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Abstract—Utilizing fine grained analysis of wireless signals for
human activity recognition has gained a lot of traction recently.
The unique changes made on the ambient wireless signals by
different activities made it possible to recognize these fingerprints
through deep learning classification methods. However, most
existing approaches fail to fully leverage the rich information
available from multiple transmitter-receiver (TX-RX) pairs in a
given environment. This study proposes an aggregated weighted
ensemble learning method that benefits from spatially distributed
TX-RX links to enhance WiFi sensing based activity recognition
performance. Our approach utilizes Channel State Information
(CSI) data collected from multiple angles and viewpoints, made
possible by strategically placed TX-RX pairs, and integrates them
through the proposed method. This allows our system to benefit
from the complementary strengths of each TX-RX pair, capturing
a wider range of signal propagation patterns and environmental
factors. We provide an experimental evaluation using datasets of
human limb activities collected from six different TX-RX pairs.
The results show that the proposed model can achieve a much
higher accuracy (i.e., 90%) than the base models and the model
that is trained on the combined dataset thanks to the integrated
weighted ensemble learning technique and the data from multiple
TX-RX pairs.

Index Terms—WiFi sensing, channel state information, ensem-
ble learning, human activity recognition.

I. INTRODUCTION

WiFi signals are being used by nearly all establishments,
including restaurants, houses, schools, colleges, institutions,
and other significant locations, to provide Internet connectivity.
This makes WiFi signals ubiquitously available all around
us. Leveraging this availability of ambient WiFi signals to-
gether with machine learning models, WiFi sensing aims to
recognize motion and activity recognition in the environ-
ment [1]–[3]. This technology has applications in different
fields such as home security [4], occupancy detection [5]–[7],
and health/well-being monitoring of individuals [8].

Most of the WiFi sensing studies depend on the low level
Channel State Information (CSI) data of WiFi signals. In order
to reach this information, however, a CSI extraction tool and
a specialized Network Interface Card (NIC) (e.g., Intel 5300
NIC [9]) is needed at the receiver device (which is usually a
computer thus costly). Thus, despite the growing number of
studies on WiFi studies, most of them use only one or a few
transmitter (TX) and receiver (RX) WiFi devices that collect
the CSI data to be used in the corresponding WiFi sensing
application. However, through a lightweight solution, a more
scalable deployment of TX-RX devices in the environment can
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Fig. 1: Two different TX-RX pair deployments with the human
performing an activity in the LoS. RX1 sees the human as on
the left, while RX2 has the view on the right.

be achieved, and the performance of WiFi sensing system can
be enhanced.

Consider the example scenario in Fig. 1, which shows two
TX-RX pairs deployed on the left-right and front-back of the
person monitored. Note that as signals transmitted from TX1

propagate towards RX1, they see the blockage of the human
body with the angle seen on the left. For RX2, however, this
becomes like the body posture on the right, which generates
a different interaction. With more number of such spatially
distributed multiple TX-RX links, some viewing the person
in line-of-sight (LoS) and some viewing in non-line-of-sight
(NLoS), several angular viewpoints can be provided and the
accuracy of the WiFi sensing application can be boosted [10].

While the deployment of multiple TX-RX links will in-
crease the collected CSI data, they should not be just merged
and used within a single model. Ensemble learning is a
powerful machine learning technique that combines multiple
models to improve predictive performance and robustness
[11]. For the research works in WiFi sensing domain, deep
learning architectures have been proving their worth for a
long time, but the idea of combining ensemble learning and
deep learning to create deep ensemble architectures has the
potential to change the scenario in this context. Ensemble
learning is specialized for the situations where we need to
handle noisy and complex data [12]. This opens up the horizon
for WiFi sensing as the complex and noisy CSI data can
benefit from the ensemble model. In the case of multiple TX-
RX pairs, each can be treated as an individual model within
the ensemble itself. The ensemble model can leverage this
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diversity of information provided by different TX-RX pairs
for more accurate predictions. This can be particularly useful
in scenarios where the wireless environment is dynamic and
the performance of individual TX-RX pairs changes with time.

To the best of our knowledge, there are a few studies [13]–
[15] that study ensemble learning based WiFi sensing systems.
However, these studies do not take the benefit of spatially
distributed TX-RX pairs in the monitored area; instead, they
create different models with the same data and use ensemble
learning from their predictions, providing a limited benefit.
In this study, we aim to benefit from the ensemble model
architecture by constructing several base models trained by
data from different TX-RX pairs of a multiple TX-RX-based
setup. These help us get the CSI of different angles, heights,
and distances and complement the features extracted from each
for a better prediction.

The rest of the paper is organized as follows. We first
review related work in WiFi sensing, particularly by focus-
ing on the studies that consider ensemble learning in their
prediction model in Section II. In Section III, we discuss
the preliminaries, including the preprocessing steps applied
to the raw collected CSI data. Then, in Section IV, we present
the proposed solution elaborating on the developed ensemble
learning model. Next, we provide the evaluation results in
Section V. Finally, we provide our concluding remarks and
discuss on future work in Section VI.

II. RELATED WORK

Wireless sensing based human activity recognition has re-
ceived growing attention recently and many studies in different
application domains have been performed [1]–[3]. Several
studies have also explored the recognition of limb and hand
movements. For example, Tan et al. [16] investigate four
types of limb movements, while Ren et al. in Winect [17],
propose a method for tracking 3D human poses using a
joint decomposition deep learning model. WiFit [18] system
aims to identify and segment exercise types using Doppler
displacement theory and SVM classification, and Wi-PT-Hand
system [19] aims to recognize hand and finger movements
based physical therapy exercises.

Ensemble learning approaches have also been applied in a
few wireless sensing studies previously. Cui et al. [13] propose
WiAReS, a WiFi sensing based activity recognition system
utilizing deep ensemble methods. Liu et al. [14] introduce
StackFi, which combines the strengths of CNN and RNN
models for CSI data analysis. Similarly, Bernaola et al. [15]
employ boosting ensemble methods for counting seated people
using WiFi sensing. However, these studies do not consider
data from multiple TX-RX links unlike our approach and
instead use the same data to develop multiple different models
to be used in an ensemble learning approach, offering a limited
benefit.

Note that there are other studies exploring human activity
recognition with an ensemble model approach by using other
types of sensor data. For example, Imanzadeh et al. [20]
propose an ensemble model using hybrid deep learning models

trained on smartphone sensor data. Zehra et al. [21] present a
CNN-based ensemble system for human activity recognition
using accelerometer data.

Our approach differs from all these previous studies in
several key aspects. First of all, we consider seven limb
movements to ensure proper movement of both upper and
lower limbs of human body. Besides that, we utilize datasets
from multiple TX-RX pairs, ensuring usability across various
configurations. Here, we employ a stacking ensemble followed
by an aggregation strategy with logistic regression, allowing
the optimal combination of base model predictions. Moreover,
we propose a weighted ensemble approach based on F1-scores
obtained from base models. The proposed approach leverages
data from different TX-RX pairs to create diverse base models,
capturing a more comprehensive range of signal propagation
patterns and environmental factors, and aiming to enhance the
robustness of the proposed WiFi sensing system.

III. PRELIMINARIES

WiFi sensing relies on the utilization of Received Signal
Strength Indicator (RSSI) or CSI metric from the ambient WiFi
signals. Thanks to the rich information carried in CSI data
compared to RSSI, most of the studies utilize CSI data.

A. Amplitude and Phase Extraction

CSI is a metric composed of signal amplitude and phase
across N subcarrier frequencies used in the process of link
adaption. In link adaption, each subcarrier is able to trans-
mit symbols at adaptable data rates and power levels in
parallel across each subcarrier [22] to allow for multiple-
input multiple-output (MIMO). OFDM transmits shared pilot
symbols interleaved within the data frame which can then be
used to estimate a shared value for CSI H for the pair of
devices as described in the equation:

yi = Hixi + ηi, (1)

where i indicates the subcarrier index, yi indicates the signal
characteristics received, xi is the actual transmitted signal and
ηi is the noise in the signal. The CSI vector H is a complex
number with both real and imaginary parts representing the
attributes of the received signal. With Hr

i as the real part
of H at subcarrier i and Hm

i as the imaginary part, we
then compute amplitude (Ai =

√
(Hm

i )2 + (Hr
i )

2) and phase
(ϕi = atan2(Hm

i , Hr
i )) for each subcarrier i.

In this study, we collect the CSI frames using our ESP32
microcontrollers and our CSI extraction tool [23]. Out of the
total 64 subcarriers, only 52 of them contain actual CSI data
that is not static or zero, and thus, we use only the data of
these subcarriers.

B. Preprocessing

Once the amplitude and phase values are extracted from the
raw CSI values, next, we do some preprocessing on them. That
is, we apply two main techniques that are also considered in
previous works [24]–[28]: (i) Hampel filter and (ii) Moving
average filter. When applied to CSI amplitude or phase, the



Hampel filter can help eliminate extreme values that may
be caused by noise or interference, making the data more
reliable for further analysis [1]. The moving average filter can
also smooth out short-term fluctuations and highlight longer-
term trends or cycles [1]. The sanitation of amplitude values
is performed by applying the Hampel filter followed by the
moving average filter.

For the phase values, before we apply these filters, we first
perform a calibration to avoid the effects of several offsets on
the observed phase value. The observed CSI phase of the i-th
subcarrier at the receiver can be denoted by [29],

θi = ϕi +
2πi

D
T + α+ ϵi, (2)

where ϕi is true phase value of the i-th subcarrier, i ∈
S = {−26, ...,−1, 1, ..., 26} is subcarrier index, T is time
delay caused by Sampling Time Offset (STO) and Sampling
Frequency Offset (SFO), α is phase offset caused by Carrier
Frequency Offset (CFO) and Phase-Lock-Loop (PLL), D is
OFDM dimension, and ϵi is measurement error.

Firstly, we remove time delay and phase offset. STO and
SFO are responsible for the time delay [29], [30]. We estimate
the mean offset (α̂) and slope (∆n) by

α̂ =
1

M

∑
i∈S

θi (3)

∆n =

∑
i∈S i× (θi − α̂)

2π
∑

i∈S i2
, (4)

where S is the set of available subcarriers, and M = 52 is
the total number of subcarriers. CFO and PLL are the reasons
for phase offset. By eliminating those, we calibrate our phase
value. The calibrated phase value (θ̂i) is then given by,

θ̂i = θi − 2πi∆n− α̂. (5)

After phase calibration, the Hampel filter and moving average
filter are applied to the calibrated phase values, as they are
applied to amplitude values.

At the end of these calibration and filtering steps, we obtain
52 amplitude and 52 phase values for each timestamp. We
then split our dataset into train, test and validation set. Finally,
we perform Principal Component Analysis (PCA) by fitting
it to the training set and using them in validation and test
sets. Next, we discuss how the proposed learning model is
developed using these principal components.

IV. PROPOSED METHOD

We propose a weighted ensemble learning based neural
network model for the CSI data collected from multiple
spatially distributed TX-RX links. The goal of our ensemble
learning based approach is to benefit from different datasets
obtained from different pairs and combine the predictions of
their models in the best way to achieve a better result. An
overview of the proposed system and steps are illustrated in
Fig. 2.

Let N denote the number of TX-RX pairs used in the setup
and let Mi denote the neural network model developed for

Fig. 2: System Design

the i-th pair. Note that we do not define the architecture of
these models; depending on the application needs and the
performance of different models, an optimized one can be
selected.

Our ensemble model implementation relies on forming of a
stacking ensemble and the usage of an aggregation method
which takes the predictions of base models as input and
learns to combine them optimally. This is usually achieved by
using another model, such as logistic regression, to learn the
relationship of the stacked list of probabilities of all individual
models with the class labels. Since each model’s performance
on different class predictions can be different, this combining
process should be performed carefully for maximum benefit.
For each base model, we calculate a weight based on the F1
score. We use softmax to normalize the F1 score because
softmax always produces positive values between 0 and 1,
and they sum to 1. Additionally, softmax amplifies differences
between the input values. This causes larger values to increase
further and smaller values to decrease further. As a result,
classes with higher F1 scores are assigned relatively larger
weights, while classes with lower F1 scores receive smaller
weights compared to simple normalization (i.e., dividing by
their sum). Each of the N models may perform differently
across various classes. By calculating class-specific weights
based on F1 scores, we can harness each model’s strengths for



Algorithm 1: Weighted Ensemble Model
Input:
Training data Dtrain1 , Dtrain2 , ..., DtrainN ,
Test data Dtest1 , Dtest2 , ..., DtestN ,
Validation data Dval1 , Dval2 , ..., DvalN ,
Number of base models N ,
Number of classes C
Output:
Class label for each test instance as determined by the
ensemble model

1 for i = 1 to N do
2 Train base model Mi on Dtraini

;

3 for i = 1 to N do
4 Pi ← Predictions of Mi on validation set;
5 Fi ← F1 scores for each class from Pi;
6 Wi ← softmax(Fi) // Class-specific weights

7 Xagg ← ∅ // Aggregated training data

8 Yagg ← ∅ // Aggregated training labels

9 for each sample x in validation set do
10 for i = 1 to N do
11 pi ←Mi(x) // Prediction probabilities

12 pwi ← piWi // Apply weights

13 Xagg ← Xagg ∪ {pw1 , pw2 , ..., pwM};
14 Yagg ← Yagg ∪ {True label of x};
15 Train a logistic regression model LR on (Xagg, Yagg);
16 Function Predict_On_Test(x):
17 for i = 1 to N do
18 pi ←Mi(x);
19 pwi ← piWi;

20 pagg ← LR(pw1 , p
w
2 , ..., p

w
N );

21 pfinal ← 1
N+1 (

∑N
i=1 p

w
i + pagg);

22 return argmax(pfinal);

different classes. Through the application of these weights to
individual predictions and combining them, we can determine
the final prediction.

Algorithm 1 presents the steps of our weighted ensemble
model. The model consists of N base models with i-th of
them trained on the training data from i-th TX-RX pair i.e.,
Dtrain1 , Dtrain2 , ..., DtrainN

(lines 1-2). For each base model
Mi, we calculate class-specific weights Wi using the softmax
of F1 scores obtained from validation set predictions (lines
3-6). This results in a set of weights for each base model,
where each weight corresponds to a class. These weights
emphasize each model’s strengths across different classes.
The weights are then applied by multiplying the probability
predictions of each base model by their respective weights
to obtain the pwi (lines 9-12). We then create a training set
by aggregating the weighted predictions pwi from all base
models for each sample (lines 13-15). A logistic regression
model LR is trained on this data to learn optimal combination
strategies. The final prediction function combines weighted
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Fig. 3: Performed Limb Activities

TABLE I: TX-RX position and their respective channel

Pair No. TX-RX Position ChannelHeight With respect to the test subject
1 Eye Level Front-Back 9
2 Eye Level Sidewise 9
3 Diagonal Front-Back 11
4 Diagonal Sidewise 11
5 Knee Level Front-Back 6
6 Knee Level Sidewise 6

predictions from all base models and the LR prediction (lines
16-22). Here, pi represents the probability predictions of the
i-th base model, pwi is the predictions weighted by Wi, and
pagg is the LR model’s prediction. The final prediction pfinal
is obtained by averaging all weighted base model predictions
and the aggregated prediction (LR model’s prediction), with
the predicted class being the argmax of this final probability
distribution. In this way, we emphasize the predictions where
each model is the most confident and accurate, which allows
the ensemble model to leverage the strength of each individual
model across different classes.

Note that the ensemble learning approach heavily depends
on base models’ performances. Thus, errors or biases in the
base models could be propagated or even amplified through
the ensemble approach. Weights introduced in this process can
help mitigate this potential issue. However, it is still possible
that if F1 scores used in weight decisions are very close
across classes or models, softmax may still amplify minor but
possibly insignificant differences.

V. EVALUATION

In this section, we present the evaluation results of the
proposed approach with a dataset of human limb activities.

A. Experimental Set up and Data Collection

In order to test the proposed system, we collected WiFi
CSI data for 7 different limb activities depicted in Fig. 3.
Each activity was performed for 10 seconds, with a 10-
second transition period between activities. We repeated the
7 activities for 10 times.
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Fig. 4: Position of TX and RX devices

We used our ESP32-CSI-Toolkit [23], [31] to collect CSI,
which uses two ESP32 WiFi-enabled microcontrollers for our
transmitter and receiver, respectively. The ESP32 devices were
set to send and receive CSI at a packet rate of 100Hz. However,
due to the slight fluctuations in this rate, we ended up having
data samples in the range of 9064 to 9627 for each class.
We deployed six pairs of these ESP32 pairs. Among these,
three pairs were positioned with TX and RX placed on the
left and right side of the subject, while the other three pairs
were positioned with TX and RX located in the front and at
the back of the subject. Each of the two pairs are also located
at the same level. We set up the TX and RX at the eye level,
knee level, and diagonally through the test subject’s body. The
locations of these pairs and the channels they used for packet
exchange are given in Table I and in Fig. 4. Note that, the
subject is in Line-of-Sight (LOS) of all TX-RX pairs.

For training, we use 60% of the entire dataset collected.
20% of the dataset is considered as validation set and the
remaining 20% is used as test set. We also consider sliding
windows for the CSI data before feeding them into each
model. The window size is set to 100 (i.e., 1 sec of data).
We use a sequential Deep Neural Network (DNN) model as
our base model for each TX-RX pair’s data because of its
simplicity. DNN models are known for being lightweight,
making their onboard deployment on ESP32s possible for
real-time inference [2]. Fundamentally, we create six identical
neural network models, each trained on a different subset of
the training set from each of the six datasets we have. Each
model has three dense layers with ReLU activation, followed
by batch normalization and dropout layers. The output layer
uses softmax activation for multi-class classification. The
aggregation of base model predictions is performed with a
logistic regression model that learns from the stacked list of
probabilities of all six models. We apply majority voting by
combining the predicted probabilities from all base models and
the logistic regression, as shown in line 21 of Algorithm 1.

TABLE II: Prediction Results

Model Precision Recall F1 Score Accuracy
DNN 1 (Pair 1) 0.84 0.84 0.83 0.84
DNN 2 (Pair 2) 0.61 0.53 0.47 0.53
DNN 3 (Pair 3) 0.39 0.32 0.28 0.32
DNN 4 (Pair 4) 0.37 0.30 0.22 0.31
DNN 5 (Pair 5) 0.49 0.49 0.47 0.49
DNN 6 (Pair 6) 0.33 0.37 0.31 0.38

Combined Dataset 0.72 0.68 0.66 0.70
CNN and RNN
Ensemble to the

Combined Dataset [14]
0.84 0.82 0.79 0.80

Proposed Weighted
Ensemble Model 0.91 0.90 0.89 0.90
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Fig. 5: Confusion Matrix for Weighted Ensemble Model

B. Results

Table II shows the detailed performance comparison of six
base models and the proposed weighted ensemble model. The
proposed model can achieve an accuracy of 90%, which is
42% better accuracy than the average of all base models and
6% better than the best base model. We also present the results
from the combined dataset of all six pairs of TX and RX
which was aligned based on their class at each repetition. A
DNN model using the combined dataset (with aforementioned
training/validation/test splits) can only produce 70% accuracy.
When we use an ensemble model with CNN and RNN models
developed separately on the combined dataset, as in [14],
the accuracy increases to 80%, but it is still lower than the
accuracy of the proposed approach. This is because it does
not truly benefit from the diversity of different datasets as it is
performed in our weighted ensemble approach, which achieves
the highest performance among all.

Looking at the confusion matrix for the weighted ensemble
model in Fig. 5, we notice that the Arm-Left class is the most
confused class in our case. This could potentially be due to
some issues while collecting data as base model predictions
show high confusion for this class as well. From base model
results shown in Table II, we also understand that the location
of first TX-RX pair (i.e., eye level in front-back plane) that
uses channel 9 for data transmission is better than other pairs’
locations as it gives the highest among all base models.



VI. CONCLUSION

In this work, we have studied ensemble learning based WiFi
sensing system that utilizes datasets from multiple TX-RX
pairs spatially distributed in the monitored area. We propose a
weighted approach based on F1-score, where we use ensemble
learning to the data obtained from multiple TX-RX pairs. On
top of that, we use a logistic regression based aggregation
method, which uses the predictions of base models as input
and learns to combine them optimally.

The experimental results obtained on a human limb activity
recognition scenario show that the proposed weighted ensem-
ble based approach achieves 90% accuracy, which is better
than not only the performances of individual base models
but also the performance of previous ensemble learning based
approaches that use different models trained on the combined
dataset.

In our future work, we plan to dynamically select the
most informative TX-RX pairs for different activities or envi-
ronments, potentially improving efficiency and accuracy. We
will also explore the model’s transferability across different
environments or setups [32], potentially reducing the need for
extensive data collection in new deployments.
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