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Abstract—WiFi sensing has recently emerged as a non-
invasive and privacy-preserving solution and has been ex-
tensively studied across various application domains. This
approach leverages the channel state information (CSI) of
ambient WiFi signals, combined with deep neural network
techniques, to recognize unique CSI fingerprints associated
with different human activities or environmental movements.
It has been shown that the performance of WiFi sensing
systems is sensitive to environmental changes and deployment-
related factors such as the placement of transmitters and
receivers, sampling rates, and the presence of obstacles (e.g.,
walls). However, the impact of different WiFi channels on
the performance of WiFi sensing systems has received limited
attention. In this study, we investigate this effect using two
transceiver (TX-RX) pairs operating in Line-of-Sight (LoS) and
Non-Line-of-Sight (NLoS) scenarios. Through our experiments,
we demonstrate that the choice of WiFi channels for transceiver
devices significantly influences system accuracy. Depending on
the selected channels for LoS and NLoS devices, WiFi sensing
performance can be either positively or negatively affected.

Index Terms—WiFi signals, CSI, OFDM, LoS, NLoS.

I. INTRODUCTION

We have recently witnessed a growing number of research
studies on WiFi sensing that aim to enable non-invasive
smart sensing solutions using Internet of Things (IoT) de-
vices. By leveraging ubiquitous WiFi devices and signals
and recently developed tools [1]–[3] that facilitate access to
Channel State Information (CSI), researchers have utilized
signal propagation characteristics embedded in CSI data to
develop various applications. These include authentication
of people [4], recognizing their movements [5], and even
distinguishing people from pets [6] or other individuals [7].

WiFi sensing relies on fine-grained analysis of variations
in the received radio signals. This is usually obtained from
CSI data (and associated amplitude and phase information)
across WiFi subcarriers. The multi-path effects during the
signal propagation when people perform different move-
ments generate distinct CSI patterns which are then learned
usually through deep neural network (DNN) models to
recognize these activities.

A. Motivation

Most of the current WiFi sensing studies focus on devel-
oping new applications or enhancing sensing performance
through complex DNN models [8]. While there are some

studies [9] that investigate the capabilities and limitations of
CSI based WiFi sensing, there is more exploration needed
to deepen our understanding of its fundamentals.

Most of the existing WiFi devices operate in the 2.4 GHz,
5.0 GHz or 6.0 GHz bands. There are also some specialized
devices that can support uncommon higher bands, such as 60
GHz, for specific applications, but they are not common. The
choice of frequency band affects WiFi sensing performance;
for example, higher bands can capture finer movements but
at the cost of reduced sensing range. Within each WiFi
frequency band, there are also different channels. While
for a single transmitter (TX) and receiver (RX) based WiFi
sensing system using different channels may not exhibit a
clearly distinguishable impact, when multiple device pairs
are used the effect on the sensing performance can be more
pronounced, due to the interference among them.

Understanding the impact of channel selection on WiFi
sensing performance is crucial, particularly for applications
that require accurate and time-sensitive sensing, such as
security alerts [10] and health monitoring [11]. Additionally,
strategic channel selection can enhance the resilience of
WiFi sensing systems against cyber threats by dynamically
adjusting channels to mitigate potential attacks and maintain
system security.

B. Contributions

In this study, we aim to explore the effect of selected
WiFi channels on the performance of WiFi sensing studies.
In particular, we consider a Line-of-Sight (LoS) and a
Non-Line-of-Sight (NLoS) link with the same and non-
overlapping channels and perform experiments in different
combinations to analyze their effect on each other and on
the performance of the WiFi sensing system. We perform
extensive experiments under various conditions to analyze
and compare the WiFi sensing performance with both single
and two pairs. Our experimental results show that NLoS
link accuracy is affected negatively by the LoS link if they
run in the same channel, which is not surprising due to
the co-channel interference. However, we also observe that
the NLoS link is positively affected when it uses a non-
overlapping channel that is different from the LoS link.
Different channel NLoS link performance is even better than
in the NLoS-only scenario. While there is no interference ex-
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pected between these non-overlapping channels, we observe
increased variance in amplitude values across subcarriers,
which then yields higher sensing accuracy.

The rest of the paper is structured as follows. In Section II,
we provide an overview of related studies in the literature
followed by some preliminaries in Section III. We then
present the details of our system and experimental setup
in Section IV. In Section V, we provide our experimental
results. Finally, we conclude the study and discuss future
directions in Section VI.

II. RELATED WORK

With the release of the tools enabling access to CSI data
and recent advances in deep learning methods, CSI-based
WiFi sensing solutions have recently grown [12]. Besides
the popular applications such as human activity or gesture
recognition [5], and occupancy counting [13], it is used for
distinguishing human and non-human movements [14], and
for robot-assisted rehabilitation tracking [15].

WiFi sensing performance is highly affected by different
parameters during deployment. For example, [16] examines
the impact of different TX and RX device positions on
system performance. Several studies [17]–[19] have also
aimed to mitigate environment- and subject-specific effects
to enhance model generalization and robustness. Similar
concerns regarding noise and interference affecting wireless
signals have been observed in other domains, such as CSI
feedback in MIMO systems [20]. Additionally, the effect of
obstacles in the environment (e.g., wall) has been studied
in [21] highlighting the importance of TX and RX locations
relative to the obstacles.

As a deeper understanding of channel state information
is essential in developing accurate WiFi sensing systems,
in recent studies, we see thorough investigations into it.
For example, a comprehensive analysis of the capabilities
and limitations of CSI-based Wi-Fi sensing using 802.11ax
(Wi-Fi 6) signals is presented in [9]. In [22], the non-
uniformity of channel state information is explored. In
another study [23], experimental evaluation of 2.4 GHz and 5
GHz based WiFi sensing systems is performed, demonstrat-
ing the slightly superior performance of the 5 GHz band.

To the best of our knowledge, only a few studies have
looked at the effects of channel selection in WiFi sensing.
For example, [24] introduces a hopping mechanism to select
optimal channels by leveraging wideband channel diversity.
While that study focuses on feature separability using chan-
nel hopping and deep learning, we explore the impact of
signal variance across subcarriers under different channel
conditions for LoS and NLoS TX-RX pairs. Similarly, [25]
analyzes the effect of channel selection on the interference
and sampling rate of WiFi sensing systems; however, it does
not provide results on how this impacts system accuracy.
Unlike these studies, we specifically explore the effect of
channel selection in LoS and NLoS links on WiFi sensing
performance.

III. PRELIMINARIES

A. WiFi Channel State Information

Channel state information provides insight into how the
signal propagates between a transmitter and a receiver. This
includes reflections and scattering from the environment and
surrounding objects over multiple paths. The channel can be
represented as:

y = Hx+ η, (1)

where y and x denote the received and transmitted signal
vectors, respectively, H represents the CSI matrix, and η is
the noise vector in the channel.

CSI captures the combined effect of both LoS and NLoS
propagation paths. The LoS path represents direct signal
transmission between TX and RX, while NLoS paths arise
from reflections off surrounding objects, introducing addi-
tional signal components. The channel frequency response
(CFR) is often modeled as:

H(f, t) = e−j2π∆ft

[
Hstatic(f) +

Nd∑
n=1

bn(f, t)e
−j2πfθn(t)

]
,

Where Hstatic(f) represents the static contribution of the
channel, which consists of signals traveling through the
LoS path and reflections from stationary objects, the term∑Nd

n=1 bn(f, t)e
−j2πfθn(t) captures the dynamic contribu-

tions introduced by NLoS paths with time-varying charac-
teristics. Here, Nd denotes the number of dynamic paths,
bn(f, t) represents the amplitude attenuation for the n-th
dynamic path, and θn(t) corresponds to the time delay of
the n-th path.

The term ∆f represents the subcarrier spacing in an
OFDM-based WiFi system, which determines the frequency
separation between consecutive subcarriers in the CSI mea-
surements. The impact of these paths on CSI is highly
dependent on the surrounding environment. For instance,
movement along a LoS path can introduce variations in the
dynamic components, while stationary objects in a NLoS
scenario contribute to the static components.

In this study, we collect the CSI frames using ESP32 mi-
crocontrollers and the ESP32-based CSI extraction tool [3].
Out of the total 64 subcarriers, only 52 of them contain
actual CSI data that is not static or zero, and thus we use
only the data of these subcarriers.

B. Variance of Amplitude

Variance measures the spread of values around the mean.
A high variance in amplitude across subcarriers indicates
greater diversity in amplitude values. Since subcarriers
capture different transmitted signal paths and interactions,
higher variance suggests that subcarriers experience different
levels of attenuation, reflection, and scattering across multi-
ple paths, enriching the feature set for analysis. Conversely,
if the variance were low, the signal patterns across subcarri-
ers would be too similar, reducing the ability to differentiate
activities.
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Fig. 1: System Overview

Let Xi,j denote the amplitude value of the j-th subcarrier
at the i-th time step, N denote the total number of subcarriers
and µi represent the mean amplitude across all subcarriers
at the i-th time step. The variance across subcarriers at the
i-th time step is computed as,

σ2
i =

1

N

N∑
j=1

(Xi,j − µi)
2
, (2)

where,

µi =
1

N

N∑
j=1

Xi,j (3)

IV. EXPERIMENT SETUP

In this section, we describe the system used for our
experiments, and then talk about the data collection and
model development process.

A. System Overview

The overall system is illustrated in Fig. 1 and consists of
three major stages. In the first stage, we collect data in LoS
and NLoS simultaneously to ensure a fair comparison. The
collected raw CSI data is then processed in the next stage,
where we extract the amplitude and apply various denoising
techniques. Specifically, we remove null subcarriers and
apply Hampel filter to eliminate outliers. We also use moving
average filter to smooth the amplitudes and perform Principal
Component Analysis (PCA) to find the most significant
components of the data. In the final stage, we feed the
processed data into a prediction model constructed using
1D convolutional and dense layers, to train and classify the
activities accurately.

B. Data Collection

We designed the experiments to collect WiFi CSI in a
controlled environment, with a focus on sensing a set of
human activities through signal variations in LoS and NLoS
settings.

The hardware used during experimental setups include
four ESP32 microcontrollers and one Raspberry Pi, model
4B with 2GB RAM. We used the ESP32-CSI-Toolkit [3],
[26] to collect CSI using one or two pairs of ESP32 WiFi-
enabled microcontrollers, with one ESP32 serving as TX and
the other as RX in each pair, respectively. In this study, we
used WiFi Channel 1 (2.412 GHz) and Channel 11 (2.462
GHz) for LoS and NLoS transceivers. The ESP32 devices

TX1

RX1

TX2

RX2

LoS NLoS

Fig. 2: Experimental setup for LoS and NLoS scenarios

Scenario LoS Setup NLoS Setup
1 LoS using Channel X NLoS is using Channel X
2 LoS using Channel X NLoS using Channel Y
3 LoS turned OFF NLoS Using Channel X
4 LoS turned OFF NLoS Using Channel Y

TABLE I: Experiment Scenarios

captured CSI data from WiFi signals transmitted over either
of these channels at a packet rate of 100 Hz. To ensure
precise time synchronization and continuous logging of both
CSI, the ESP32 devices were connected to a Raspberry Pi.
Note that, one TX-RX pair was located at the LoS and the
other one at the NLoS, and we considered different setup
combinations by changing their channels to 1 or 11, or
turning them off.

Table I presents the different experimental scenarios,
detailing the WiFi channel assignments for LoS and NLoS
pairs. Here, X refers to either Channel 1 or 11 and Y is
the other one, i.e., if X is Channel 1 then we consider Y as
Channel 11 and vice-versa. The experiments were conducted
in a 5 m x 4.5 m indoor environment, where the TX and
RX were placed 70 cm above the ground. As it is shown in
Fig. 2, a glass-wall partition separated the LoS and NLoS
areas and the distance between the TX and RX pairs of both
scenarios were 160 cm,

For data collection, we conducted experiments involving
three whole-body activities, each performed 10 times by a
volunteer in a round-robin manner. The activities were (i)
walking, (ii) moving hands up and down, and (iii) moving
legs right and left. While splitting the dataset for the deep
learning model, we used eight repetitions of each activity
for the training set and the remaining two for the test set.

C. Model Development and Training

We designed a deep learning model for our activity
classification task using Tensorflow/Keras framework. The
model follows a sequential architecture incorporating a one
dimensional convolutional layer and dense layers, along with
dropout and batch normalization.



Experiment Channel Accuracy
LoS NLoS LoS NLoS

1
1 1 70% 68%
1 11 74% 89%

1 80%
11 79%

2 1 1 97% 86%
1 11 96% 91%

3
1 1 90% 71%
1 11 91% 92%

1 78%

4
1 1 89% 73%
1 11 84% 90%

1 75%

5
1 1 83% 73%
1 11 83% 76%

1 73%

TABLE II: Accuracy in different scenarios and experiments.

We begin by reshaping the input data into a three-
dimensional tensor of size (52, 1), adding a channel dimen-
sion for compatibility with the one-dimensional convolu-
tional layer. The output from the convolutional layer is then
flattened to transition from feature extraction to fully con-
nected layers. Next, we stack four dense layers with neuron
counts decreasing from 192 to 32. Each dense layer employs
ReLU activation and is followed by batch normalization to
ensure stable gradient flow and faster convergence.

Dropout layers are applied progressively to prevent over-
fitting as the network becomes deeper. The final layer is
a dense layer with three neurons and uses the softmax
activation function to generate probability distributions for
each of the target classes. The model is compiled using the
Adam optimizer, with categorical cross-entropy as the loss
function and accuracy as the evaluation metric. We then use
this model to obtain classification on three performed human
activities.

V. EXPERIMENTAL RESULTS

In this section, we present the results of our experiments,
conducted under different scenarios outlined in Table I. In
Table II, we provide a summary of these results for both LoS
and NLoS links across all experiments. Note that in every
experiment, the volunteer performs the activities in the LoS
link area. Next, we begin with discussing the results in the
first experiment in detail, followed by an analysis of the
remaining experiments.

In the first experiment, we considered all four scenarios
together. We first analyze the use of same and different
channels (Scenario 1 and 2) in both LoS and NLoS pairs.
As shown in Table II, using different channels for LoS and
NLoS results in higher NLoS accuracy (89%) compared to
using the same channel (68%). Even the LoS OFF cases
(Scenario 3 and 4) achieve better performance (80% and
79%, respectively) than the same channel scenario (Scenario
1).

Fig. 3 further illustrates the model’s performance through
confusion matrices. We see that the model achieves high to

Activity NLoS 1,
LoS 1

NLoS 11,
LoS 1

NLoS 1,
LoS OFF

NLoS 11,
LoS OFF

Walking 3.43 17.25 3.63 5.46
Hand Up/Down 3.61 16.46 3.83 5.38
Leg Right/Left 3.64 16.98 4.01 5.40

TABLE III: Mean amplitude variance values for different
NLoS scenarios and activities.

moderate classification accuracy for Walking class as it is
the most distinctive among these three activities. For most
of the cases, Leg Right Left class provides most of the
misclassification by getting confused with Walking class,
which is reasonable considering the involvement of legs in
both of these activities. Additionally, activities performed at
different speeds (e.g., slow arm movement or quick steps)
introduce variations that may not be captured consistently
across all samples; leading to occasional misclassifications.

To investigate the performance difference across differ-
ent scenarios under various LoS and NLoS configurations
further, we calculate the variance of amplitude across sub-
carriers. From the results in Table III, it is evident that
variance is significantly higher in the NLoS channel 11
with LoS channel 1 scenario compared to the other three
configurations. Fig. 4 suggests that non-overlapping channels
introduce greater diversity in the signal, leading to a richer
feature space for classification. When using the same chan-
nel, the co-channel interference between the LoS and NLoS
signals reduces the signal diversity. On top of that, even the
LoS OFF scenarios show slightly higher variance than the
same channel LoS-NLoS scenario. As shown in Fig. 5, the
amplitude values for Scenario 2 range from approximately
4 to 18, whereas in the other three scenarios, the range is
roughly between 10 and 18.

These results show that same channel interference is
destructive for sensing performance in NLoS scenarios, thus
removing the same channel LoS pair can increase the perfor-
mance. While this was expected, we observed an unexpected
result in the different channel LoS-NLoS scenario. Our ini-
tial expectation was to observe similar performance in NLoS
link when there is a LoS pair running in non-overlapping
channel or when LoS pair is turned off. However, our results
show that using a non-overlapping channel in the LoS pair
can improve the NLoS performance compared to NLoS only
scenario (i.e., LoS OFF). Further analysis revealed that this
improvement is due to the higher variance in amplitude
distribution across subcarriers, which enhances the model’s
ability to differentiate between activities.

In non-overlapping channels, the signals from LoS and
NLoS operate at different frequencies, minimizing destruc-
tive interference and allowing independent propagation paths
to dominate. This leads to higher variance in the signal,
which enhances feature diversity for classification. There-
fore, allocating non-overlapping channels to different TX-
RX pairs, particularly for LoS and NLoS links, can directly
improve the performance of WiFi sensing applications.
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Fig. 3: Confusion matrix of each NLoS scenario of experiment 1
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Fig. 4: Variance of amplitude across subcarriers during all repetitions of each activity for NLoS pairs of Experiment 1.

In order to verify if our observations are consistent, we
performed additional experiments, with results presented in
Table II for experiments 2 through 5. These results confirm
that the performance comparison across different scenarios
remains consistent. It is important to note that the accuracy
of the system for LoS and NLoS links varies across exper-
iments, likely due to differences introduced by the student
volunteer while performing the activities. However, within
each experiment, we consistently see that we have better
NLoS accuracy in different channel cases (i.e., Scenario 2)
than in the same channel case (i.e., Scenario 1). Moreover,
the same channel case has worse (in experiment 5, it was
similar) sensing accuracy compared to NLoS only case, and
the different channel case has a better performance than
NLoS only case. Since data for each scenario was collected
separately within the same experiment, there was also some
variation across these scenarios. However, relatively similar
LoS performance across different scenarios of each experi-
ment shows a proper and consistent data collection process.

VI. CONCLUSION

In this work, we investigated the impact of using same or
different channels in LoS and NLoS pairs on WiFi sensing
performance. We employed deep learning models to recog-
nize human activities in both LoS and NLoS environments
while the activity occurred in the LoS region. Our results
show that the highest NLoS accuracy is achieved when LoS
and NLoS pairs transmit on different channels. Additionally,

we observed that using the same channel degrades NLoS
recognition performance, performing worse than having no
LoS pair at all. Through a deeper analysis, we have shown
that the variance of amplitude across subcarriers provides a
valuable insight into this performance difference.

In our future work, we will explore scenarios with addi-
tional TX-RX pairs and diverse channel combinations across
various settings. By strategically allocating channels, we
can help maximize sensing performance in such multiple
TX-RX deployments. Our findings can also have potential
applications in security, as users can dynamically adjust their
channels to evade attackers and minimize potential threats.
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