5/sref17
http://refhub.elsevier.com/S1084-8045(21)00048-5/sref18
http://refhub.elsevier.com/S1084-8045(21)00048-5/sref18
http://refhub.elsevier.com/S1084-8045(21)00048-5/sref19
http://refhub.elsevier.com/S1084-8045(21)00048-5/sref19
http://refhub.elsevier.com/S1084-8045(21)00048-5/sref20
http://refhub.elsevier.com/S1084-8045(21)00048-5/sref20
http://refhub.elsevier.com/S1084-8045(21)00048-5/sref21
http://refhub.elsevier.com/S1084-8045(21)00048-5/sref21
http://refhub.elsevier.com/S1084-8045(21)00048-5/sref22
http://raiden.network/
http://refhub.elsevier.com/S1084-8045(21)00048-5/sref24
http://refhub.elsevier.com/S1084-8045(21)00048-5/sref24
http://refhub.elsevier.com/S1084-8045(21)00048-5/sref24
http://refhub.elsevier.com/S1084-8045(21)00048-5/sref25
http://refhub.elsevier.com/S1084-8045(21)00048-5/sref25
http://refhub.elsevier.com/S1084-8045(21)00048-5/sref26
http://refhub.elsevier.com/S1084-8045(21)00048-5/sref26
http://refhub.elsevier.com/S1084-8045(21)00048-5/sref28
http://refhub.elsevier.com/S1084-8045(21)00048-5/sref28
http://refhub.elsevier.com/S1084-8045(21)00048-5/sref29
http://refhub.elsevier.com/S1084-8045(21)00048-5/sref29
https://blog.zebpay.com/bitcoin-the-next-big-thing-since-the-internet-itself-christine-lagarde-4d4ba71d80dc
https://blog.zebpay.com/bitcoin-the-next-big-thing-since-the-internet-itself-christine-lagarde-4d4ba71d80dc
https://blog.zebpay.com/bitcoin-the-next-big-thing-since-the-internet-itself-christine-lagarde-4d4ba71d80dc
mailto:suluagac@fiu.edu

	A scalable private Bitcoin payment channel network with privacy guarantees
	1 Introduction
	2 Related work
	2.1 Payment channel networks
	2.2 Lightning Network
	2.3 Multi-commodity flow problem

	3 Background and motivation
	3.1 Background on off-chain links
	3.2 Privacy in Lightning Network
	3.3 Problem motivation and definition

	4 Proposed heuristic algorithm
	4.1 Approach overview
	4.2 Finding paths
	4.3 Defining edge weights

	5 Extending the heuristic for privacy guarantees
	6 Evaluation
	6.1 Experimental setup and implementation
	6.2 Metrics and benchmarks
	6.3 Experiment results and discussion
	6.3.1 Comparison of heuristic with the MIOP model
	6.3.2 Ideal Parameter Selection for the heuristic
	6.3.3 Scalability of the heuristic

	6.4 Heuristic with privacy considerations

	7 Conclusion
	Declaration of competing interest
	Acknowledgment
	References

