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Abstract—SDN is based on the idea of a centralized controller
with a global view of the network topology. However, in large
networks, multiple controllers work together to perform global
network functions. This presents challenges in load balancing,
consistent network view, and controller placement for scalability
and reliability. When multiple controllers reside in different
domains, their communication challenges are increased as each
may have its own security and access policies. We present a
reactive distributed SDN application built as a custom module
in Floodlight that allows multiple controllers to make joint
decisions where the controllers reside in different domains by
communicating with an external server for information about
participating organizations. Such a framework would be use-
ful, for example, for providing access to patient information
distributed among different hospital networks, big data sets
between research institutions, or public safety data sets during
disaster or emergency. The resulting approach will allow the SDN
application layer to handle inter-domain traffic and enable data
access between different organizations/agencies while respecting
their different respective policies.

Index Terms—Multi-domain SDN, Floodlight, distributed re-
active SDN application, cross-institution data access.

I. INTRODUCTION

Software-Defined Networking (SDN) virtualizes the net-
work layer by defining a logically centralized control plane
that manages and programs the data plane behavior. This
provides flexible flow management and opportunity for inno-
vation in network management and control services that run
on top of the SDN controller. For scalability in large networks,
this logically centralized control plane comprises of multiple
controllers that need to coordinate and communicate with each
other to manage the network through a global network view.

In a typical SDN setup (Figure 1), each controller manages
multiple SDN-capable switches and communicates with the
switches through a Southbound Interface (SBI), currently
standardized as OpenFlow [1], developed by Open Networking
Foundation (ONF). Network and traffic management services
are programmed in the SDN application layer that interfaces
with the controllers through the Northbound Interface (NBI).

The SDN landscape has focused on localized solutions
where enterprise networking administrators are interested in
virtualizing the network layer and gaining more agility in
order to meet the traffic demands of their enterprise. However,
demand for Software-Defined Wide Area Networking (SD-
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Fig. 1: The SDN application layer runs programs like firewall
and load-balancing, and the controller runs network services.

WAN) is growing. SD-WAN will allow organizations with
branch offices spanning the globe to connect their geographi-
cally dispersed data centers more efficiently through increased
automation and intelligent service-delivery across the WAN.
According to a study by International Data Corp (ID), it is
expected that by the year 2020, SD-WAN revenues will be over
six billion [2]. However, scaling SD-WAN solutions to mul-
tiple branches/sites requires better management of controller-
controller communication through an East/West interface. The
East/West interface can be used to connect a traditional IP
network with an SDN network. It can also be used to facilitate
authentication and authorization across different administrative
domains. No clear standards exist for the East/West interface.

Furthermore, SD-WAN applications needing access to
datasets distributed over large areas and potentially owned by
multiple institutions are still limited to traditional pre-SDN
technologies. Enabling SDN for these types of SD-WAN-
and-beyond applications requires SDN frameworks capable
of handling multi-institution engagements and controller-to-
controller setups. What we propose is addressing this need
of facilitating access to data sets spread across different
institutions. In particular, we focus on real-time applications
such as multi-agency public safety response operations, and
hence, explore the delay involved in access provisioning over
multi-institution distributed SDN setups. Key contributions of
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this work are:
• A distributed, reactive SDN application for real-time ac-

cess to another institution’s data store through an external
verification server.

• Detailed protocol design to use this reactive SDN appli-
cation for cross-institution data access.

• Overhead delay formulation of the reactive SDN appli-
cation; a simplified analytical model to capture the effect
of flow table size and flow rule expiration timer on this
delay; and a simplified model that expresses average flow
table size with respect to the expiration timer.

• Comparison of the reactive SDN application to a proac-
tive design both in terms of protocol specifics and per-
formance.

• Proof-of-concept prototype of the reactive SDN applica-
tion in Floodlight v1.0, Mininet and OpenFlow v1.0.

The rest of the paper is structured as follows. We discuss
the related work in Section II. In Section III, we describe the
details of the proposed approach and provide a delay analysis
in Section IV. In Section V, we provide our initial simulation
results in Mininet. Finally, we outline the future work in
Section VI and provide concluding remarks in Section VII.

II. RELATED WORK

This section presents related work and challenges in dis-
tributed SDN applications, distributed control plane architec-
tures, and controller communication across SDN domains.

A. Distributed SDN Applications

Distributed SDN application designs have mostly focused
on network traffic engineering for the purpose of higher
Quality of Service (QoS) provisioning. MonSamp [3] is a QoS-
monitoring distributed SDN application, that samples flows for
QoS analysis by installing flows in the flow tables to send
packets of the flows being monitored to an external Collector
and Analyzer monitoring application, as a reaction to changes
in link utilization.

Additionally, balancing the load on distributed SDN con-
trollers has also attracted attention, again, to provide better
SDN performance. In [4], the authors present a load-balancing
SDN application and highlight the importance of a consistent
network view by showing that load balancing decisions suffer
when made without considering inconsistencies observed in
the global view. Similarly, in [4], the authors present a load-
balancing SDN application and highlight the importance of a
consistent network view by showing that load balancing de-
cisions suffer when made without considering inconsistencies
observed in the global view. In [5], the authors tackle the load
balancing problem of multiple distributed controllers, where
decisions are either made centrally by a coordinating controller
that collects load information from all the controllers, figures
out the best course of action and sends back commands to
the distributed controllers; or, locally, at each controller by
using the load information received from other controllers.
Both these cases incur delay for reaching a decision.

Although these studies provide ways of addressing load-
balancing issues in distributed SDN applications (and hence
controllers), they do not address the case of distributed SDN
applications over different SDN domains.

B. Logically Distributed Control Plane

In a logically centralized control plane, the controllers are
physically distributed but the decisions are made centrally by a
designated root controller that manages devices, all part of the
same domain, so the network administrator has full control of
the SDN controllers. In a logically distributed control plane,
we have multiple domains, each managed by its own controller
as shown in Figure 2.
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Fig. 2: Multiple controllers in different SDN domains form a
control plane that is both physically and logically distributed.

Logically distributed controllers coordinate the control func-
tions of the control plane with each other by maintaining a
global view of the network. This is accomplished through
controller-controller communication and synchronizing the
networking view by sharing network state information among
all the controllers. For example, in HyperFlow [6], inter-
controller communication occurs through a publish/subscribe
model with three network channels: a data channel for pub-
lishing local network events, a control channel for discovery
and its own channel for receiving OpenFlow commands.
Another method of sharing information among controllers is
by means of distributed constructs like distributed databases
or distributed hash tables and then using distributed locking
and consensus algorithms for achieving consistency of state
information. For example, Onix [7] proposed an SQL database
for infrequently changing topology and a Distributed Hash
Table (DHT) for frequently changing information like link
utilization. Scalability is achieved by partitioning the Network
Information Base (NIB) which stores the network state among
controllers, and aggregating the nodes under a controller to
present as a single node to the global network.

Maintaining global state suffers from delay in the time it
takes to sync network states across all controller nodes for



a consistent network view. Methods have been proposed to
reduce this delay by caching flow rules and distributing them
throughout the controllers. Rules can be updated periodically
when link failures occur. Using this strategy, Distributed Rule
Store (DRS) [8] is another architecture for multiple controllers
based on Floodlight [9] that demonstrates a reduced time to
setup flows as compared with ONOS [10] and Floodlight.

HyperFlow and Onix suffer from synchronization delay to
achieve network state information consistency, while our ap-
proach does not require a global network state to be maintained
as the controller in one institution does not need to know
the network topology inside the other institution. Additionally,
the DRS architecture presents performance improvements for
reactive applications but it does not deal with controllers that
belong to different domains or institutions.

C. Challenges with Multiple Controllers

The survey paper in [11] describes four design choices in
distributed controllers: a) whether a switch connects to the
controller statically or dynamically; b) whether all controllers
have global network state information or only the root layer
has the global view; c) how controllers work to resolve any
conflicting or competing rules through consensus algorithms;
and d) whether or not dedicated links are used for managing
traffic between controller-controller and switch-controller. The
authors then classify existing distributed SDN architectures
like DISCO [12], HyperFlow [6], D-SDN [13], Onix [7],
Kandoo [14], and FlowBroker [15] according to these design
choices and discuss their impact on scalability, privacy, robust-
ness and consistency of the network.

In [16], the authors survey existing work on multi-domain
SDNs and describe challenges of distributed controllers as: a)
having a consistent global view of the network state [6], [7]; b)
defining the optimal number and placement of these distributed
controllers [17]; and c) synchronization and coordination of
events local to the controller and events occurring globally
in the distributed control plane. Logically centralized but
physically distributed controllers like Onix [7] and HyperFlow
[6] must share network state with each other and usually
employ distributed data stores, like a distributed file system
or distributed hash table. With every change of network state
at a local controller, it needs to be synchronized with other
controllers. With fully distributed controllers, such as DISCO
[12], ONOS [10], Kandoo [14], and others, a complete global
network state does not need to be maintained across all
controllers and is thus suited for a multi-domain SDN.

In addition to the architecture of the distributed control
plane, there is a need to work on the Eastbound/Westbound
interface. One such work is the East-West Bridge [18] that
connected global research and education networks, but this
remains an open research area.

In this paper, we propose a distributed SDN application that
works in SDN domains owned by two different organizations
to facilitate access to data distributed and managed by different
organizations that cannot leave the boundary of the institution
due to its institutional policies.

III. APPROACH
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Fig. 3: Proposed multi-agency data access architecture with a
reactive SDN application setup and RAL server.

Our proposed approach falls under logically distributed
control plane frameworks where the domains have different
administrators and each domain has its own controller. We
consider Floodlight [9], a Java-based controller developed by
BigSwitch Networks. Aside from the core functions of the con-
troller, the Floodlight controller offers functions implemented
as modules that interact with the core controller through Java
APIs. We have developed a custom module that can promptly
respond to network events due to its interface with the core
controller. Such an application is also called a reactive SDN
application as it can insert flow rules into the switch flow
tables as a response (reaction) to these events.

The controller manages traffic by managing the flow tables
of the switches. Flow tables consist of header fields for
packet matching, action fields for forwarding instructions, and
counters for statistics. When a packet arrives at a switch, the
switch matches the packet with the header fields in the flow
entries and if a match is found, the switch performs the specific
actions in the flow entry. When several matches are found, the
rule with the highest priority applies. If a match is not found,
the switch asks the controller for instruction by sending it a
Packet In message. A reactive SDN application can register an
event listener with the controller to listen in for these Packet
In messages and can inspect the headers of the packet to
determine how to handle the packet and what flow rules to
install to handle subsequent such packets.

A. Proposed Architecture

The proposed architecture for data access between two SDN
domains A and B is presented in Figure 3. In our approach, we
will create a Registered Access List (RAL) server to maintain
the list of organizations participating in this multi-institution
data access framework. Our reactive SDN application running
on the controller will intercept packets sent to the controller
and talk to the RAL server to determine if access to the remote
domain’s resource should be granted or denied. Flow rules will
be jointly installed into the edge switches controlled by the
controllers at both domains to handle this inter-domain traffic.
Assume there is a server in domain B that has a resource that



a client in domain A wants to access. The sequence of steps
that occur to allow traffic from A to B is as follows:

1) Client at host h1 requests the resource at server h2.
2) The switch in A’s network detects a new traffic flow and

sends this unmatched packet to the SDN controller.
3) The reactive SDN module running on the controller

intercepts the Packet In message to handle this packet.
4) The SDN application extracts source and destination

from header and queries the RAL server to determine if
the source and destination are registered.

5) Assume that the source and destination are participants
in the data access framework, so RAL server responds
that both source and destination are registered.

6) If so, the SDN application composes FlowMod messages
to allow traffic from the host h1 in domain A to h2 in
domain B and sends to the controller.

7) The controller then instructs the switch to install the
respective flows in its flow table.

8) The packet is then forwarded as normal and reaches the
switch at domain B.

9) When the traffic is received by the switch in domain B,
it does not find a match in its flow table and forwards
the packet to the controller in domain B.

10) Domain B’s controller invokes the packet handler of the
reactive SDN application listening for message events.

11) The SDN application extracts the source and destination
from the packet header, connects with the RAL server
to check if source and destination are registered.

12) Assume that the RAL server responds positively.
13) The SDN application then follows its packet handling

logic to allow this flow.
14) The SDN controller instructs the switch to install flow

rules to allow traffic from source to destination.
15) Request is forwarded as normal to the outport of the

switch that is linked to host h2.
16) Host h2 responds to the request, and sends the response

packets to the switch at domain B.
17) The resulting packets are sent as a response to domain

A’s switch which forwards the response to host h1.

B. SDN Components

Key SDN Components of the proposed framework are:
• Multiple physically distributed Floodlight controllers

managing different SDN domains, each governed by its
own institutional policies for data egress.

• A remote Registered Access List (RAL) server that main-
tains the list of registered agencies intending to participate
in the multi-institution data access framework. Agencies
can register themselves or unregister themselves at any
time. The RAL server is implemented as a multi-threaded
Java server application to handle queries from multiple
SDN controllers.

• A reactive SDN application running on the controllers.
The application has a packet handler to handle Packet In
messages and a RAL client for establishing web socket
connections to the RAL server for querying.

Fig. 4: Logic flow between RAL server, RAL client and SDN
packet handler.

• OpenFlow as the SouthBound Interface for communicat-
ing with the SDN infrastructure layer. Currently, we have
implemented our algorithm to support OpenFlow v1.0 [1]
switches and use the OpenFlowJ-Loxigen library [19] for
creating OpenFlow messages.

If the source and destination are both member of RAL, three
rules are installed as shown in Figure 4. Assuming TCP traffic,
the first rule allows TCP traffic from source to destination.
Because TCP is bidirectional, the second rule allows TCP
traffic from destination to source. A third rule will be installed
to drop all other TCP traffic. The key thing to note here is that
the priority of Rule 3 is very low. Rules 1 and 2 are installed
at the default priority of 32,768. If either source or destination
or both are not registered with RAL, Rule 4 is installed which
instructs the switch to drop the traffic from that source to that
destination. This algorithm is summarized in Algorithm 1.

IV. DELAY ANALYSIS

In this section, we analyze the expected processing delay
of flows in the proposed reactive SDN application scenario.
When a new flow arrives at the switch, the switch inspects
the packet header and performs a look-up in the flow table
to find matching flow rule(s) based on header fields like IP
Protocol, IP Source, IP Destination, and Ingress Port. Flow
rules when matched, guide the switch on what action to take
on the packet, for example, forward to a specific port, drop
the packet, or flood to all ports. Packet headers are matched
to flow rules in the order of priority of the installed rules.
The time it takes to do a search and match operation in the
flow table depends upon the hardware, which for an OpenFlow
switch is typically implemented by leveraging Ternary Content
Addressable Memory (TCAM), where each header field is



Result: OpenFlow messages written to swtich
while packet in message do

if packet is IPv4 and protocol is TCP then
source = payload.getSourceAddress();
destination = payload.getDestinationAddress();
destinationPort = tcp.getDestinationPort();
if either source or destination are not in RAL then

Add Rule 4 with Match:(src=source,
dest=destination, ip protocol=TCP,
tcp destination port=destinationPort),
actions=drop, priority=10;

else
Add Rule 1 with Match:(src=source,

dest=destination, ip protocol=TCP,
tcp destination port=destinationPort),
priority=default, actions=NORMAL;

Add Rule 2 with Match:(src=destination,
dest=source, ip protocol=TCP,
tcp source port=destinationPort),
priority=default, actions=NORMAL;

Add Rule 3 with Match:(src=source,
dest=destination, ip protocol=TCP,
tcp destination port=destinationPort),
priority=2, actions=drop;

end
else

return Command.CONTINUE;
end

end
return Command.CONTINUE;//allow processing by other

handlers
Algorithm 1: SDN reactive application packet handler

searched in parallel in one clock cycle, resulting in look-up
time in O(1). This look-up delay of TCAM is typically in
the order of nanoseconds. TCAMs have a limited size with
typical switch chipsets storing about 2K flow entries [20] while
typical data traffic in a data center can be in the order of
10,000 new flows per second [21]. Due to limited size, flow
table occupancy is managed by installing flow rules with an
expiration timeout, known as idle timeout set by the controller.
This timer decays over time if no incoming flow is matched to
this entry, until it finally reaches zero and results in the flow
entry being evicted from the flow table due to being idle.

A. Probability of Hit

Let phit be the probability that a new flow arriving at the
switch is matched with an installed flow entry and processed
immediately, without any communication to the controller.
This match occurs at line rate in TCAM hardware. On the
other hand, if there is no flow table entry for the new flow
in the current flow table with probability 1− phit, additional
communication between switch and controller occurs to install
a new flow entry for this new flow.

In order to find the probability of having a flow hit, phit, we
need to consider multiple parameters at the same time, namely,
the flow entry expiration timer τ (in seconds), the flow arrival
rate λ (in flows per second) and the capacity of the flow table
σ (in flows). By Little’s theorem, on average there will be
λτN flows arriving in a time interval of τ , where N is the
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Fig. 5: Average flow hit ratio for different flow expiration
timer (τ ) values and flow arrival rates (λ), when N=1,000
and σ=200, where N is the total different number of flows
possible, and σ is the flow table size.

total different number of flows possible. However, if the flow
table size is not sufficiently large to hold all these flows, there
will be at most σ flows existing in the flow table. Thus, when
a new flow arrives, the probability of hit will be proportional
to min{λτN, σ}/N .

On the other hand, it is possible that even though there is
room in flow table for all arrivals, the old table entry may
have expired for the newly arriving flow. Thus, we need to
consider this possibility. Since the arrival rate of a flow is
λ, the probability that another flow with same id will arrive
before the timer expires (so, the probability of hit in this case)
becomes the CDF of the exponential distribution by time τ :

phit = 1− e−λτ

Overall, the flow hit probability can be calculated by

phit = min
(
λτ,

σ

N
, 1− e−λτ

)
(1)

= min
( σ

N
, 1− e−λτ

)
(2)

Note that the first term in (1) will always be larger than the
third term in (1) when λτ > 0, hence removed from the
formula.

We have calculated phit in several scenarios using (1) as
shown in Figure 5. We have also run simulations to compare
with the theoretical results. To this end, we developed a Java
based simulation environment and generated flows arriving
with an exponential distribution with mean λ, to an SDN
flow table of size σ. Once a new flow arrives and finds an
existing entry in the flow table from previous arrival (as the
timer of previous entry has not expired yet) it matches with
the entry and a hit happens. Otherwise, a new entry is added
by the controller to the flow table, with a higher processing
delay. We have used least recently used (LRU) drop policy
in the flow table. That is, if a new flow arrives and the flow



table is full already, the addition of the new flow’s entry to
the flow table causes the dropping of the least recently used
flow entry. We ran each scenario for 10,000 seconds to get a
stable behavior. The simulation results in Figure 5 show that
average flow hit ratio for each scenario perfectly matches with
analytical results, confirming the analytical model.

B. Reactive SDN Overhead

Referring to Figure 3 of the proposed architecture with two
agencies A and B, with B wishing to provide access to a
resource within its network to agency A, we have the following
time delays:

Let the delay tARAL
be the time for a message exchanged

between agency A’s SDN application and the RAL server;
the RAL server may not be running at the same location
as agency A. Assume that the SDN application runs on the
same host as the SDN controller. Then, the time delay for a
message between the SDN application and the SDN controller
in agency A’s network is tAcap

. The delay tApki
refers to the

time for the switch to generate a Packet In message and send
it to the controller, tAfmd

refers to the time for a FlowMod
message sent between the SDN controller and the switch,
tAlkp

be the lookup time in the flow table for finding a flow-
rule match, and tAfin

is the flow installation time. Let tAhst

denote the time for message sent between the host and the
switch in agency A. Similarly, for agency B, we have the
following corresponding time delays, which may be different
from agency A as B’s network is owned and managed by a
different entity: tBRAL

, tBcap
, tBpki

, tBfmd
, tBlkp

, tBfin
and

tBhst
. Agency B also has a resource rendering time of tBrsc

,
which is the time it takes for the host machine (server) in
agency B to fetch and process the data requested by the host
(client) in agency A. Finally, let tnet be the propagation delay
of communicating packets between the edge switch of agency
A and the edge switch of agency B over the Internet.
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Fig. 6: Proactive SDN application setup, where flow rules are
proactively pushed and installed from the controller to the
switches when the network instantiates.

1) Proactive Scenario: In the proactive scenario (Figure 6),
rules are pre-installed by the network admin into the flow
tables. For the purpose of this analysis, we consider the flow
entries in the proactive application to be permanent where both

TABLE I: Delay notations used in SDN overhead analysis

Symbol Meaning
tRAL Communication b/w SDN app and RAL server
tcap Communication b/w SDN controller and app
thst Time between A’s host and switch
tlkp Switch flow table lookup time
tpki Switch Packet In message to controller
tfmd Controller’s FlowMod message to switch
tfin Switch flow rule intallation time
tnet Communication delay b/w A and B edge switches
trsc Server resource rendering time

the idle timeout and the hard timeout are set to 0. If we assume
the flow tables to be sufficiently large to allow pre-population
of all flow rules required, then, the end-to-end data access
delay from the host machine in agency A, h1, to the data
repository behind the host machine in agency B, h2, is:

tP = tAlkp
+ tBlkp

+ n(tAhst
+ tBhst

+ tnet + tBrsc)

where n ≥ 2 is the number of times communication exchange
between A and B occurs. For simplification, assume that
network setup is the same at both agencies with notations
summarized in Table I. Thus, we can rewrite tP as:

tP = 2tlkp + n(2thst + tnet + trsc), n ≥ 2. (3)

2) Reactive Scenario: In the reactive scenario, when there
is a hit, the delay is tRh = tP . And when there is a miss,
the end-to-end delay will include all the transactions 1-17 in
Figure 3. We can express this delay as:

tRm = 10tRAL + 4tcap + 2(tlkp + tpki + tfmd + tfin)

+n(2thst + tnet + trsc), n ≥ 2. (4)

Using the probability of hit from (2), we, then, write the
average delay for our reactive SDN setup as:

tR = phit × tRh + (1− phit)× tRm

= phittP + tRm − phittRm (5)

We can formulate the additional delay overhead of the
reactive SDN setup as tR − tP . Subtracting tP from (5) and
simplifying, we get:

tR − tP = (tRm − tP )(1− phit) (6)

Using (3) and (4), we write the first term of (6) as:

tRm − tP = 2(5tRAL + 2tcap + tpki + tfmd + tfin)(7)

Thus, substituting (7) in (6), the overhead is:

tR − tP = 2(1− phit)c (8)

where

c = 5tRAL + 2tcap + tpki + tfmd + tfin (9)

is the additional delay caused by agency A’s flow table miss
due to the reactive operation of informing the other agency as
well as installing a new flow entry to the tables at both sides.



According to a study done by Cedexis Inc., the average
cloud latency of major cloud service providers ranges between
63 ms and 104 ms [22]. If we assume RAL to be located
in the largest average latency region, then we can consider
tRAL = 104 ms. The delay between the switch and controller
is based on several factors such as a) the switch generating
a Packet In message to be sent to the controller, b) time to
send the message to the controller, c) time for the controller
to process the Packet In message and communicating with
the SDN reactive control application on how to proceed, d)
time to generate OpenFlow control messages to send back
to the switch, e) delay at the switch to receive a response
from the controller in the form of FlowMod OpenFlow mes-
sage(s), f) delay in installing the rule(s) which has to take
into consideration the priority of rule(s) being installed and
existing rules, and g) controller determination of evicting
an existing rule (for example, using a Least Recently Used
strategy) to make space for this new entry, should the flow
table be at full capacity. These delays are dependent upon
the optimizations implemented by the chipset vendor. For
example, on Intel, the average delay of a)-b) is 8 ms per packet;
and on Broadcom, the average delay of e)-f) varies between
3 ms and 30 ms [23]. The delay incurred by a TCAM-based
flow table for rule installation varies between 33 ms to 400 ms
in current OpenFlow implementations [24], with optimizations
that improve the update delay to a median of less than 12 ms
as shown in [25]. Using the end values of these ranges, we
assume tpki = 8 ms, tfmd = 30 ms and tfin = 400 ms.

Most reactive SDN applications are implemented in the
same virtual machine or sometimes as an extension of the
controller thread. In Floodlight, which is what we used in this
paper, there is no additional network delay for communication
between controller and reactive application since it requires
the reactive application to reside in the controller’s process
thread as an extension. So, we assume the delay between the
SDN controller and the reactive application tcap is negligible.
Bringing all of these time delays together, we anticipate c ≈ 1
s in the current OpenFlow implementations and cloud services.

Figure 7 plots the overhead defined in (8) against varying
λ and τ , and shows that as the idle timeout is increased, the
reactive SDN application delay decreases and converges to the
proactive case.

C. Optimizing the Idle Timer
As we have been studying, a key factor in the design of our

reactive SDN application is the idle timer τ . From Figure 7,
larger idle timer reduces the overhead of the distributed reac-
tive SDN setup’s end-to-end delay in serving the application
running in agency A. As τ increases, the additional delay due
to the reactive operation reduces and the overall delay in the
reactive design gets closer to the delay in the proactive case.
However, the other metric that plays a key role here is the flow
table size. Given the probability of hit for a newly arriving flow
is phit from (2), we can express the average flow table size
as:

Favg = phitN (10)
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The above formulation also expresses the number of flows that
are active in steady state.

In the proactive case, we assume the flow table size to be
equivalent to all possible flows N . Yet, this is not realistic as a
typical SDN setup may encounter millions of different flows.
To find a middle ground, we can optimize the idle timer of
our reactive SDN design so that both the reactive SDN delay
overhead and the average flow table size are minimized. To
do so, we update the performance formulations of the reactive
case so that the flow table capacity is not an issue, i.e., σ = N
and compare the reactive delay overhead to the average flow
table size as shown in Figure 8.

V. SIMULATION WITH MININET

In this section, we describe our reactive SDN simulation
setup and present results from our experiments.



A. Simulation Setup

The simulation setup consists of four VirtualBox Virtual
Machines (VMs) on a host laptop as shown in Figure 9. Two
of the VMs are running Floodlight ver. 1.0 controller [26] each
with our custom reactive SDN application. Each Floodlight
VM serves as the remote controller for a Mininet VM with a
custom topology of a switch and two hosts. The two Mininet
VMs represent a network belonging to different agencies and
are able to send packets to each other over a Generic Routing
Encapsulation (GRE) Tunnel. The RAL server, implemented
as a multi-threaded Java server application, resides at the host
machine where the VirtualBox is running.

SDN Controller C1

SDN 
App

Switch s1

Host h1 Host h2

SDN Controller C2

OpenFlow OpenFlow

RAL 
Client

RAL 
Client

SDN 
App

10.0.0.1 10.0.0.2

192.168.1.183, port 5999
Floodlight VM FLVM1

192.168.56.101
Floodlight VM FLVM2

192.168.56.103

Mininet VM 1
192.168.56.102

WebSocket

Switch s2

Host h3 Host h4

10.0.1.1 10.0.1.2

Mininet VM2
192.168.56.104GRE Tunnel

Registered Agency List 
(RAL Server)

Fig. 9: Reactive SDN setup with two Floodlight VMs, two
Mininet VMs, and a host running the RAL server.

B. Experiments and Results

Two different experiments were conducted to show that our
reactive SDN application works successfully.

1) Test 1 – SimpleHTTPServer: In the first test, we regis-
tered hosts h1 and h4 with the RAL server, with h4 running
SimpleHTTPServer at port 80. Then, we used the wget com-
mand to access this server from host h1 and then from h2. As
expected, Figure 10 shows that h1 wget h4 is successful and
we can see the page was returned. However, the request from
h2 failed because h2 is not registered with the RAL server.
The dump-flows of the two switches after the successful
wget request from h1 and h4 shows that both have three
rules installed to allow TCP traffic from h1 to h4 and from h4
to h1 and to drop any other TCP traffic with a low priority.

2) Test 2 – iperf Server: Second experiment was done
by running iperf server on port 5,001 on the registered host
h4 and running the iperf client first between the registered
hosts h1 and h4 and then between the unregistered host h2 and
the registered host h4. As expected, the request for registered
resource h1 to h4 was successful but for unregistered resource
h2, it timed out and failed. Dump of the flow tables revealed
the allow rules for this flow that was installed on both Mininets
automatically by our distributed reactive SDN application.

Extending this Mininet implementation to a more realistic
setting is straightforward. To do so, one needs to replace the

GRE tunnel between the two VMs with Internet and making
the VMs reachable from the public Internet.

C. Challenges to Practice

In the reactive SDN application, the inter-play between idle
timeout of different rules as well as the priority of the rules
determines the overall behavior, and therefore, both of these
should be carefully selected.

If a new agency is registered with the RAL after a drop
rule was already inserted into the switch for that agency, then
a smaller idle timeout would ensure that we get to query the
RAL server again for a flow involving this newly registered
agency and then have an opportunity to add new flow rules.

Assume now that the flow table is empty and a valid TCP
request comes in for a source and destination registered with
the RAL server. The reactive SDN application module installs
three rules in the switch, one each to allow bidirectional TCP
traffic flow from the registered source and destination, and
a third one to drop any other packet. The problem here is
again the same: If an invalid request follows, then, Rule 3’s
idle counter gets reset while Rule 1 and Rule 2 remain idle
and get expired earlier than Rule 3. This may result in denial
of service, if back-to-back invalid requests are received. This
denial of services is not because the controller cannot respond
to the frequency of Packet In messages but because the Packet
In messages are not being sent to the controller as they keep
getting matched on Rule 3. A new agency might have already
registered with the RAL server but Rule 3’s idle timeout
may not have expired yet and would not allow the reactive
application to query the RAL server to install the allow rules
Rule 1 and Rule 2. The solution here is to keep the idle timeout
of Rule 3 very small.

VI. FUTURE WORK

In future, we would like to explore Quagga [27] for a multi-
domain simulation in Mininet with various routing protocols
like Open Shortest Path First and Border Gateway Protocol
and various traffic generators. One of the key challenges in the
reactive SDN application is to intelligently insert new rules
while resolving conflicts with existing rules added by other
modules, for example, the Firewall module or Access Control
List module. Furthermore, application-aware optimization of
τ can be done through optimizing an objective function based
on the reactive SDN overhead and average table size.

Consideration of other architectures without the RAL server
will be a worthy effort to establish East/West interfaces among
the SDN applications distributed at different domains. Finally,
extending the architecture to more than two domains is of
interest in terms of scaling the design for emerging SD-WANs.

VII. CONCLUDING REMARKS

In conclusion, we have presented a distributed SDN appli-
cation architecture to allow logically distributed controllers to
jointly install flow rules within their respective networks by
talking with a central server. We have shown how such an
architecture can be used to allow access to datasets owned



Test1: SimpleHTTPServer
h1 wget h4 is successful

h2 wget h4 failed

(a) Request and response

SimpleHTTPServer: flows, 
Allow

Rule 1

Rule 2

Rule 3

Rule 1

Rule 2

Rule 3

(b) Flow entries in flow tables

Fig. 10: With h1 and h4 registered and h2 not registered with RAL server, h1 wget h4 is successful while h2 wget h4
times out as shown in (a). Rules 1, 2 and 3 are installed on both switches after h1 wget h4 as shown in (b).

by different domains, for example, between different research
institutions, hospital networks, and public safety agencies
during disaster situations. We anticipate that this approach is
scalable to many agencies and does not suffer from traditional
multi-controller design challenges like controller-controller
coordination and placement. Furthermore, the controller in one
agency does not need to have the global view of the networks
of both agencies which was the case with the East-West Bridge
[18]. Also, agencies can register at any time with the proposed
RAL server, which allows ad-hoc inter-agency public safety
communication networks to be set up and hook into the multi-
domain data access framework.
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