
2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3118134, IEEE Internet of
Things Journal

1

Online Stable Task Assignment in Opportunistic

Mobile Crowdsensing with Uncertain Trajectories
Fatih Yucel, Member, IEEE and Eyuphan Bulut, Senior Member, IEEE

Abstract—In opportunistic mobile crowdsensing, participants
(workers) accept to carry out the requested sensing tasks only if
they are already close to or within the regions of interest. Thus,
the existence of an assignment opportunity between a worker-
task pair strictly depends on whether or not the worker will visit
the task region. However, when worker trajectories are uncertain
and hence not known in advance, existing solutions fail to produce
an effective task assignment. Besides, a satisfactory task assign-
ment should respect the preferences and capacity constraints of
workers and task requesters, which are generally neglected in
literature. In this study, we address all of these issues together and
propose novel task assignment algorithms for different settings,
which we prove to be optimal in terms of preference-awareness
(or stability). Extensive simulations performed on both synthetic
and real data sets validate our theoretical results, and demon-
strate that the proposed algorithms significantly outperform the
existing solutions in terms of preference-awareness and average
quality of sensing attained in the final task assignment in almost
all scenarios.

Index Terms—Opportunistic mobile crowdsensing, task assign-
ment, stable matching.

I. INTRODUCTION

Mobile crowdsensing (MCS) is an emerging form of crowd-

sourcing that aims to accomplish location-dependent sensing

tasks with the help of mobile participants (workers). Notable

recent applications of MCS can be found in various fields

such as vehicle tracking [1], environmental protection [2], and

public safety/health [3], [4]. According to the involvement

level of workers, MCS applications can be classified into two

types [5]: participatory and opportunistic.

In participatory MCS, workers are expected to travel to task

regions by interrupting their own schedules for a period of

time, while in opportunistic MCS they are asked to perform a

sensing task if they are already in or close to the task region.

Thus, participatory MCS campaigns usually have shorter task

completion times as workers are immediately dispatched to

the task regions. However, they require workers to devote

their resources and time to carry out the assigned tasks, which

introduces significant extra costs for workers who then need

to be compensated for these costs by task requesters.

On the other hand, opportunistic MCS campaigns only

consider the costs of sensing and delivery of the sensed data,

which are usually much smaller compared to the time and

travel costs incurred in participatory MCS campaigns. How-

ever, it can be challenging to find effective task assignments

in opportunistic MCS, especially under capacity or budget

F. Yucel and E. Bulut are both with the Department of Computer Science,
Virginia Commonwealth University, Richmond, VA, 23284.
E-mail: {yucelf, ebulut}@vcu.edu.

constraints [6], as the assignment opportunities hinge upon

the presence of workers in task regions, and they emerge and

vanish as workers move.

In this study, we focus on the task assignment problem

in opportunistic MCS. The three key issues that need to

be addressed in this problem are (i) preference-awareness,

(ii) uncertainty in worker trajectories, and (iii) capacity con-

straints. Below, we explore each of these issues along with the

challenges they present, how they have been so far addressed

in the MCS literature, and the key contributions of this paper

on each of these issues.

(i) Preference-awareness: As rational individuals, workers

and task requesters in an MCS campaign would like to max-

imize their utility from the campaign, hence it is natural for

them to have preferences over possible assignments they could

get. It has been shown [7] that disregarding these preferences

to maximize the utility of the matching platform or any

particular group of users could cause the majority of users to

find their assignments dissatisfying, and consequently to cease

participating in the campaign, putting the long-term success

of the campaign in jeopardy. Moreover, dissatisfying task

assignments may hinder effective functioning of the campaign,

as unhappy users may refuse to fulfill the assignments made by

the platform. Therefore, it is of critical importance to satisfy

the needs and preferences of workers and task requesters in an

MCS campaign. For these reasons, some recent studies have

investigated the preference-aware task assignment problem

in MCS. However, they have either assumed a participatory

setting with controlled worker mobility [8]–[10], or an oppor-

tunistic setting with certain worker trajectories that are known

in advance [11].

(ii) Uncertainty in worker trajectories: This issue arises in

MCS systems, where workers prefer not to disclose their exact

trajectories due to privacy concerns, or their trajectories change

dynamically due to traffic/road conditions or individual factors

(e.g., a taxi driver’s trajectory depends on pick-up and drop-

off locations of passengers). This issue is partly investigated

in the MCS literature [12], [13], but without considering

the preferences of workers and task requesters. There are

also studies [14] that consider undeterministic MCS with

uncertainty in other aspects (e.g., worker’s visit probability to

task region), but they focus on increasing joint task completion

rates by assigning multiple workers to each task without again

considering preferences.

(iii) Capacity constraints: To avoid disruptions to their daily

schedule, workers may choose to bound the number of tasks

they accept to perform for each assignment period. The

Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on October 15,2021 at 17:54:34 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3118134, IEEE Internet of
Things Journal

2

classic deferred-acceptance mechanism proposed by Gale and

Shapley [15] can be used to find preference-aware assignments

in presence of capacity constraints, but it works only in offline

settings, where the eligibility of every (worker-task) pair is

known and fixed. This is not the case in our setting, where the

trajectories of workers, hence which tasks they can perform,

are uncertain. Although there are some studies [16], [17] that

consider capacity/budget constraints for workers, they neglect

to address the previous two issues.

As summarized above, these three issues have yet to be

studied together, despite being crucial for the success of an

opportunistic MCS campaign. To fill this gap, in this paper,

we study the preference-aware task assignment problem within

an opportunistic MCS model with uncertain worker trajectories

and given capacity constraints.

To point out some of the challenges this problem entails,

let us analyze a few different scenarios in the MCS instance

illustrated in Fig. 1, which consists of two workers pw1, w2q
and three tasks pt1, t2, t3q scattered in the area. Assume that

w1 can potentially visit all three task regions, while w2 can

visit only t3’s region, but it is not known in advance if they

will actually do so. Consider the three pp1, p2, p3q and two

pp4, p5q of possible trajectories and visit scenarios for w1 and

w2, respectively, shown in Fig. 1. If the workers do not have a

capacity constraint (i.e., can perform every task on their way)

or have a capacity of at least three, then w1 should always

be matched with tasks t1 and t2 if he visits their regions, as

w1 is the only worker that can perform these tasks. However,

since the region of t3 can be visited by both workers, it is

not trivial to decide an assignment for t3 even if there is no

capacity constraint for workers because the preference of t3
based on the worker qualities needs to be considered along

with how likely the workers will be visiting the region of t3.

On the other hand, the preferences of workers become im-

portant when they are constrained by a capacity. For instance,

assume that the capacity of w1 is one, and the probability of

p3 is negligible. Then, when worker w1 visits the region of t1
and a matching decision needs to be made between w1 and t1,

we need to consider the preference of w1 on tasks t1 and t2
based on their rewards as well as the likelihood of p1 and p2.

For example, even if p1 is more probable than p2, it may still

be more profitable to skip t1 if the reward of t2 is significantly

larger than that of t1. In such scenarios, the matching decisions

should be made according to the expected utilities of workers

and task requesters to consider their preferences.

Let us consider another scenario, in which worker w1 has

a capacity of one and is more likely to take path p3, and the

reward of t3 is much greater than that of t1 and t2. Then,

in order for the decision of skipping the potential matching

opportunities with t1 and t2 to be justifiable for w1, either the

probability of p5 should be low, or the quality of w1 should

be substantially better than that of w2 so that task t3 would be

willing to skip the opportunity to match with w2 if w2 ended

up taking path p5. Here, the timeliness of the visits also plays

a major role. If the quality scores of the workers are very close

to each other, the best strategy for the tasks would be to get

matched with the first worker that visits their regions, because

the risk of losing a matching opportunity at hand to wait for

𝑤1
𝑝1

𝑤2
𝑡1 𝑡2 𝑡3𝑡1. 𝑟 𝑡2. 𝑟 𝑡3. 𝑟

𝑝2

𝑝3
𝑝4

𝑝5

Fig. 1: An MCS instance with three tasks and two workers.

Some possible worker trajectories for w1 and w2 are shown

with solid and dashed lines, respectively, and task regions are

enclosed with circles.

another worker would not be worth the extra benefit that they

may possibly get by waiting. Therefore, the actual number of

scenarios that needs to be examined to make an optimal task

assignment gets much larger when we take the timeliness of

worker visits into consideration.

Moreover, in real instances, the uncertainty in worker visits

may be even more severe, in which case the number of possible

scenarios is likely to grow exponentially with the number of

users and the campaign duration. In this study, we address

these issues and provide polynomial-time algorithms to obtain

task assignments that maximize the happiness of users with

their assignments based on their preferences by considering

all possible scenarios in an efficient manner. Our primary

contributions in this study can be summarized as follows:

‚ We introduce the preference-aware task assignment prob-

lem in opportunistic MCS systems, where task assign-

ments need to be made in an online manner due to

uncertain worker trajectories.

‚ We formulate the criteria for preference-awareness in

this problem after showing that the existing preference-

awareness objectives used in the literature (e.g., mini-

mizing the number of unhappy pairs) do not work when

worker trajectories are uncertain.

‚ We study the problem in MCS systems with and without

capacity constraints, and propose a polynomial-time on-

line algorithm for each case, which we then show to be

preference-aware by theoretical analysis.

‚ We perform extensive simulations with both real and

synthetic data sets, and empirically show the superiority

of the proposed algorithms over the existing solutions.

The rest of the paper is organized as follows. In Section

II, we provide an overview of the related work. In Section

III, we describe the system model and present the problem

statement. In Section IV, we provide different algorithms to

solve the problem in both online and offline settings along

with their theoretical analysis. In Section V, we evaluate the

performance of the proposed solutions through simulations.

Finally, in Section VI, we provide our conclusions.

II. RELATED WORK

In this section, we review the recent studies on opportunistic

MCS and matching under preferences. A recent survey on mo-

Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on October 15,2021 at 17:54:34 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3118134, IEEE Internet of
Things Journal

3

bile crowdsensing and a summary of matching problems with

user preferences can be found in [18] and [19], respectively.

A. Opportunistic MCS

Opportunistic MCS has drawn the attention of both

academia [20] and industry [21] due to its advantages over par-

ticipatory MCS in certain aspects. For example, [6] studies the

maximum coverage task assignment problem in opportunistic

MCS with worker trajectories that are known beforehand. It

is assumed that each task needs to be performed at a certain

point of interest and has a weight that indicates how important

its completion is to the platform, which has a fixed budget

and can hence recruit only so many workers. The objective of

the platform is to select a set of workers within the budget

constraints, which maximizes the weighted coverage over the

set of tasks according to the given trajectories of workers.

The authors develop a p1´1{eq-approximate algorithm, where

n is the number of workers in the system. [22] studies the

same problem, and proposes a greedy algorithm that, despite

not having a theoretical guarantee, outperforms the algorithm

proposed in [6] in terms of achieved coverage in certain

settings.

The problem studied in [23] differs from those in [6] and

[22] as it also considers the delivery of the sensed data in

an opportunistic manner. That is, after carrying out a task,

a worker should either deliver the sensed data to the server

through one of the collection points (i.e., WiFi APs) on his

trajectory, or transmit it to another user who will deliver it

for him. Thus, here, not only the platform needs to estimate

whether and when workers would visit task regions and

collection points, but it is also crucial to obtain and utilize

the encounter frequencies of workers to improve the delivery

probability of the sensed data. The authors present different ap-

proximation algorithms for the systems with deterministic and

uncertain worker trajectories, and evaluate their performance

on real data sets. The data delivery aspect of the problem in

[23] has also been studied in [24] and [25]. They both utilize

Nash Bargaining Theory to decide on whether or not selfish

data collectors and mobile (relay) users who only take part in

delivery of sensed data would like to cooperate with each other

according to their utility in either scenario. However, in [25],

the authors consider a more complete mobile social network

model and present an enhanced data collection mechanism.

In [12], the problem of maximizing spatio-temporal cov-

erage in vehicular mobile crowdsensing with uncertain but

predictable vehicle (i.e., worker) trajectories is investigated.

The authors prove that the problem is NP-hard when there

is a budget constraint, and propose a greedy approximation

algorithm and a genetic algorithm. In [13], the authors also

assume predictable worker trajectories. However, they focus on

the task assignment problem in a mobile social network where

task assignments and delivery of sensed data are realized in

an online manner when task requesters and workers encounter

with each other. They aim to minimize the task completion

times, and propose different approximation algorithms to

optimize both worst-case and average-case performance. For

predictions of worker trajectories, [12] uses spatio-temporal

trajectory matrices, while [13] assumes that user inter-meeting

times follow an exponential distribution, which is widely used

in the mobile social networks [26]–[28] literature.

B. Matching under preferences

In two-sided matching problems with preferences, the gen-

eral objective is to find a (stable) matching that satisfies the

individuals on both sides so that they will not seek to find

a better matching. Variations of such matching problems are

seen in a wide range of applications from channel assignments

in cognitive radio networks [29] to residency and fellowship

matching [30]. Given that task requesters and workers in MCS

systems also have individual preferences, and ignoring them

is likely to upset them, several recent studies [7], [8], [10],

[31] address the preference-aware task assignment problem in

MCS as well.

Particularly, [7] introduces the problem of maximizing user

happiness without affecting the convenience of the central

matching platform. [8] and [10] study the stable task assign-

ment problem under budget constraints, which is proven to be

NP-hard even in significantly simplified settings. [8] considers

a many-to-one matching scenario with fixed rewards, and

proposes polynomial and pseudo-polynomial time algorithms

that solve the problem optimally in restricted settings and find

approximate solutions for the strongest stability criteria. On the

other hand, [9] and [10] consider a many-to-many matching

scenario with capacity and budget constraints, respectively.

[10] presents an approximation algorithm that dynamically

adjusts the rewards to be paid to workers throughout the

matching process, whereas [9] proposes an adaptation of

the Gale-Shapley algorithm [15]. [31] studies the stable task

assignment problem in crowdsourcing, and differs from [8]–

[10], as it considers minimum quality requirements of task

requesters as well as budget constraints. Unlike these studies

that assume a participatory setting, [11] studies the problem of

preference-aware task assignment in an opportunistic setting,

but assumes that worker trajectories are fixed and known to

the matching platform in advance.

A few studies look at the stable matching problem in

settings with incomplete information on user preferences or

dynamic user arrivals/departures. [32] and [33] both study the

stable taxi dispatching problem considering passenger and taxi

preferences. However, the objective adopted in [33] is to find

locally optimal stable assignments, whereas that in [32] is to

minimize the number of unhappy taxi-passenger pairs globally.

[34] investigates the stable matching problem in the presence

of uncertainty in user preferences. Lastly, [35] looks at the

problem of minimizing the number of partner changes that

need to be made in a stable matching to maintain stability

when preference profiles of some users change in time.

None of the aforementioned studies, however, addresses

the problem of finding stable/preference-aware task assign-

ments under capacity constraints in opportunistic MCS, where

worker trajectories are uncertain, and thus, if/when a worker

would visit a certain task’s region and be able to perform the

task is not known in advance. In this paper, we focus on this

problem, define it formally, and present efficient algorithms

for different scenarios.

Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on October 15,2021 at 17:54:34 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3118134, IEEE Internet of
Things Journal

4

TABLE I: Key notations and descriptions.

Notation Description

T , W Set of tasks and workers, respectively

m, n Number of tasks and workers, respectively

M A many-to-one matching between T and W
Mpuq Assigned worker (task set) to task (worker) u in M
r0, T s Current assignment period

t.r Region of task t

rt.b, t.ds Time interval in which t should be performed

mptq Reward associated with task t

cpwq Capacity of worker w

qpwq Quality score of worker w

λi,j Average time between the visits of wi to tj .r

Vi,jpLq Probability that wi visits tj .r in a time frame of length L

As All possible visit scenarios for time frame [s,T]

Al
s lth visit scenario in As

ppAl
sq Probability of Al

s occurring

M l
s Stable matching (SM) for scenario Al

s

φpwi, tjq Priority of worker-task pair wi, tj
Fi,j Set of tasks wi finds more favorable than tj
Gi,j Set of workers tj finds more favorable than wi

Pspi, jq Probability of wi and tj being matched in SMs for As

III. PROBLEM FORMULATION

A. System Model

At the center of our system model is a service provider

(SP) that receives the sensing task inquiries from differ-

ent requesters and assigns them to appropriate participants.

Formally, in each (hourly, daily, weekly) assignment period

that is divided into discretized time-steps p0, 1, .., T q, the

responsibility of SP is to assign a set of sensing tasks

T “ tt1, t2, . . . , tmu to a set of workers registered to the

system W “ tw1, w2, . . . , wnu in a way that will satisfy both

parties (user satisfaction criteria will be described below).

Each task t has spatio-temporal constraints for successful

completion. Let t.r and rt.b, t.ds denote the geographic region

and the time frame (between the beginning time and deadline)

in which task t should be performed, respectively. Tasks are

assumed to require simple sensing activity such as taking

pictures [36], recording noise levels [37], and reporting traffic

volume [21] or crowdedness [20]. Thus, they take a few

seconds to complete (thus neglected for simplicity), and they

can be completed anytime during the specified time frame.

Each task t is also associated with a monetary reward mptq
that is paid to the worker who performs it by the task requester

upon successful delivery of the sensed data.

The workers in our system model perform opportunistic

sensing, so they do not travel to the task locations by interrupt-

ing their own schedules. Instead, they get assigned to a task

only when they happen to be in the task region. Therefore,

there is no travel cost associated with the tasks. Each worker

w has a capacity cpwq, which indicates the maximum number

of tasks worker w is willing to perform in a single assignment

period. This can be a necessary constraint if the tasks require a

certain level of involvement, causing the workers to lose some

time. However, we also investigate task assignments in MCS

systems that do not require involvement of workers and hence

have no capacity constraints. Each worker w also has a quality

score qpwq, which may refer to the likelihood of completing

the assigned tasks [38], the expected quality of the sensed

data [8], or the trustworthiness of the worker [39]. Some real-

world mobile crowdsensing/sourcing systems that use a single

numerical value to specify the qualification of workers include

Waze [21] and Uber [40], which, respectively, utilize what is

called Waze points and a five-star quality rating system.

In order to simplify our analysis, we rearrange the worker

and task sets in decreasing order of the quality scores of

workers and rewards of tasks, respectively. Thus, hereafter

we have qpwiq ą qpwi`1q, 1 ď i ă n, and mptjq ą
mptj`1q, 1 ď j ă m. If there are ties, we assume they are

either broken by secondary factors such as registration time,

or in an arbitrary manner so that there is only one possible

order for both sets.

We assume that the trajectories of workers are uncertain

but predictable, and unfold in real time during the assignment

period, so the task assignments have to be made in an online

manner. Let λi,j be the average inter-visit time of worker wi

to the region tj .r. Then, assuming an exponential distribution

(similar to [13], [26]–[28]), the probability that worker wi

visits tj .r in a time frame of length L is computed as follows:

Vi,jpLq “ 1 ´ e´L{λi,j (1)

The results of this study, however, do not depend on the

underlying distribution model, and other probability functions

including those produced by machine learning methods [41],

which can integrate any dependency between the visits of a

worker to different regions, can be used as well.

Once the task set for the current assignment period is

determined, each worker wi will be asked to provide SP

with λi,j values for the region of each task tj P T . To this

end, workers should be maintaining their visit records with

a sufficient geographic density, as task regions may differ

between assignment periods. They can submit arbitrarily large

numbers for regions they have not visited, or for which they

do not feel comfortable disclosing their true visit frequency

for privacy-related reasons. Also, they can always inform SP

of the regions they will definitely visit if certain parts of their

trajectories are (or become) fixed. A legitimate concern here

would be the possibility of receiving fabricated λi,j values

from some workers aiming to increase their gains from the

system in a malicious manner. However, workers are required

to inform SP when they enter one of the task regions to be

considered for the assignment of the corresponding task, as a

task may be assigned to a worker only when the worker is in

the task region. Thus, SP can easily verify the accuracy of the

received λi,j values based on the visit frequencies of worker

wi, and reduce the quality scores of dishonest workers. We

lastly note that in addition to the inter-visit times, the following

information is assumed to be available at the beginning of the

assignment period: qpwq and cpwq for each worker w, and

mptq, t.b, t.d and t.r for each task t.

B. Problem Definition

We represent the task assignments in our model with a

matching M between the sets W and T , where Mpwq and

Mptq denote the set of tasks assigned to worker w and the

worker assigned to task t, respectively. If user (worker or task)

Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on October 15,2021 at 17:54:34 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3118134, IEEE Internet of
Things Journal

5

𝑡2. 𝑟
𝑡2𝑤1

𝑡1. 𝑟
𝑡1

𝑚(𝑡1) = 1 𝑚(𝑡2) = 0.8
Fig. 2: An instance with a worker and two tasks. Let the

probability of w1 visiting t1.r before the deadline of t1 be 0.6,

and the probability of w1 revisiting t2.r before the deadline

of t2 be 0. Also, let qpw1q = cpw1q = 1.

u is unassigned in M, then Mpuq “ ∅. For a matching to be

feasible according to our system model, it should satisfy the

following constraints for each w P W and t P T :

‚ Mptq P W Y t∅u,

‚ Mpwq Ď T ,

‚ |Mpwq| ď cpwq,

‚ Mptq “ w ô t P Mpwq.

We will use the following definitions to refer to the user

happiness in a matching.

Definition 1 (Unhappy pair). A worker-task pair pw, tq is said

to be an unhappy pair (UP) in a matching M if

‚ worker w has visited region t.r between the time frame

rt.b, t.ds,
‚ task t is either unmatched or matched to a worker w1

with a smaller QoS score than worker w (i.e., prefers w

to w1),

‚ worker w has unused capacity (i.e., |Mpwq| ă cpwq), or

the reward of at least one task t1 in Mpwq is smaller

than that of task t (i.e., prefers t to t1).

From the perspective of worker w and task t, the first

condition in the definition indicates that there was in fact an

opportunity for them to get matched, and the last two indicate

that SP instead matched them with some other users that they

prefer less, or left them unmatched/with an unused capacity.

Definition 2 (Stable matching). A matching M is stable if it

contains no unhappy pairs.

Although we can always find a stable matching (SM) in an

offline setting (as it will be shown in the next section), it may

not be possible to do so in an online setting where we do not

know whether and when a worker will visit a region. Consider

the instance in Fig. 2. Given that worker w1 is currently in

t2.r, SP should decide whether to assign him to task t2.

‚ If it assigns worker w1 to task t2, but then worker w1

visits t1.r, pw1, t1q will be an unhappy pair because

worker w1 prefers task t1 to task t2 as mpt1q ą mpt2q,

and task t1 prefers being matched to worker w1 to being

unmatched.

‚ If it does not assign worker w1 to task t2, and worker w1

does not visit t1.r, then pw1, t2q will be an unhappy pair

because worker w1 and task t2 prefer being matched to

each other to being unmatched.

Thus, it is not possible to ensure perfect user happiness without

knowing the exact worker trajectories. Besides, in an online

Decision Scenario # of UPs Expected # of UPs

w1 ñ t2
w1 visits t1.r 1

0.6
otherwise 0

w1 œ t2
w1 visits t1.r 0

0.4
otherwise 1

TABLE II: Analysis of all possible scenarios in the instance

illustrated in Fig. 2. (UP is short for unhappy pair.)

setting, minimizing the expected number of unhappy pairs may

not actually maximize user happiness either. Again, in the

instance in Fig. 2, SP should avoid matching worker w1 to

task t2 in order to minimize the expected number of unhappy

pairs, because as shown in Table II, the expected number of

unhappy pairs is larger when they get matched (w1 ñ t2). Yet

the expected profit of worker w1 in case he is not matched to

task t2 is mpt1q ˆ 0.6 “ 0.6, which is smaller than the profit

he would make if he was matched to t2 (mpt2q “ 0.8). So,

worker w1 would prefer to be matched to task t2 despite the

increase in the expected number of unhappy pairs he will form.

The example discussed above demonstrates that, in an

online setting, user happiness should be measured in an online

manner and by considering the impact of each matching-

related decision of SP on the overall benefit that users will get

from the system. In MCS systems without capacity constraints,

there is no competition among task requesters, because work-

ers would like to and can get matched with all tasks on

their trajectory. Therefore, in such systems, the stability of

task assignments (or preference-awareness) can be ensured

by maximizing the expected assignment quality of each task

based on the visit probabilities of the workers.

However, in the presence of capacity constraints, there is a

competition among both workers and task requesters, because

the fact that workers are able to perform only a limited number

of tasks transforms the task assignment problem into a limited

resource allocation problem. In this setting, the expected utili-

ties of users become interdependent, and get affected by each

matching decision of SP. Consequently, the expected utility

of a user after a certain time-step depends on the decision

mechanism that will be used by SP in that time frame. Besides,

the number of possible visit scenarios increases exponentially

with respect to the length of the assignment period and the

number of users. To address these challenges, in this paper,

we map all possible (exponentially many) visit scenarios that

can happen after time-step s to all possible stable matchings

in these scenarios along with their likelihood of occurrence,

which we can analyze in polynomial time and use to estimate

the expected user utilities for the time period rs, T s.

Suppose that a worker wi with a remaining capacity of csi ě
1 is in the region of a currently unassigned task tj at time-step

s : tj .b ď s ď tj .d, so SP has to make a matching decision

for the pair. Let As “ tA1

s, A
2

s, . . . , A
k
su be the set of all

possible worker visit scenarios for the time frame rs, T s given

the visit probabilities of the workers for all task regions. That

is, As “ Rs
1

ˆRs
2

ˆ ..ˆRs
n, where Rs

i is the set of all possible

spatio-temporal trajectories of worker wi after time-step s. Let

ppAl
sq denote the probability that Al

s P As will occur. Then,

we have
řk

l“1
ppAl

sq “ 1. Let M l
s be the stable matching

in the scenario Al
s between the tasks that are unassigned and

Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on October 15,2021 at 17:54:34 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3118134, IEEE Internet of
Things Journal

6

the workers that have a positive remaining capacity at time-

step s (since the visits in Al
s are known, a stable matching

can be found using the offline stable matching algorithm that

will be described in Section IV-B). Also, let M̂ l
s be the stable

matching in the same scenario assuming that wi is matched

to tj . Then, assuming SP is making optimal assignments in

terms of stability, the expected total reward worker wi would

get in time frame rs, T s if he was not assigned to task tj at

time-step s can be computed by:

Wipsq “
k
ÿ

l“1

ˆ

ppAl
sq ˆ

ÿ

tPM l
spwiq

mptq

˙

, (2)

and that if he was assigned to task tj by:

W
1
i,jpsq “ mptjq `

k
ÿ

l“1

ˆ

ppAl
sq ˆ

ÿ

t̂PM̂ l
spwiq

mpt̂q

˙

. (3)

Analogously, the expected sensing quality to be received by

task tj if it is not assigned to worker wi at time-step s and

otherwise can be, respectively, computed by:

Tjpsq “
k
ÿ

l“1

`

ppAl
sq ˆ qpM l

sptjqq
˘

, (4)

and

T
1
j,ipsq “ qpwiq. (5)

Then, we can define a decision-time unhappy pair as fol-

lows.

Definition 3 (Decision-time unhappy pair). A worker-task pair

pwi, tjq is said to be a decision-time unhappy pair if the

following conditions hold for any time-step s in rtj .b, tj .ds:

‚ worker wi has a positive remaining capacity,

‚ task tj is unassigned,

‚ worker wi is in region tj .r, and

‚ either (i) SP matches worker wi to task tj , but at least

one of them would be better off otherwise, i.e.,

Wipsq ą W
1
i,jpsq or Tjpsq ą T

1
j,ipsq, (6)

‚ or (ii) SP does not match worker wi to task tj , but they

both would be better off otherwise, i.e.,

W
1
i,jpsq ą Wipsq and T

1
j,ipsq ą Tjpsq. (7)

In our example illustrated in Fig. 2, assuming s is the current

time-step, we have two possible trajectories that can be seen

after s (i.e., w1 visits t1.r or he does not; |As| “ 2) with the

given probabilities. This yields W
1
1,2psq “ 0.8 ą W1psq “

0.6 and T
1
2,1psq “ 1 ą T2psq “ 0. Hence, worker w1 and

task t2 will, as desired, form a decision-time unhappy pair due

to (7) if SP fails to match them.

Definition 4 (Online stable matching). A matching M is

called an online stable matching if it does not admit any

decision-time unhappy pairs.

Consequently, our objective in the MCS systems with ca-

pacity constraints is to find an online stable matching, and we

call such a matching optimal in terms of preference-awareness.

It is straightforward to see that the optimal matching strategy

to this end would be to match a worker-task pair if (7) holds.

However, the difficult part is to compute the values of Wipsq,

W
1
i,jpsq and Tjpsq, because As grows exponentially with the

number of users and length of the assignment period (T). In

the following section, we will show how to compute these

values efficiently without actually forming the set As. The

key notations used throughout the paper are summarized in

Table I for convenience.

IV. PROPOSED SOLUTION

A. Task Assignment without Worker Capacity Constraints

In MCS systems with simple sensing tasks that do not

require an active involvement of workers, workers can be

assumed to be able to perform all of the tasks on their

trajectories (i.e., have no capacity constraint). Moreover, in

the case of uniformly distributed tasks in an area or short

assignment periods, since workers could visit only a limited

number of task regions, it would still be safe to disregard

the capacity constraints. In other words, even if workers

had capacity constraints in any of these cases, they would

be overshadowed by the spatio-temporal constraints and can

hence be ignored during the task assignment process (at least

until the point where assigning another task to a worker

would violate his capacity constraint). An example of an

MCS system without capacity constraints would be a traffic

monitoring system such as Waze [21], where the speed of

traffic, which can be estimated by the speed of change in the

GPS coordinates of workers, can be sensed and transmitted to

SP automatically by workers’ mobile devices without requiring

active involvement of workers.

In this type of MCS systems, workers would like to perform

each and every task that is on their trajectory and does not

conflict with their preferences in order to maximize their

profits. However, task requesters would still desire to have

their sensing tasks performed by workers with the highest

quality scores. Thus, the problem transforms into a one-sided

matching problem in terms of user preferences. That is, to

find optimal task assignments we just need to maximize the

sensing quality received by task requesters. Moreover, we

can consider each task separately, because the assignment

quality of a task tj depends only on which workers will

visit the task region tj .r and the time of their visits, and

is independent of the visits of workers to the other task

regions due to the absence of capacity constraints. To solve

this problem, we utilize Optimal Stopping Theory (OST) [42],

which provides a dynamic programming-based framework for

the decision problems with a finite horizon (e.g., the secretary

hiring problem). This is suitable for our problem, because for

each task tj there will be a number of decision points at the

times tj .r is visited by any worker, and at each of these we

should decide whether to wait for a higher quality worker or to

assign task tj to the worker wi who is currently in the region

tj .r based on the quality of wi and the expected quality to be

achieved if we choose to wait instead.

Let Ejpsq be the expected assignment quality for task tj
after the time-step s. Since task tj can only be performed

Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on October 15,2021 at 17:54:34 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3118134, IEEE Internet of
Things Journal

7

Algorithm 1: Calculation of Ejpsq for all practical

values of time-step s

1 Ejptj .dq Ð 0

2 for s Ð tj .d ´ 1 down to tj .b do

3 Ejpsq Ð qpw1q ˆ V1,jp1q
4 ρ Ð 1 ´ V1,ip1q
5 for i Ð 2 to n do

6 if qpwiq ě Ejps ` 1q then

7 Ejpsq Ð Ejpsq ` qpwiq ˆ Vi,jp1q ˆ ρ

8 ρ Ð ρ ˆ p1 ´ Vi,jp1qq
9 else

10 break

11 Ejpsq Ð Ejpsq ` Ejps ` 1q ˆ ρ

between rtj .b, tj .ds, we have

Ejpsq “ Ejptj .bq, s ă tj .b, (8)

and

Ejpsq “ 0, s ě tj .d. (9)

Since each worker wi will visit the region tj .r in the time

frame rs, s ` 1q with the probability Vi,jp1q, we have the

following recursive relation between Ejpsq and Ejps ` 1q:

Ejpsq “
n
ÿ

i“1

´

max
`

qpwiq,Ejps ` 1q
˘

ˆ Vi,jp1q ˆ ρjpiq
¯

` Ejps ` 1q ˆ ρjpn ` 1q,
(10)

where ρjpiq is the probability that no worker with an index

smaller than i visits tj .r within a time frame of length 1. Since

the smallest worker index is 1, we have ρjp1q “ 1, and the

value of ρjpiq for 2 ď i ď n ` 1 can be computed by:

ρjpiq “ ρjpi ´ 1q ˆ
`

1 ´ Vi´1,jp1q
˘

(11)

Note that although there are 2n possible scenarios (i.e., each

worker being within or outside of the task region) for each time

frame of length 1 in terms of worker visits to a task region,

we consider only n of them to calculate (10), because if wi

is in the region, whether wi`1, .., wn are within or outside

of the region is irrelevant as they are preferred less than wi.

Therefore, using the base cases Ejpt.dq “ 0 and ρjp1q “ 1,

we can recursively compute all values of Ejpsq for tj .b ď s ă
tj .d in polynomial time as described in Algorithm 1.

In this algorithm, when we calculate Ejpsq, we utilize the

fact that task tj would like to match only with workers with a

quality score that is greater than or equal to Ejps`1q (line 6) at

time-step s because, otherwise, it would be more advantageous

for it to wait for the next time-step. Thus, we consider only

these workers in lines 3-10 in decreasing order of their quality

scores to compute the expected utility of task tj based on the

visit probabilities of these workers to its region in case it will

be matched with one of these workers at time-step s. Since

the expected utility of task tj at time-step s will be the same

as that at time-step s ` 1 if none of these workers visits the

region of task tj between time-steps s and s ` 1, we finally

Algorithm 2: OST-based Algorithm (OSTA) at time-

step s

1 if qpwiq ě Ejpsq then

2 match wi to tj
3 terminate the algorithm for tj

increase the value of Ejpsq by Ejps`1qˆρ in line 11, where

ρ is calculated between lines 4-10 as the probability that tj .r

will not be visited by any of these workers between time-steps

s and s ` 1.

A summary of the optimal decision mechanism that will

be run for each task tj whenever tj .r is visited by a worker

wi is given in Algorithm 2. We assume all Ejpsq values for

s : tj .b ď s ď tj .d are precomputed and stored in a lookup

table, but it is also possible to compute only Ejpsq for s :

ŝ ď s ď tj .d at the first time (ŝ) a worker visits tj .r to avoid

computing Ejpsq values that will never be used. The algorithm

simply checks whether it is more advantageous to match with

the visiting worker or to skip the opportunity (line 1), and

makes a matching decision accordingly. Due to sparse nature

of visits in mobile networks, we assume that there will be a

single matching decision to make at each time-step. However,

if there are multiple workers that visit the region of a task at a

certain time-step, it suffices to run Algorithm 2 for the worker

with the highest quality score. For each task tj , the algorithm

will be run until either task tj gets matched, or it expires. Since

Algorithm 2 assigns a task tj to a worker wi at time-step s

only if wi provides a higher QoS than the expected QoS that tj
will obtain after time-step s according to the visit probabilities

of workers, and its each matching decision between time-steps

t.b and t.d accordingly maximizes the expected value of the

QoS to be received in the end by the requester of tj , we have

the following result.

Corollary 1. Algorithm 2 always makes the optimal matching

decisions for task requesters when workers do not have

capacity constraints (i.e., maximizes the expected assignment

quality qpMptqq for each task t).

Running time. Algorithm 2 obviously has a time complexity

of Op1q, however Ejpsq needs to be precomputed for all

feasible j and s values by running Algorithm 1. For each task

tj , we precompute Ejpsq values for all s : tj .b ď s ď tj .d, and

computing each Ejpsq value takes Opnq time. Thus, the total

time complexity becomes Opnτq, where τ “
ř

tPT pt.d´ t.bq.

B. Generic Task Assignment with Capacity Constraints

In this section, we first describe an optimal algorithm to

find stable matchings in offline settings where the trajectory

of each worker is known in advance. Then, exploiting the ideas

behind the offline algorithm, we provide our algorithm for the

online settings. We begin with the following definition.

Definition 5 (Pair priority). The priority φpwi, tjq of a worker-

task pair pwi, tjq refers to the relative importance of the pair

in terms of stability, and can be defined as

φpwi, tjq “ maxpm,nq ˆ minpi, jq ` maxpi, jq (12)

Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on October 15,2021 at 17:54:34 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3118134, IEEE Internet of
Things Journal

8

where a smaller value indicates a higher priority.

Note that the pair priority values enable us to specify user

preferences in pairs. That is, the priority value φpwi, tjq of a

worker-task pair pwi, tjq tells us that

‚ wi prefers tj to tk, @tk : φpwi, tjq ă φpwi, tkq, and

‚ tj prefers wi to wk, @wk : φpwi, tjq ă φpwk, tjq.

For convenience, we let Fi,j “ ttk : φpwi, tkq ă φpwi, tjqu
denote the set of tasks wi finds more favorable than tj , and

Gi,j “ twk : φpwk, tjq ă φpwi, tjqu denote the set of workers

tj finds more favorable than wi.

1) Offline algorithm: In Algorithm 3, we present a pseudo-

code description of the offline algorithm. In line 1, it finds the

set A of all eligible worker-task pairs that can be matched to

each other (i.e., the task region visited by the worker). Then, in

each step, it finds (line 3) and matches (lines 4-5) the worker-

task pair with the highest priority in A, which is followed

by removing all pairs that become infeasible due to the most

recent pair assignment (lines 6-8). This continues until the set

A becomes empty. In the following theorem, we prove the

optimality of this algorithm.

Theorem 1. Algorithm 3 always produces a stable matching

in offline settings.

Proof. We prove this by contradiction. Assume that there is

an unhappy pair pwi, tjq in the final matching M produced

by the algorithm. According to Definition 1, worker wi has

visited tj .r within the time frame of task tj , so pwi, tjq is in

A in the beginning.

‚ If |Mpwiq| ă cpwiq and Mptjq “ ∅, then the pair

pwi, tjq should still be in A, which indicates that A is

non-empty, contradicting the termination condition of the

algorithm.

‚ If |Mpwiq| ă cpwiq and Mptjq “ wk, then for pwi, tjq
to be an unhappy pair, we should have qpwiq ą qpwkq,

hence

i ă k and φpwi, tjq ă φpwk, tjq. (13)

Since at the time the pair pwk, tjq was selected by

the algorithm, the pair pwi, tjq was still in A (as

|Mpwiq| ă cpwiq) and has a higher priority than pwk, tjq,

the algorithm should have selected pwi, tjq, which is a

contradiction.

‚ If |Mpwiq| “ cpwiq and Mptjq “ ∅, then for pwi, tjq
to be an unhappy pair, we should have mptkq ă mptjq
for at least one task tk P Mpwiq. Thus,

j ă k and φpwi, tjq ă φpwi, tkq. (14)

As in the previous scenario, this indicates that the pair

pwi, tjq should have been selected prior to pwi, tkq, which

is a contradiction.

‚ If |Mpwiq| “ cpwiq and Mptjq “ wk, then for pwi, tjq
to be an unhappy pair, we should have

qpwiq ą qpwkq and mptjq ą mptlq (15)

for at least one task tl P Mpwiq. This means i ă
k and j ă l, and hence

φpwi, tjq ă φpwk, tjq and φpwi, tjq ă φpwi, tlq. (16)

Algorithm 3: Offline SM Algorithm

1 A Ð tpw, tq : w visits t.r in rt.b, t.dsu
2 while A ‰ ∅ do

3 pwi, tjq Ð argminpw,tqPA φpw, tq
4 Mpwiq Ð Mpwiq Y tj
5 Mptjq “ wi

6 if |Mpwiq| “ cpwiq then

7 A Ð Aztpw, tq : w “ wiu

8 A Ð Aztpw, tq : t “ tju

9 return M

Then, the pair pwi, tjq should have been selected prior to

both pwi, tlq and pwk, tjq, which is also a contradiction

and completes the proof.

2) Online algorithm: Theorem 1 shows that in the presence

of capacity constraints, a worker-task pair dominates the pairs

with lower priority scores if it is in the set A, which implies

that the highest priority pair will be matched with the same

probability of being in the set A. Likewise, the next highest

priority pair will be matched with the probability of being in

the set A in case it is not eliminated by the higher priority

pair, and so on. We utilize this observation to find the matching

probability of a worker-task pair in the stable matchings for all

possible scenarios pAsq that can occur after a certain time-step

psq, and use it to make decisions in online setting.

Lemma 1. Given a worker-task pair pwi, tjq and time-step

s at which wi has a remaining capacity of csi and tj is

unmatched, the probability Pspi, jq of wi and tj being matched

in a stable matching in any of the possible scenarios that can

occur between time-steps s ă tj .d and T can be computed by

Pspi, jq “

csi
ÿ

k“1

Qs
i,jrks ˆ

ηs
i,j

hkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkj

i´1
ź

k“1

`

1 ´ Pspk, jq
˘

ˆ Vi,jptj .d ´ sq,

(17)

where ηsi,j denotes the probability that tj will not be matched

with any worker in Gi,j times the probability that wi visits

tj .r until tj .d, and Qs
i,jrks denotes the probability that wi

will be matched to exactly csi ´k of the tasks in Fi,j , and can

be computed by

Qs
i,jrks “
$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

1, if j “ 1, k “ csi

0, if j “ 1, k ‰ csi

Qs
i,j´1

rks ` Qs
i,j´1

rk ` 1s ˆ ηsi,j´1
, if j ą 1, k “ 0

Qs
i,j´1

rks ˆ p1 ´ ηsi,j´1
q, if j ą 1, k “ csi

Qs
i,j´1

rk ` 1s ˆ ηsi,j´1
`

Qs
i,j´1

rks ˆ p1 ´ ηsi,j´1
q.

otherwise

(18)

Proof. In order for worker wi and task tj to be matched in a

stable matching M in a given scenario (e.g., Al
s P As), the

following three conditions should be satisfied:

Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on October 15,2021 at 17:54:34 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3118134, IEEE Internet of
Things Journal

9

𝑐𝑖𝑠𝑄𝑖,𝑗𝑠× (1 − 𝜂𝑖,𝑗𝑠) × 𝜂𝑖,𝑗𝑠 × 1𝑄𝑖,𝑗+1𝑠

𝑐𝑖𝑠-1 2 1 0𝑐𝑖𝑠-2 𝑐𝑖𝑠-3

Fig. 3: Illustration of the update procedure for the remaining

capacity probabilities defined in (18). Dashed and solid edges

indicate a contribution with a factor of 1 ´ ηsi,j and ηsi,j ,

respectively, while the dotted edge indicates a direct addition.

‚ at most csi ´ 1 of the higher priority pairs in the set

tpwi, tkq : tk P Fi,ju “ tpwi, tkq : k ă ju should be

matched in M (i.e., wi should be matched with at most

csi ´1 of the tasks that he prefers more than tj), because,

otherwise, the pair pwi, tjq will be eliminated. In (17),

the probability of this is given by

csi
ÿ

k“1

Qs
i,jrks. (19)

In other words, (19) is the probability that worker wi

will have a positive remaining capacity and be able to

match with task tj . The calculation of the Qs
i,jrks values

is realized in a recursive manner as described in (18).

Since Fi,1 “ ∅, we initially have Qs
i,1rcsi s “ 1 and

Qs
i,1rk ă csi s “ 0. We can then compute Qs

i,j`1
from

Qs
i,j using the recursive procedure illustrated in Fig. 3.

‚ none of the higher priority pairs in tpwk, tjq : wk P
Gi,ju “ tpwk, tjq : k ă iu should be matched in M,

because, otherwise, task tj will already be matched with

a more favorable worker, hence the pair pwi, tjq will be

eliminated. In (17), this is given in a recursive fashion as

follows:
i´1
ź

k“1

1 ´ Pspk, jq. (20)

‚ worker wi should visit the region of task tj between

rs, tj .ds. That is, the pair pwi, tjq should be in the set

A of Algorithm 3. This occurs with the probability of

Vi,jptj .d ´ sq, which is the last term in (17).

Algorithm 4 summarizes the procedure to calculate Pspi, jq
values for all 1 ď i ď n, 1 ď j ď m values. In this algorithm,

we maintain a variable uj for each task tj , which refers to the

probability of task tj not being matched to any of the workers

that considered so far in the algorithm, hence initialized to be

0 in line 1 if tj is already matched before time-step s, and

1 otherwise. Note that once Pspi, jq is calculated, the values

of Pspk, jq for k ą i and Pspi, lq for l ą j are independent

of each other. Thus, we can first compute Psp1, jq starting

from j “ 1 to j “ m, then Psp2, jq for all j values in

the same order, and so on. This ensures that the matching

probabilities of all interdependent worker-task pairs will be

calculated following the priority order.

According to Lemma 1, we can express Pspi, jq as the ratio

of the number of stable matchings that worker wi and task

tj are matched to each other to the total number of stable

Algorithm 4: Calculation of Pspi, jq for all i, j

1 for j Ð 1 to m do uj Ð 1 ´ |Mptjq|
2 for i Ð 1 to n do

3 compute Qs
i,1 according to (18)

4 for j Ð 1 to m do

5 vp Ð Vi,jptj .d ´ sq
6 ηsi,j Ð vp ˆ uj

7 Pspi, jq Ð ηsi,j ˆ
řcsi

k“1
Qs

i,jrks
8 compute Qs

i,j`1
from Qs

i,j according to (18)

9 uj Ð uj ´ Pspi, jq

Algorithm 5: PRobabilistic Stable Task Assignment

(PRSTA)αpwi, tjq at time-step s

1 Compute Pspk, lq and P̂spk, lq, @k, l, via Algorithm 4

2 Compute Wipsq, Tjpsq, W1
i,jpsq according to (21),

(22), (23), respectively

3 T
1
j,ipsq Ð qpwiq

4 if W1
i,jpsq ą αWipsq and T

1
j,ipsq ą αTjpsq then

5 match wi to tj

matchings in all possible scenarios after time-step s. Thus,

given the Pspi, jq values for all i, j pairs, we can compute

Wipsq and Tjpsq as follows:

Wipsq “
m
ÿ

k“1

Pspi, kq ˆ mptkq, (21)

Tjpsq “
n
ÿ

k“1

Pspk, jq ˆ qpwkq. (22)

On the other hand, the value of W
1

i,jpsq depends on the prob-

ability of worker wi being matched with each task tk in the

stable matchings that can be seen after time-step s assuming

worker wi and task tj will be matched at s. This probability is

denoted by P̂spi, kq, and can simply be calculated by assuming

task tj is already matched and replacing csi with csi ´1 in (17)

and (18) (and running Algorithm 4 accordingly). Then, we can

compute W
1

i,jpsq as:

W
1
i,jpsq “ mptjq `

ÿ

kPt1..muztju

`

P̂spi, kq ˆ mptkq
˘

.
(23)

Lastly, we have T
1
j,ipsq “ qpwiq. Using these values, we can

make an optimal matching decision for the worker-task pair

pwi, tjq in terms of online stable matchings at any time-step

s worker wi is in the region of task tj .

A summary of the decision process is described in Algo-

rithm 5. In line 1, we compute the matching probabilities for

all worker-task pairs by calling Algorithm 4, and then, based

on these probabilities, we compute the expected utilities of

worker wi and task tj at time-step s for the scenarios they

do and do not get matched with each other in lines 2-3. If

getting matched with each other is more preferable (line 4)

for both worker wi and task tj by a constant factor α (which

will be discussed below), then a positive matching decision is

Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on October 15,2021 at 17:54:34 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3118134, IEEE Internet of
Things Journal

10

𝑤2

𝑤2 𝑠

𝑤2𝑤2𝑤2
𝑤1

𝑤1𝑤1, 𝑤2𝑤2
time-step 1 time-step 2

(a)

(b)

(c)

(d)

Fig. 4: Four of the possible visit orders of two workers (w1,

w2) to the region of task t in an MCS instance with an

assignment period of length two. For example, in scenario

(c), the task region is visited by w2 in time-step 1, and by w1

in time-step 2.

made in line 5. As earlier, we assume at most one matching

decision is being made at each time-step, but multiple worker-

task pairs can be processed in the order of pair priority if

needed. Given Definition 3 & 4, since the proposed algorithm

makes a positive matching decision for a worker-task pair if

(7) holds when α “ 1, we have the following result.

Corollary 2. PRSTA1.0 algorithm always produces online

stable matchings.

Note that the proposed method to compute expected user

utilities does not consider the order of visits of workers to

the task regions. Let us consider the instance given in Fig. 4

to explain this issue and why it is necessary to incorporate a

constant α factor in the matching decisions of Algorithm 5 as

a heuristic to address it. In this example, we assume that the

visit probability of worker w1 to the region of task t is quite

high, and his quality score is significantly larger than that of

worker w2 so that even if w2 visits the task region in time-step

1, it is advantageous for t to wait for w1. Thus, in all four

scenarios, the decision at time-step 1 when w2 visits the task

region should be not to assign him to the task.

However, when we compute the expected utilities of users

considering all possible stable matchings and their probability

of occurrence, w2 should be assigned to t in scenarios (a) and

(b) given that w1 does not visit the task region in either time-

step in these scenarios. Therefore, Algorithm 5 considers the

matching pw2, tq for scenarios (a) and (b) during computation

of expected user utilities, and the matching pw1, tq for the

other scenarios. Yet when we see a similar visit pattern for

time-step 1 in the online setting, since we do not in advance

know the visit pattern for time-step 2, we need to either

assign w2 to t or not. Here, the utility of t will inevitably

be overestimated, because if it gets assigned to w2, its actual

utility will also be qpw2q in scenarios (c) and (d), which is

smaller than its expected utility qpw1q based on the stable

matching pw1, tq of these scenarios. On the other hand, if it

does not get assigned to w2, then it will be left unmatched in

scenario (a), and its actual utility (0) will be worse than its

expected utility qpw2q based on the stable matching pw2, tq of

this scenario. To alleviate the impact of these overestimations

on the performance of the algorithm, we require (line 4 of

Algorithm 5) that the expected utility of a user after the

current time-step s is at least 1{α times better than the

utility he can get at time-step s to skip the existing matching

opportunity. Note that using such a constant factor does not

favor any groups of users in the system, and hence does not

invalidate its preference-awareness, in general, as long as a

single, universal α factor is used for all decisions to ensure

fairness towards different users. We empirically examine the

algorithm’s performance with various α values in the next

section.

Running time. The time complexity of Algorithm 4 is

Opmncmaxq, where cmax “ maxwPW cpwq. Since the most

expensive operation in Algorithm 5 is to run Algorithm 4 to

find the matching probabilities, the worst-case running time of

Algorithm 5 is also Opmncmaxq. This can also be expressed

as Opnm2q, as the largest feasible cmax “ m.

V. SIMULATION RESULTS

A. Settings

We perform simulations utilizing both a real data set and a

synthetic data set. The synthetic data set is generated using 60

workers and 100 tasks in a 4 hours long assignment period.

We randomly set the quality scores of the workers and the

task rewards from the range p0, 1q, and assign a capacity to

each worker between 1 and 10 (we also look at the case

without worker capacity constraints). For each worker-task

pair pwi, tjq, we randomly set the value of λi,j between 8 to 24

hours. This generates instances where each worker visits, on

average, 23% of all task regions in an assignment period. We

examine the performance of the algorithms in instances with

different worker/task counts, capacity constraints, and inter-

visit times as well.

For the real data set, we utilize the San Francisco taxi data

set [43], which contains the traces of 536 yellow cabs during

May of 2018. For each instance, we randomly select a day as

the assignment period, and then pick 60 taxis and use their

traces on that day as worker trajectories. We divide the SF

city into 121ˆ100 regions of approximately 102 ˆ102 square

meters, and create a task on randomly selected 100 regions

that have at least 1000 traces in the whole data set. The other

parameters are assigned similarly with the synthetic data set,

and for each worker-task pair pwi, tjq, the value of λi,j is

extracted from the traces.

To avoid introducing arbitrary random values for parameters

that do not affect the performance of the algorithms in a

notable way, we let the time frame of each task be the same as

the duration of the assignment period in both data sets. Also,

the assignment period is divided into a minute long time-steps

in both data sets. Following the procedures described above,

we generate 100 different instances of both synthetic and real

data sets, and present the averaged results.

We compare the performance of the proposed algorithms

with the Average makespan sensitive Online Task Assign-

ment (AOTA) algorithm [13] and the Gale-Shapley (GS)

algorithm [15] by adapting them to our setting. The former

aims to minimize the average task completion time, and

is adapted to our setting as follows. Whenever a matching

decision between a worker-task pair pw, tq needs to be made,

we construct a weighted bipartite graph between workers and

tasks, where the weight of the edge between pw, tq is 0, and

the other edge weights pw1, t1q are the average inter-visit time

Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on October 15,2021 at 17:54:34 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3118134, IEEE Internet of
Things Journal

11

20 40 60 80 100 120

of workers (n)

40

50

60

70

80

90

100
P

a
ir
w

is
e
 u

s
e
r

h
a
p
p
in

e
s
s
 (

%
)

OSTA

PRSTA
0.9

PRSTA
1.0

GS

AOTA

(a)

20 40 60 80 100 120

of workers (n)

0

20

40

60

80

100

A
v
e
ra

g
e
 u

s
e
r

h
a
p
p
in

e
s
s
 (

%
)

OSTA

PRSTA
0.9

PRSTA
1.0

GS

AOTA

(b)

20 40 60 80 100 120

of workers (n)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
v
e
ra

g
e
 q

u
a
lit

y
 o

f
s
e
n
s
in

g

OSTA

PRSTA
0.9

PRSTA
1.0

GS

AOTA

(c)

Fig. 5: Performance of algorithms with varying worker counts in synthetic data set without capacity constraints pm “ 100q.

of workers pw1q to task regions pt1.rq. We then find a minimum

weight matching M on this graph, and assign w to t if they

are matched to each other in M . Note that in the setting

without worker capacity constraints, whenever a worker is in

the region of a yet uncompleted task, the AOTA algorithm

greedily matches the worker to the task, as this is guaranteed

to minimize the average task completion time.

The GS algorithm is normally used to find stable matchings

when the preference lists of individuals are static and known

in advance. In our setting, however, it is neither possible nor

desirable to match a worker-task pair if the worker does not

visit the task region even if they happen to prefer each other

the most. Since worker visits are uncertain in our setting, user

preferences change dynamically based on worker trajectories,

thus the GS algorithm cannot be used directly. We adapt it to

our setting as follows. When a matching decision needs to be

made at a time-step s for a worker-task pair, we form the pref-

erence lists of all workers with a positive remaining capacity

and all unmatched tasks based on how likely they will have

a chance to match and how beneficial they are to each other.

Specifically, the preference list of each worker wi is formed as

tσ1
, tσ2

, .., tσk
in order of non-increasing preference such that

mptσj
q ˆ Vi,σj

ptσj
.d ´ sq ě mptσj`1

q ˆ Vi,σj`1
ptσj`1

.d ´ sq
for all j : 1 ď j ă k. The preference lists of tasks are

formed similarly using the quality scores of the workers. Then,

the GS algorithm is run to find a stable matching for these

preference lists. If the currently examined worker-task pair is

matched in this stable matching, we also match them in the

real matching problem, otherwise we leave them unmatched

for that time-step. For the PRSTAα algorithm, we present the

results for α “ 1.0 and α “ 0.9 in general as PRSTA1.0

guarantees to produce online stable matchings, and PRSTA0.9

is empirically shown to produce high quality final assignments

with respect to the other performance metrics. However, we

also examine the performance of the PRSTAα algorithm with

different values of α.

In order to evaluate and compare the performance of the

algorithms, we utilize the following metrics, which capture

different aspects of user satisfaction and efficiency.

‚ Pairwise user happiness (PUH): This is calculated as

100 ˆ
b ´ a

b
, (24)

where a is the number of unhappy pairs, and b is the

number of worker-task pairs pw, tq that had at least one

matching opportunity during the assignment period, i.e.,

w visits t.r between rt.b, t.ds, and at the time of the visit,

w has a non-zero remaining capacity and t is unmatched.

‚ Average user happiness (%): Given a matching M, let Su

be the set of tasks (workers) with whom worker (task) u

forms an unhappy pair. Then, we can define the happiness

ratio of user u as follows:

θu “

$

’

’

&

’

’

%

1, if Su “ ∅

0, if Su ‰ ∅, Mpuq “ ∅

min
vPSu

"

f̂puq
fpvq

*

, otherwise

(25)

where

f̂puq “

$

&

%

qpMpuqq, if u P T

min
tPMpuq

mptq
(

, if u P W
(26)

and fpvq “ mpvq if v is a task, and fpvq “ qpvq if it

is a worker. Here, θu “ 1 if user u does not form any

unhappy pairs, and θu “ 0 if he forms unhappy pairs

and is unmatched (i.e., since his current utility is 0, he is

infinitely unhappy). Otherwise, its happiness is computed

as the ratio of his current utility to the maximum utility

he could achieve if he was matched to one of the users in

the unhappy pairs he forms. Accordingly, the average user

happiness is computed by 100 ˆ
ř

uPWYT
θu{U, where

U “ m ` n.

‚ Average quality of sensing: This is the average quality

of sensing/service provided to the task requesters, and is

computed by
ř

tPT qpMptqq{m, where qpMptqq “ 0 if

Mptq “ ∅.

‚ Online user happiness: To show the optimality of the

PRSTA1.0 algorithm empirically, we look at the happiness

of the users with the matching decisions in capacity-

constrained settings. This is computed similarly to pair-

wise user happiness, but a and b in (24) are set, re-

spectively, as the number of decision-time unhappy pairs

and the number of times the algorithm is run to make

a matching decision, which can be different for each

algorithm.

We also look at the running times of the algorithms to analyze

how quickly they make the matching decisions.

Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on October 15,2021 at 17:54:34 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3118134, IEEE Internet of
Things Journal

12

25 50 75 100 125 150

of tasks (m)

40

50

60

70

80

90

100
P

a
ir
w

is
e
 u

s
e
r

h
a
p
p
in

e
s
s
 (

%
)

OSTA

PRSTA
0.9

PRSTA
1.0

GS

AOTA

(a)

25 50 75 100 125 150

of tasks (m)

20

40

60

80

100

A
v
e
ra

g
e
 u

s
e
r

h
a
p
p
in

e
s
s
 (

%
)

OSTA

PRSTA
0.9

PRSTA
1.0

GS

AOTA

(b)

25 50 75 100 125 150

of tasks (m)

0.2

0.4

0.6

0.8

1

A
v
e
ra

g
e
 q

u
a
lit

y
 o

f
s
e
n
s
in

g

OSTA

PRSTA
0.9

PRSTA
1.0

GS

AOTA

(c)

Fig. 6: Performance of algorithms with varying task counts in synthetic data set without capacity constraints pn “ 60q.

5 10 15 20 25 30 35

Mobility (%)

30

40

50

60

70

80

90

100

P
a
ir
w

is
e
 u

s
e
r

h
a
p
p
in

e
s
s
 (

%
)

OSTA

PRSTA
0.9

PRSTA
1.0

GS

AOTA

(a)

5 10 15 20 25 30 35

Mobility (%)

20

40

60

80

100

A
v
e
ra

g
e
 u

s
e
r

h
a
p
p
in

e
s
s
 (

%
)

OSTA

PRSTA
0.9

PRSTA
1.0

GS

AOTA

(b)

5 10 15 20 25 30 35

Mobility (%)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
v
e
ra

g
e
 q

u
a
lit

y
 o

f
s
e
n
s
in

g

OSTA

PRSTA
0.9

PRSTA
1.0

GS

AOTA

(c)

Fig. 7: Performance of algorithms with varying mobility rates in synthetic data set without capacity constraints pm,n “ 100, 60q.

B. Results

1) Results without Worker Capacity Constraints: We first

look at the results in the synthetic data set without capacity

constraints. Fig. 5 shows the impact of the number of workers

on the performance of the algorithms. We see that the proposed

algorithms substantially outperform the others, and the OSTA

algorithm has the best performance for the most part, as

expected. In fact, it is only slightly outperformed by the

PRSTA0.9 algorithm in terms of average user happiness. This

indicates that despite producing matchings with marginally

worse pairwise user happiness, the PRSTA0.9 algorithm can

produce more balanced matchings, in which the degree of

unhappiness of the users that form at least one unhappy pair

is lower. This is simply because of reducing the risk levels by

setting α “ 0.9, and seeking to match users with possibly not

perfect, but good enough candidates.

In Fig. 5c, we see that the proposed algorithms achieve

better average quality of sensing scores with increasing num-

ber of workers, because as the number of workers increases,

there will also be more high-quality workers. However, the

GS and AOTA algorithms do not benefit much from this

significantly as the former uses an inaccurate approximation

for the expected user utilities, and the latter mostly ignores

the matching opportunities that may come in the future to

minimize the average task completion time.

In Fig. 6, we examine the performance of the algorithms

with various task counts in the systems without capacity con-

straints. Since the workers do not have a capacity constraint,

increasing the number of tasks does not escalate the compe-

tition between tasks (unlike what we will see in the presence

of capacity constraints), thus we do not see big differences in

the performance of the algorithms with the exception that the

0.5 0.6 0.7 0.8 0.9 1 1.1

40

50

60

70

80

90

100

S
c
o
re

 (
%

)

Pairwise user happiness

Average user happiness

Average quality of sensing (100)

Online user happiness

Fig. 8: Performance of the PRSTAα algorithm in synthetic

data set without capacity constraints pm “ 100, n “ 60q.

proposed algorithms perform slightly worse, and the others

slightly better in terms of average user happiness.

Next, in Fig. 7a-c, we look at the performance of the

algorithms against varying degree of mobility, which is defined

as the average percentage of the task regions visited by each

worker. We generate instances with different mobility levels

(i.e., percentage of all task regions visited by each worker,

on average) by adjusting the range of the λi,j values for

worker-task pairs (e.g., increasing the average value of λi,j

results in lower mobility). As expected, with higher mobility,

the high-quality workers visit more task regions, hence we

see a profound increase in the average quality of sensing

scores of the proposed algorithms. A remarkable point is

that the GS and AOTA algorithms produce matchings with

worse pairwise/average user happiness scores with increasing

mobility, because the amount of better matching opportunities

to be seen in the future, which are mostly neglected by these

algorithms, becomes larger with increasing mobility. Lastly, in

Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on October 15,2021 at 17:54:34 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3118134, IEEE Internet of
Things Journal

13

20 40 60 80 100 120

of workers (n)

40

50

60

70

80

90

100
P

a
ir
w

is
e
 u

s
e
r

h
a
p
p
in

e
s
s
 (

%
)

PRSTA
0.9

PRSTA
1.0

GS

AOTA

(a)

20 40 60 80 100 120

of workers (n)

0

20

40

60

80

100

A
v
e
ra

g
e
 u

s
e
r

h
a
p
p
in

e
s
s
 (

%
)

PRSTA
0.9

PRSTA
1.0

GS

AOTA

(b)

20 40 60 80 100 120

of workers (n)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
v
e
ra

g
e
 q

u
a
lit

y
 o

f
s
e
n
s
in

g

PRSTA
0.9

PRSTA
1.0

GS

AOTA

(c)

Fig. 9: Performance of algorithms with varying worker counts in synthetic data set with capacity constraints pm “ 100q.

25 50 75 100 125 150

of tasks (m)

40

50

60

70

80

90

100

P
a
ir
w

is
e
 u

s
e
r

h
a
p
p
in

e
s
s
 (

%
)

PRSTA
0.9

PRSTA
1.0

GS

AOTA

(a)

25 50 75 100 125 150

of tasks (m)

20

40

60

80

100

A
v
e
ra

g
e
 u

s
e
r

h
a
p
p
in

e
s
s
 (

%
)

PRSTA
0.9

PRSTA
1.0

GS

AOTA

(b)

25 50 75 100 125 150

of tasks (m)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
v
e
ra

g
e
 q

u
a
lit

y
 o

f
s
e
n
s
in

g

PRSTA
0.9

PRSTA
1.0

GS

AOTA

(c)

Fig. 10: Performance of algorithms with varying task counts in synthetic data set with capacity constraints pn “ 60q.

Fig. 8, we look at the performance of the PRSTAα algorithm

with various values of α parameter. We see that the algorithm

produces optimal task assignments in terms of online user

happiness when α “ 1 (Corollary 2), and achieves the best

performance in terms of all other metrics when α is between

0.8 and 1. With a smaller α value, the algorithm starts to

match the worker-task pairs greedily, while it misses too many

existing matching opportunities to wait for substantially better

ones when we use an α value greater than 1.

2) Results with Worker Capacity Constraints: In Fig. 9,

10, and 11, we present the performance comparison of the

algorithms in the MCS systems with capacity constraints (note

that there is no result for the OSTA algorithm, as it can only be

run in the systems without capacity constraints). Fig. 9 shows

the performance of the algorithms with various worker counts.

Although the relative performance of the algorithms is similar

to the case without capacity constraints (Fig. 5), the quality of

the produced matchings is generally slightly worse in terms

of all performance metrics. This is because the high-quality

workers will not be able to perform as many tasks as possible

in this scenario, and the propriety of each matching decision

becomes more important as there will be only a limited number

of opportunities to make up for the previous decisions.

We inspect how the algorithms perform with varying num-

ber of tasks in presence of capacity constraints in Fig. 10.

Different from the case without capacity constraints (Fig. 6),

the user happiness and average quality of sensing achieved

by the proposed algorithms get worse with increasing task

counts, because, in this case, there is a competition between

tasks as the high-quality workers can be matched to only a

small number of tasks.

Another noteworthy point is that increasing the number

of tasks has a different impact on the performance of the

proposed algorithms and the others in terms of average user

happiness. That is, the proposed algorithms perform slightly

worse, while the GS and AOTA algorithms perform slightly

better. This is due to the fact that the tasks will be, on average,

matched to the workers with low quality scores or will be

even unmatched when the number of tasks is large. This

makes the cost of missing a present matching opportunity in

terms of user happiness bigger, and the proposed algorithms

consequently suffer as they frequently disregard the present

matching opportunities to wait for better ones.

In Fig. 11, we analyze the effect of extending the worker

capacity ranges on the performance of the algorithms. We

observe that the proposed algorithms always outperform the

others in terms of pairwise user happiness, and the perfor-

mance difference becomes more significant with increasing

worker capacities. However, when each worker can be matched

with only a single worker, the GS algorithm has a similar

performance with the PRSTA0.9 algorithm in terms of aver-

age user happiness. Besides, the GS and AOTA algorithms

achieve comparable average quality of sensing scores with

the proposed algorithms when each worker has a capacity

of one. This is because they have a lower risk of leaving

the workers completely unmatched by skipping the existing

matching opportunities, and this compensates for the loss of

quality of sensing caused by the poor matching decisions they

otherwise tend to make (as seen with larger worker capacities).

In Table III, we present a performance comparison of the

PRSTA0.9 algorithm against the optimal solutions obtained in

the offline setting in terms of various metrics. The overall

performance of Algorithm 3 shows that considering user pref-

erences need not result in a significantly worse performance

Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on October 15,2021 at 17:54:34 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3118134, IEEE Internet of
Things Journal

14

[1,1] [1,5] [1,10] [1,20]

Capacity range

0

20

40

60

80

100
P

a
ir
w

is
e
 u

s
e
r

h
a
p
p
in

e
s
s
 (

%
)

PRSTA
0.9

PRSTA
1.0 GS AOTA

*

+

o
~

+ o ~ *

(a)

[1,1] [1,5] [1,10] [1,20]

Capacity range

0

10

20

30

40

50

60

70

80

90

A
v
e

ra
g

e
 u

s
e

r
h

a
p

p
in

e
s
s
 (

%
)

PRSTA
0.9

PRSTA
1.0 GS AOTA

+

o

~

*

o+ ~ *

(b)

[1,1] [1,5] [1,10] [1,20]

Capacity range

0

0.2

0.4

0.6

0.8

1

A
v
e

ra
g

e
 q

u
a

lit
y
 o

f
s
e

n
s
in

g

PRSTA
0.9

PRSTA
1.0 GS AOTA

+ o
~ *

+ o ~ *

(c)

Fig. 11: Performance of algorithms with varying ranges of worker capacities in synthetic data set pm “ 100, n “ 60q.

10 15 20 25 30 35

Campaign duration (hours)

40

50

60

70

80

90

100

P
a
ir
w

is
e
 u

s
e
r

h
a
p
p
in

e
s
s
 (

%
)

OSTA

PRSTA
0.9

PRSTA
1.0

GS

AOTA

(a)

20 40 60 80 100 120

of workers (n)

40

50

60

70

80

90

100

P
a
ir
w

is
e
 u

s
e
r

h
a
p
p
in

e
s
s
 (

%
)

OSTA

PRSTA
0.9

PRSTA
1.0

GS

AOTA

(b)

25 50 75 100 125 150

of tasks (m)

40

50

60

70

80

90

100

P
a
ir
w

is
e
 u

s
e
r

h
a
p
p
in

e
s
s
 (

%
)

OSTA

PRSTA
0.9

PRSTA
1.0

GS

AOTA

(c)

Fig. 12: Performance of algorithms in the SF taxi data set without capacity constraints pm “ 100, n “ 60q.

10 15 20 25 30 35

Campaign duration (hours)

40

50

60

70

80

90

100

P
a
ir
w

is
e
 u

s
e
r

h
a
p
p
in

e
s
s
 (

%
)

PRSTA
0.9

PRSTA
1.0

GS

AOTA

(a)

20 40 60 80 100 120

of workers (n)

40

50

60

70

80

90

100

P
a
ir
w

is
e
 u

s
e
r

h
a
p
p
in

e
s
s
 (

%
)

PRSTA
0.9

PRSTA
1.0

GS

AOTA

(b)

25 50 75 100 125 150

of tasks (m)

40

50

60

70

80

90

100

P
a
ir
w

is
e
 u

s
e
r

h
a
p
p
in

e
s
s
 (

%
)

PRSTA
0.9

PRSTA
1.0

GS

AOTA

(c)

Fig. 13: Performance of algorithms in the SF taxi data set with capacity constraints pm “ 100, n “ 60q.

Solution PUH Avg. QoS Avg. Reward Coverage

PRSTA0.9 89.7 78.7 81.5 98.7

Algorithm 3 100 82.0 82.8 100

Offline-QoS 89.9 82.9 82.8 100

Offline-Reward 60.4 50.4 82.8 100

Offline-Coverage 59.8 49.8 82.8 100

TABLE III: Performance of the PRSTA0.9 algorithm and the

offline solutions maximizing user happiness (Algorithm 3),

avg. QoS (Offline-QoS), avg. reward paid to workers (Offline-

Reward), and task coverage (Offline-Coverage). The average

QoS and reward scores are multiplied by 100 for ease of

reading. (m=100, n=60.)

in terms of system-level utility metrics. Besides, since any

online algorithm is expected to have a poorer performance than

their offline counterparts in non-trivial settings, the PRSTA0.9

algorithm (the only online solution in Table III) can be said to

have a near-optimal or at least a decent performance in terms

of all metrics considered.

3) Results with Real Data Set: In Fig. 12 & 13, we present

the performance of the algorithms in terms of pairwise user

happiness in the real data set without and with capacity con-

straints, respectively. Both figures show that the performance

of the proposed algorithms and GS algorithm mostly improve

with the extended campaign duration, yet that of the AOTA

algorithm gets consistently worse as it makes almost all of

the assignments right in the beginning of the campaign, as

it does not care for high-quality assignments that may come

later, but only seeks to minimize the average task completion

time. In Fig. 12a & 13a, we see a slight fluctuation in the

performance of the PRSTA1.0 algorithm when the campaign

duration is between 20-30 hours. This is mostly because of

the changes in the movement patterns of the taxis between

two consecutive days.

In Fig. 12, we observe that the relative performance of

the algorithms and the impact of worker/task counts on the

performance of all algorithms are quite similar to what we

have seen in the synthetic data set (Fig. 5 & 6). In fact,

the only major difference is that the GS algorithm achieves

notably higher pairwise user happiness scores in the real data

Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on October 15,2021 at 17:54:34 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3118134, IEEE Internet of
Things Journal

15

set. Moreover, its performance is also significantly better with

capacity constraints (Fig. 13) so that it slightly outperforms the

PRSTA1.0 algorithm when the ratio of the number of tasks to

the number of workers is larger than 2. Yet it should be noted

that it is always outperformed by the PRSTA0.9 algorithm.

4) Running Time Results: Finally, we look at the running

times of the algorithms1 with varying worker/task counts and

capacity ranges on an Intel core i7 processor with a memory

of 16 GB and a speed of 2.5 GHz. We only present the

running times for the synthetic data set as the comparison

of running times of algorithms in the real data set does not

exhibit any remarkable difference (except for the naturally

larger total running times due to the longer campaign dura-

tion). Note that the time complexity of the GS algorithm is

Opmnq, and that of the AOTA algorithm is OpN3q, where

N “ maxp|T |,
ř

wPW cpwqq, as it requires to find a minimum

weight matching on the bipartite graph between W and T

with capacity constraints, for which we use the Hungarian

algorithm [44]. Also recall that the worst-case running time

of the PRSTAα algorithm is Opnmcmaxq (or Opnm2q).

In Fig. 14, we see that in all cases the total running time of

the GS algorithm is lower than the PRSTAα algorithms, while

its average running time per decision is higher. This is because

the GS algorithm makes the matching decisions more greedily

compared to the PRSTAα algorithms, thus it matches most of

the workers and tasks in the beginning of the campaign, which

means that it will not be run again for these users, reducing

the number of times it will be run in total. In general, the

AOTA algorithm is also run much fewer times, but, due to its

significantly worse time complexity, it mostly has the highest

average running time, and ends up having the largest total

running time with increasing worker capacities. On the other

hand, the PRSTAα algorithms have smaller average running

times per decision, because they are run much more frequently

after the first part of the campaign where there are generally

fewer worker-task pairs that can still get matched.

Moreover, the PRSTA1.0 algorithm has a significantly larger

total running time than the PRSTA0.9 algorithm as the former

has a stronger requirement to match a pair, and consequently

will be run considerably more times compared to the latter.

This is also why we see an almost quadratic increase in the

total running time of the PRSTA1.0 algorithm with increasing

worker and task counts. That is, when the number of work-

ers/tasks increases, there will be more visits, and the PRSTA1.0

algorithm will need to be run even more frequently. Lastly,

since workers will be less selective when they have higher

capacities, and accordingly tasks will end up getting matched

earlier, the total/average running times of the PRSTAα and

GS algorithms do not get significantly larger with increasing

capacities as seen in Fig. 14c, even though the worst-case

running time of the PRSTAα algorithm (i.e., Opnmcmaxq) hints

at a linear grow with increasing worker capacities.

1Since the OSTA makes its matching decisions in constant time, we do
not present its running time. One-time cost of obtaining Ejpsq values for the
OSTA algorithm is also very small (e.g., 32 ms, which is about 10% of the
total running time of the GS algorithm, when m “ 150 and n “ 60)

VI. CONCLUSION

In this paper, we focus on the task assignment problem in

opportunistic MCS. First, we present a complete system model

considering the uncertainty in worker trajectories and capacity

constraints of workers, and formally define the preference-

aware/stable task assignment problem. We then demonstrate

how to efficiently examine all practical scenarios for assign-

ment opportunities, which arise when the workers visit the task

regions, to compute the expected utilities of the task requesters

and workers with and without capacity constraints. Finally,

we propose polynomial-time task assignment algorithms that

are proven to be preference-aware, and show via extensive

simulations that they significantly outperform the existing

solutions in terms of worker/task requester happiness and

quality of sensing. In future work, we aim to investigate

the preference-aware task assignment problem with uncertain

worker trajectories in settings with non-uniform worker qual-

ities and complex, time-constrained sensing tasks that require

the cooperation of multiple workers.

ACKNOWLEDGEMENT

This material is based upon work supported by the U.S. Na-

tional Science Foundation (NSF) under Grant CNS1647217.

REFERENCES

[1] H. Chen, B. Guo, Z. Yu, and Q. Han, “Crowdtracking: real-time
vehicle tracking through mobile crowdsensing,” IEEE Internet of Things

Journal, vol. 6, no. 5, pp. 7570–7583, 2019.
[2] T. Liu, Y. Zhu, Y. Yang, and F. Ye, “ALC2: When active learning meets

compressive crowdsensing for urban air pollution monitoring,” IEEE

Internet of Things Journal, vol. 6, no. 6, pp. 9427–9438, 2019.
[3] P. Fraga-Lamas, T. M. Fernández-Caramés, M. Suárez-Albela,

L. Castedo, and M. González-López, “A review on internet of things
for defense and public safety,” Sensors, vol. 16, no. 10, p. 1644, 2016.

[4] J. M. Cecilia, J.-C. Cano, E. Hernández-Orallo, C. T. Calafate, and
P. Manzoni, “Mobile crowdsensing approaches to address the COVID-19
pandemic in Spain,” IET Smart Cities, vol. 2, no. 2, pp. 58–63, 2020.

[5] B. Guo, Z. Yu, X. Zhou, and D. Zhang, “From participatory sensing to
mobile crowd sensing,” in Proc. of IEEE Percom Workshops, 2014, pp.
593–598.

[6] M. Zhang, P. Yang, C. Tian, S. Tang, X. Gao, B. Wang, and F. Xiao,
“Quality-aware sensing coverage in budget-constrained mobile crowd-
sensing networks,” IEEE Trans. Veh. Technol., vol. 65, no. 9, pp. 7698–
7707, 2016.

[7] F. Yucel and E. Bulut, “User satisfaction aware maximum utility task
assignment in mobile crowdsensing,” Computer Networks, vol. 172, p.
107156, 2020.

[8] F. Yucel, M. Yuksel, and E. Bulut, “QoS-based Budget Constrained
Stable Task Assignment in Mobile Crowdsensing,” IEEE Trans. on

Mobile Computing, pp. 1–1, 2020.
[9] M. Abououf, S. Singh, H. Otrok, R. Mizouni, and A. Ouali, “Gale-

shapley matching game selection - A framework for user satisfaction,”
IEEE Access, vol. 7, pp. 3694–3703, 2019.

[10] C. Dai, X. Wang, K. Liu, D. Qi, W. Lin, and P. Zhou, “Stable task
assignment for mobile crowdsensing with budget constraint,” IEEE

Trans. on Mobile Computing, pp. 1–1, 2020.
[11] F. Yucel, M. Yuksel, and E. Bulut, “Coverage-aware stable task assign-

ment in opportunistic mobile crowdsensing,” IEEE Trans. on Vehicular

Technology, pp. 1–1, 2021.
[12] Z. He, J. Cao, and X. Liu, “High quality participant recruitment in

vehicle-based crowdsourcing using predictable mobility,” in Proc. of

IEEE INFOCOM, 2015, pp. 2542–2550.
[13] M. Xiao, J. Wu, L. Huang, R. Cheng, and Y. Wang, “Online Task

Assignment for Crowdsensing in Predictable Mobile Social Networks,”
IEEE Trans. on Mobile Computing, vol. 16, no. 8, pp. 2306–2320, 2017.

[14] Y. Yang, W. Liu, E. Wang, and J. Wu, “A prediction-based user selection
framework for heterogeneous mobile crowdsensing,” IEEE Trans. on

Mobile Computing, vol. 18, no. 11, pp. 2460–2473, 2018.

Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on October 15,2021 at 17:54:34 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3118134, IEEE Internet of
Things Journal

16

20 40 60 80 100 120

of workers (n)

0

500

1000

1500

2000

2500

3000
T

o
ta

l
ru

n
n
in

g
 t
im

e
 (

m
s
)

PRSTA
0.9

PRSTA
1.0

GS

AOTA

20 40 60 80 100 120
0

5

10

A
v
g

 r
u

n
n

in
g

 t
im

e
 (

m
s
)

(a)

25 50 75 100 125 150

of tasks (m)

0

500

1000

1500

2000

T
o
ta

l
ru

n
n
in

g
 t
im

e
 (

m
s
)

PRSTA
0.9

PRSTA
1.0

GS

AOTA

25 50 75 100 125 150
0

1

2

3

4

A
v
g

 r
u

n
n

in
g

 t
im

e
 (

m
s
)

(b)

1 5 10 20
0

500

1000

1500

T
o
ta

l
ru

n
n
in

g
 t
im

e
 (

m
s
)

PRSTA
0.9

PRSTA
1.0

GS

AOTA

1 5 10 20
0

2

4

6

8

A
v
g

 r
u

n
n

in
g

 t
im

e
 (

m
s
)

(c)

Fig. 14: Running times with varying worker and task counts (a,b); and worker capacity ranges [1,cmax] with m “ 100, n “ 60

(c). Average (total) running time is the average (total) time spent per (for all) matching decision(s).

[15] D. Gale and L. Shapley, “College admissions and stability of marriage.
american mathematicas monthly, 69, 9-15,” 1962.

[16] K. Yan, G. Luo, X. Zheng, L. Tian, and A. M. V. V. Sai, “A compre-
hensive location-privacy-awareness task selection mechanism in mobile
crowd-sensing,” IEEE Access, vol. 7, pp. 77 541–77 554, 2019.

[17] S. Song, Z. Liu, Z. Li, T. Xing, and D. Fang, “Coverage-oriented task
assignment for mobile crowdsensing,” IEEE Internet of Things Journal,
vol. 7, no. 8, pp. 7407–7418, 2020.

[18] A. Capponi, C. Fiandrino, B. Kantarci, L. Foschini, D. Kliazovich, and
P. Bouvry, “A survey on mobile crowdsensing systems: Challenges,
solutions, and opportunities,” IEEE Commun. Surv. Tutorials, vol. 21,
no. 3, pp. 2419–2465, 2019.

[19] D. Manlove, Algorithmics of matching under preferences. World
Scientific, 2013, vol. 2.

[20] P. Rajput, M. Chaturvedi, and V. Patel, “Opportunistic sensing based
detection of crowdedness in public transport buses,” Pervasive and

Mobile Computing, vol. 68, p. 101246, 2020.

[21] “Waze,” 2021. [Online]. Available: https://www.waze.com/

[22] J. Chen and J. Yang, “Maximizing coverage quality with budget con-
strained in mobile crowd-sensing network for environmental monitoring
applications,” Sensors, vol. 19, no. 10, p. 2399, 2019.

[23] M. Karaliopoulos, O. Telelis, and I. Koutsopoulos, “User recruitment
for mobile crowdsensing over opportunistic networks,” in Proc. of IEEE

INFOCOM, 2015, pp. 2254–2262.

[24] Y. Zhan, Y. Xia, Y. Liu, F. Li, and Y. Wang, “Incentive-aware time-
sensitive data collection in mobile opportunistic crowdsensing,” IEEE

Trans. Veh. Technol., vol. 66, no. 9, pp. 7849–7861, 2017.

[25] Y. Zhan, Y. Xia, J. Zhang, and Y. Wang, “Incentive mechanism design in
mobile opportunistic data collection with time sensitivity,” IEEE Internet

of Things Journal, vol. 5, no. 1, pp. 246–256, 2017.

[26] J. Wu, M. Xiao, and L. Huang, “Homing spread: Community home-
based multi-copy routing in mobile social networks,” in Proc. of IEEE

INFOCOM, 2013, pp. 2319–2327.

[27] A. Dhungana and E. Bulut, “Energy sharing based content delivery in
mobile social networks,” in Proc. of IEEE WoWMoM, 2019, pp. 1–9.

[28] Y. Li, D. Jin, P. Hui, and S. Chen, “Contact-aware data replication in
roadside unit aided vehicular delay tolerant networks,” IEEE Trans. on

Mobile Computing, vol. 15, no. 2, pp. 306–321, 2015.

[29] P. Zhu, J. Li, D. Wang, and X. You, “Machine-learning-based oppor-
tunistic spectrum access in cognitive radio networks,” IEEE Wireless

Communications, vol. 27, no. 1, pp. 38–44, 2020.

[30] “SF Match,” 2021. [Online]. Available: https://sfmatch.org/

[31] X. Yin, Y. Chen, C. Xu, S. Yu, and B. Li, “Matchmaker: Stable Task
Assignment with Bounded Constraints for Crowdsourcing Platforms,”
IEEE Internet of Things Journal, 2020.

[32] B. Zhao, P. Xu, Y. Shi, Y. Tong, Z. Zhou, and Y. Zeng, “Preference-
aware task assignment in on-demand taxi dispatching: An online stable
matching approach,” in Proc. of the AAAI Conference on Artificial

Intelligence, vol. 33, 2019, pp. 2245–2252.

[33] H. Zheng and J. Wu, “Online to offline business: urban taxi dispatching
with passenger-driver matching stability,” in Proc. of 37th IEEE Inter.

Conf. on Distributed Computing Systems (ICDCS), 2017, pp. 816–825.

[34] H. Aziz, P. Biró, S. Gaspers, R. de Haan, N. Mattei, and B. Raste-
gari, “Stable matching with uncertain linear preferences,” Algorithmica,
vol. 82, no. 5, pp. 1410–1433, 2020.

[35] R. Bredereck, J. Chen, D. Knop, J. Luo, and R. Niedermeier, “Adapting
stable matchings to evolving preferences,” in Proc. of the AAAI Confer-

ence on Artificial Intelligence, vol. 34, no. 02, 2020, pp. 1830–1837.

[36] B. Guo, H. Chen, Q. Han, Z. Yu, D. Zhang, and Y. Wang, “Worker-
contributed data utility measurement for visual crowdsensing systems,”
IEEE Trans. on Mobile Computing, vol. 16, no. 8, pp. 2379–2391, 2016.

[37] R. K. Rana, C. T. Chou, S. S. Kanhere, N. Bulusu, and W. Hu, “Ear-
phone: an end-to-end participatory urban noise mapping system,” in
Proc. of the 9th ACM/IEEE international conference on information

processing in sensor networks, 2010, pp. 105–116.
[38] Y. Tong, J. She, B. Ding, L. Wang, and L. Chen, “Online mobile

micro-task allocation in spatial crowdsourcing,” in Proc. of 32nd IEEE

International Conf. on Data Engineering (ICDE), 2016, pp. 49–60.
[39] J. Ni, K. Zhang, Q. Xia, X. Lin, and X. S. Shen, “Enabling strong privacy

preservation and accurate task allocation for mobile crowdsensing,”
IEEE Trans. on Mobile Computing, vol. 19, no. 6, pp. 1317–1331, 2020.

[40] “Uber,” 2021. [Online]. Available: https://www.uber.com/
[41] D. Kong and F. Wu, “HST-LSTM: a hierarchical spatial-temporal long-

short term memory network for location prediction.” in IJCAI, vol. 18,
no. 7, 2018, pp. 2341–2347.

[42] “Optimal stopping and applications.” [Online]. Available: http:
//www.math.ucla.edu/tom/Stopping/Contents.html

[43] M. Piorkowski, N. Sarafijanovic-Djukic, and M. Grossglauser, “Crawdad
dataset epfl/mobility (v. 2009-02-24).” [Online]. Available: https:
//crawdad.org/epfl/mobility/20090224

[44] H. W. Kuhn, “The hungarian method for the assignment problem,” Naval

research logistics quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.

Fatih Yucel (Member, IEEE) received B.S. degree
in Gazi University in Turkey in 2017. He is now
pursuing his PhD degree in the Computer Science
Department of Virginia Commonwealth University
under the supervision of Dr. Eyuphan Bulut. He is
working on development of stable task assignment
algorithms for mobile crowdsensing applications.

Eyuphan Bulut (Senior Member, IEEE) received
the Ph.D. degree in computer science from Rensse-
laer Polytechnic Institute (RPI), Troy, NY, in 2011.
He then worked as a senior engineer in Mobile
Internet Technology Group (MITG) group of Cisco
Systems in Richardson, TX for 4.5 years. He is
now an Associate Professor with the Department of
Computer Science, Virginia Commonwealth Univer-
sity (VCU), Richmond, VA. His research interests
include mobile and wireless computing, network
security and privacy, mobile social networks and

crowd-sensing. Dr. Bulut has been serving as an Associate Editor in IEEE
Access. He is also a member of ACM.

Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on October 15,2021 at 17:54:34 UTC from IEEE Xplore. Restrictions apply.

