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Abstract—Through-wall sensing systems can aid in performing
building security, and collecting analytics or more ominously
be leveraged for surveillance. With the pervasive nature of
WiFi routers and devices in our office buildings and homes, we
essentially place an unencrypted (at the frame level) transmitting
source directly in our buildings which can then be leveraged
for surveillance by adversaries. In this work, we study such
a device-free WiFi sensing system for occupancy monitoring
and crowdcounting and evaluate it in a number of through-
wall conditions. We demonstrate that with a proper analysis
of Channel State Information (CSI) collected from the WiFi
signals, we can recognize both the presence of targets as well
as their moving direction in a hallway environment which can
be leveraged to track and count the flow of traffic throughout
a building. We specifically demonstrate through real world
experiments how an adversary with very limited physical access
to a building can still successfully collect surveillance data of a
target area through the wall.

Index Terms—WiFi sensing, occupancy monitoring, privacy,
through-wall sensing.

I. INTRODUCTION

Occupancy monitoring and crowdcounting offers the ability
to collect analytics and insights into traffic within indoor
spaces for use in intelligent energy efficient heating and air
conditioning control systems [1], building security through
intruder detection [2] and crowd safety [3]. Human target
surveillance in public and private scenarios can also benefit
from both occupancy monitoring and crowdcounting tech-
niques. For private locations such as businesses or homes,
typical surveillance devices such as cameras or microphones
would require an adversary to have full access to the target
areas. This of course is not always possible when considering
private residences. Further, even when access is possible, the
device payload will likely attract attention by the presence of
features such as a camera lens.

In this work, we propose the use of relatively new WiFi
sensing techniques which use traits of WiFi signals to under-
stand actions occurring in a physical environment. Because
WiFi is designed to penetrate walls, device payloads no longer
need to be placed directly in the target area. Instead, the WiFi
receiving device can be placed on the outer perimeter of a
room or building to then sense through the walls. Furthermore,
because of the ubiquity of WiFi devices and routers in environ-
ments such as residential homes and commercial buildings, a
WiFi sniffer device can also leverage the natural ambient radio
traffic from the existing devices in the environment to detect
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Fig. 1: Through-wall hallway experiment diagrams. Dark lines
indicate the walls of the hallway while the gray areas indicate
the multi-path propagation of the radio signals from transmitter
(TX) to receiver (RX) as the target walks through the hallway.
(a) LOS experiment setup, (b) RSSI for LOS experiment, (c)
NLOS experiment setup, (d) RSSI for NLOS experiment.

human presence or activities. In this study, we consider the
case where an adversary places a WiFi transmitter and a WiFi
receiver in a non-line-of-sight (NLOS) location that is behind
the wall of the target hallway area.

While there exist studies which consider through-wall
crowdcounting such as in [4]; in our work, we take these
efforts further and investigate if it is possible to perform
crowdcounting successfully when the access to the monitored
area is much more limited. That is, in existing through wall
research, it is assumed that both transmitter (TX) and receiver
(RX) can be placed across from one another as illustrated
in Fig. la. In an adversarial scenario however, an attacker
may not be able to place the devices in both areas to perform
LOS sensing. Instead, an attacker may only have access to a
single room in a building or to the exterior of the building
resulting in a limited monitoring ability from only one side.
However, this limits the attacker to NLOS conditions as shown
in Fig. 1c. Indeed, WiFi sensing based recognition has been
shown to be successful in NLOS scenarios [5] in a hallway



environment, however the radio is considered to be in the
center of the hallway rather than being hidden behind a wall.
Also note that these methods require extensive training phases
with labeled data for each new target environment before
successful results are achieved. Thus, any person tasked with
tracking targets must have full access to the environment and
then must perform time-consuming setup training before each
new deployment. Our proposed system in this study instead
leverages signal features common to all environments for
prediction. While there are several existing studies that look
at the through-wall occupancy detection and crowdcounting
problem through device-free WiFi sensing, to the best of our
knowledge, this NLOS scenario has not been considered yet,
while it is a more practical scenario for an adversary.

The rest of the paper is organized as follows. We first
review related work in WiFi sensing and through-wall sensing
in Section II and provide the motivation for this study. In
Section III, we then provide the proposed method in which
we describe the environmental setting where the signals are
monitored and the pre-processing steps for the signal analysis.
Next, in Section IV, we elaborate on the proposed detection
framework that is used to understand both human presence
and walking direction followed by our experimental results.
Finally, we provide our concluding remarks and discuss on
future work in Section V.

II. BACKGROUND

Existing studies in occupancy monitoring and crowdcount-
ing have typically been accomplished through the use of
video camera streams. For example, in [6], the authors use
an approach to count the number of pedestrians passing some
designated line in the view of a static camera. In densely
crowded environments, head-counting techniques [7] have
been shown to be sufficient when full bodies are not visible
to the camera. Mobile cameras have also been considered,
with the use of drones [8] which can follow crowds as they
change shape and size such as during protest marches. In
indoor environments [9], smaller scales must be considered
because of the restrictions inherited from the inclusion of walls
blocking the sight of camera devices. In commercial buildings,
existing surveillance camera systems can be further leveraged
to collect occupancy analytics over time [10].

In addition to camera-based systems, other building-specific
data sources have been used to predict occupancy monitoring.
Data sourced from electrical power meter usage [11] has been
shown to reveal occupancy from residential smart meters.
Collecting data from additional sensors placed throughout
an office building such as CO2 sensors, temperature sensors
and light sensors have been demonstrated to allow for high
accuracy occupancy detection [12], however, these sensors are
not usually placed within typical indoor environments. Simi-
larly, the deployment of new radio based occupancy detection
systems using Radio Frequency Identification (RFID) tags [13]
and Bluetooth Low Energy (BLE) beacons [14] have shown
to provide promising results. However, these systems not only
require deployment of new hardware into the environment

but also require individuals to carry additional hardware on
the body for tracking (i.e., not device-free). The requirement
to deploy additional hardware has been avoided in studies
(e.g., [15]) that leverage the existing WiFi infrastructure in
commercial buildings to track the connected devices such as
smartphones of users through their MAC addresses. However,
such an approach will not work as some devices may not be
connected to the WiFi router and further some people may not
even have a transmitting device with them.

WiFi sensing [16]-[18] has recently gathered interest in al-
lowing for wireless, device-free sensing of environments using
standard WiFi packet transmissions. WiFi sensing is possible
through the use of Channel State Information (CSI) from the
WiFi devices in orthogonal frequency-division multiplexing
(OFDM) systems [19]. CSI is a metric composed of signal
amplitude and phase across [N subcarrier frequencies used in
the process of link adaption. In link adaption each subcar-
rier is able to transmit symbols at adaptable data rates and
power levels in parallel across each subcarrier [19] to allow
for multiple-input multiple-output (MIMO). OFDM transmits
shared pilot symbols interleaved within the data frame which
can then be used to estimate a shared value for CSI H for the
pair of devices as described in the equation:

y = HOZ0 4 p®) (1)

where 7 indicates the subcarrier index, y(i) indicates the signal
characteristics received, z(¥) is the actual transmitted signal
(shared pilot) and 1(*) is a noise vector. The CSI vector H
consists of complex numbers with the combination of both
real and imaginary numbers representing the attributes of the
received signal. With Hﬁi) as the real value of H at subcarrier
. (i . .

¢ and H;,, as the imaginary value, we can then compute
amplitude (A*) and phase (¢(*)) for each subcarrier i through
the following equations:

A0 = /(D)2 1+ (D)2 @
oD = atan2(H"  HD) )

For each frame, we receive values for 64 subcarriers where 52
of them contain actual CSI data.

WiFi sensing has previously been used to identify individual
targets through the analysis of unique effects of walking move-
ments such as torso speed and gait on the WiFi signals [20].
Further works have considered the crowdcounting problem
using WiFi sensing such as in [21]-[23] where some number
of targets (up to 10) are contained within a room and asked
to walk in random paths around a given area. The transmitters
and receivers in each of these works are co-located in the
same room with the targets. The targets must continuously
walk within the area for upwards of an hour before the model
can successfully make any predictions. Furthermore, if any
target stops walking or targets are added or removed, then
the model will not be able to make accurate predictions.
Beyond these issues, in a surveillance situation, radios co-
located with targets would arouse suspicion. Instead, keeping



radios out of visual sight of targets by performing through-wall
WiFi sensing was demonstrated in [4]. The system described
requires that the transmitter is placed behind one wall while
the receiver is placed behind the opposite wall as illustrated
in Fig. la. As such, target counting is accomplished similarly
to existing non-through-wall works [21] in which targets are
only recognized when they pass the LOS of the transmitter
and receivers.

III. PROPOSED METHOD

We begin explaining our through-wall occupancy monitor-
ing system by first performing empirical experiments in a real-
world hallway environment. For the first experiment, we record
radio signal data in LOS conditions as illustrated in Fig. la
as performed in previous works [21], [23]. Then we move
transmitter and receiver into NLOS positions shown in Fig. Ic.

RSSI has previously been used as a simple and more easily
obtained signal metric because of its immediate availability
on smartphones and other consumer radio-enabled devices. In
LOS, RSSI works well to recognize targets as demonstrated
in our experiment result in Fig. 1b where the vertical dotted
lines indicate the time when the target is passing the LOS.
We can see directly that as the target passes, more RSSI vari-
ation occurs. However, if we perform a NLOS experiment as
illustrated in Fig. 1c, we find that RSSI no longer reveals any
signal variations when the target passes as we can see in our
NLOS experiment result in Fig. 1d. Instead, in this work, we
evaluate the use of the CSI signal metric in similar situations
which gives much more fine grained details compared to RSSI.

A. CSI Pre-Processing

Channel State Information varies in new environments be-
cause of the unique multi-path conditions of each location.
Thus, received A and the change of A®) over time will
vary uniquely when similar actions are performed but in
unique environmental conditionals. To combat this for our
occupancy monitoring problem, we suggest the following
signal pre-processing steps be applied to A(*). We begin the
pre-processing by applying a windowed outlier filter. That is,
we find
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is the mean function which is applied to the received signal
from time ¢t—w; until the current time ¢ on A® | where w1
represents the window length parameter. Similarly,
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o(x) =

is the standard deviation function applied to the same window
of A, The goal of (4) is to replace any outlier samples (those

which are greater than A standard deviations from the mean)
with the most recent valid/normal sample. Outlier filtering is
applied to each subcarrier independent of one another.

After filtering outliers, we want to gather aggregated statis-
tics across all subcarriers independently across another time
window of size wy. Here, while we can use different values
for both w; and we, for simplicity, we keep w; = ws. For
this, we apply some windowed statistical aggregation function
®(x) on each subcarrier independently,

4" = (4y,.,). (7)

For our experiments, we consider ®(x) = o(x) because our
goal is to understand how noisy each subcarrier is indepen-
dently, however ®(x) can be replaced with any other statistical
function as needed.

After collecting a noise metric for all time instances on
each subcarrier, we want to find if the noise present in one
subcarrier is similar to the noise present in other subcarriers.
Again, we apply a new statistical aggregation function ¥(x),
this time on all subcarriers for a single time instance ¢,

Agsry =w (4,1, ®)

For our purposes, ¥(x) = pu(x) with the intuition that if all
subcarriers are high in noise, then Ac gy, will be larger than
it is when only a small subset of subcarriers are affected by
noise. This is important because the noise resulting from the
environment may cause subcarriers to randomly produce noise
which is not represented across any other subcarriers. Instead,
when a target is present, noise will be present across more
subcarriers which will more consistently produce a higher
value for Ac gy ¢+ On the other hand, when no target is present,
any noise anomalies present on a single subcarrier will be
filtered out because of disagreement across subcarriers. For
notation simplicity, we will denote Acsr = Acgr+ with the
understanding that Acgy is a scalar metric for some time
instance t.

B. Standard LOS Through-Wall

As shown in many previous experiments in WiFi sensing,
recognizing targets as they pass through the LOS between a
transmitter and a receiver is a trivial task and can then be
used to estimate the number of targets in an area [4], [23]. We
perform our first experiment with one target passing through
the LOS. The results in Fig. 2a show when a target passes the
LOS four separate times, Ac gy gives distinct peaks, indicating
that the target has passed by the receiver four separate times.
In between these passing events, Acgy returns to some lower
noise-floor level.

C. NLOS Through-Wall

As discussed, in certain environments it may not be possible
to place a transmitter and a receiver to create such LOS
conditions. For example, when rooms are not available on
both sides of a hallway or if access is restricted for these
adjacent rooms. In these cases, it would be most advantageous
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Fig. 2: Acgy for (a) LOS experiment setup, (b) NLOS experiment setup without directional shielding, (c) NLOS experiment
with directional shielding, and (d) RSSI with directional shielding. Target is still not detectable with RSSI even with shielding.

for both the transmitter and the receiver to be placed in a single
room together against one wall. This is particularly useful in
adversarial conditions where an attacker has access to only a
single location because they can then keep an eye on the radios
as they perform sensing tasks. Fig. 1c illustrates this setup. To
the best of our knowledge, such adversarial placement of the
transmitter and the receiver has not been attempted by any of
the device-free WiFi sensing studies in the literature.

In this case, the target will no longer be in the LOS of
the devices, thus a NLOS monitoring will be required. For
our first experiment with this NLOS placement, we position
both a transmitter and a receiver 6 meters apart, both 50
centimeters away from the wall. The resulting Ac gy in Fig. 2b
shows that the target passing times are not clearly visible.
This is because the direct LOS between the transmitter and
the receiver dominates the received signal path which travels
through the wall and comes back. As a result, the targets
passing through the hallway does not cause a distinguishable
change on the received signal amplitude collected. Thus, an
update to the setting is needed in order to make the effect of
such through-wall NLOS signals prominent.

Typically, WiFi antennas are designed to transmit omnidi-
rectionally, but unidirectional antennas allow for signals to
be focused in more specific areas. Unidirectional antennas
however must be aimed with great accuracy to ensure that
signals are eventually received by the receiver. This may not
be an easy task without knowing the characteristics of the
environment on the other side of the wall. Our solution is
to shield both transmitter and receiver with an aluminum tin
placed pointing the wall. This prevents the direct LOS signal
from dominating the NLOS signal while still allowing for
partial omnidirectional propagation in the target area. This
will be additionally useful if multiple receivers are used for
through-wall sensing with a single transmitter. After adding
the directional shielding, we can see in Fig. 2c that we can
again identify distinct peaks when the target passes through
the hallway environment. Note that RSSI still cannot be used
to recognize the passing target in this directional setting as
shown in Fig. 2d.

IV. DETECTION FRAMEWORK AND EVALUATION

We now move on to defining our full framework for target
detection. For all of the experiments in this work, we use

our ESP32-CSI-Toolkit! [17] to collect CSI which uses two
ESP32 WiFi-enabled microcontrollers for our transmitter and
receiver, respectively. Using these small, low-cost microcon-
trollers demonstrates how an adversary could both implement
and distribute large numbers of adversarial devices with less
fear of discovery because of their small size and without fear
of loss because of the low-cost of each stand-alone ESP32
module. The ESP32 devices are set to send and receive CSI
at a packet rate of 100Hz. The entire framework is designed
such that a low resource device such as the ESP32 can
perform all tasks in real time without requiring additional
external computation power such as a server of laptop as it is
often required in WiFi sensing literature. From an adversarial
perspective, this is important to ensure that the devices remain
small and easy to conceal.

A. Human Presence

As shown in Section III, we see that our Acg; metric can
be used visually to detect activity whenever a target passes.
For our model to predict the binary presence of a target, we
designate a threshold parameter 7. When Aggy > 7, then
the model predicts the presence of the target. We perform
our experiment with a target passing the monitored area five
times. For each time instance, our model predicts whether a
target is present. To evaluate how well different thresholds
work in predicting the class of our samples, we define a class
prediction probability metric Ps(gznples for samples of a given
class ¢ € {‘target’, ‘no target’}. The class for a sample at time
t is denoted as C*). We thus define 7(¢) = {t € T s.t. C) =
¢} to be the set of time instances labeled as class ¢, where T
is the set of all time instances. Further, N(¢) = ‘T(C)| is the
number of CSI frame samples marked as class c. From this,
we define P*)

samples 45
P = v 3 Y(t.0) ©)
teT©
where
1 if Acsrt > 7 and ¢ = ‘target’
Y(t,c) =<1 if Acsrt <7 and ¢ = ‘no target’  (10)

0 otherwise

Thttps://github.com/StevenMHernandez/ESP32-CSI-Tool
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Fig. 3: Prediction accuracy as threshold parameter 7 changes.
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We can interpret S(ac,zlp,es as the percentage of CSI frame

samples which are truly class ¢ and are predicted as class
c; or put simply, the true-positive and true-negative rates. In
Fig. 3a we see the results of our model. As it is expected,

. (‘no target’) . (‘target’)
as 7 increases, Psamples increases and P, ples decreases.

Specifically, when 7 < 1.0, Pome @) = 0.0 and P{iet) =
1.0, this is because there are no samples where Acgy < 1.0.
In addition to this, we can see that there is no value for 7
where we are able to achieve perfect accuracy on predicting
both the true positives and true negatives. However, our goal
is not to predict the action for all time instances individually.
Instead, we are only interested in correctly classifying each
action segment overall.

To define action segments, we first collect a set of time
instances (I) which indicate the beginning and ending of
different actions. To determine these indices, we apply the
following:

1= {0} U {t € {2: T} where (=D £ C’(”} u{T}. (1)

With this, we can describe the number of action segments

recorded Ny, = [I| — 1. We say that the target is predicted
as present (P‘(rz)rget‘) during some action segment 7 if 3¢ €
{19 16+DY 51 Acgry > 7. Action segments containing
no target on the other hand are denoted pY which is

i ‘no target’
simply the negation of P."

arger- 1€ NUMber of segments for a

given class is described as Ns(gz,. To evaluate our predictions
on all segments, we define:

Nieg . (i) ) _
1 1 if P and C\Y =¢
(e)
(¢) Z {

0 otherwise

P s = (12)

Nseg i=1
which is described as the percentage of segments correctly
labeled as class c. With this, our final goal is to find a value
for 7 such that we maximize the number of segments where a
target was present and minimize the number of time segments
predicted as containing a target when no target was present.
When considering this segmented approach, we see in Fig. 3b
that when 7 € [2.5,2.7] both the true positive and true negative
rate reach 1.0, indicating a range of perfect predictions.
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Fig. 4: Using two receivers we are able to identify the
directional movement of the human target based on which
receiver sees an increase in Aggy first. (a) Experiment setup
with all adversarial ESP32 devices on one side of the wall: TX
at the center, RX(1) to the left of TX and RX(2) to the right.
(b) Raw Ac g1 showing four peaks when the target moves back
and forth within the hallway environment, (c) After applying
binary human detection algorithm, we can even more clearly
identify the human target direction.

B. Human Direction

Our next task is to recognize the moving direction of the
target in the hallway environment. While we show in Sec-
tion III that Acgy reveals human presence, moving direction
of the target is not directly revealed by the metric. To address
this, we use two receiving devices, one located to the left of
the transmitter and the other to the right as shown in Fig. 4a.
Both receivers again use directional shielding so that when
the central transmitter sends radio signals, they are both able
to receive the signals for different areas within the hallway
environment. The expectation is that when a target moves
from left to right, the device located to the left-most side will
recognize the target first, then later on, the right-most device
will recognize the target. Afterwards, we would expect the
left-most device will stop recognizing the target before the
right-most device. In Fig. 4b we see Aggy for both RX(1),
which is placed to the left-hand side of the transmitter (TX),
and RX(2), which is placed to the right. As the target moves
back and forth through the hallway environment, Acg; for
RX(2) increases before Acgy for RX(1) indicating that the



user moved in the direction of right-to-left. In the second pair
of peaks at around 40 seconds, Ao gy for RX(1) increases first,
indicating that the target moved back to the starting point
from left-to-right. By applying the binary human detection
algorithm from Section IV-A, we can see this relationship even
more clearly as shown in Fig. 4c.

V. CONCLUSION

In this work, we study the use of Channel State Information
for adversarial through-wall occupancy monitoring in hallway
environments. We demonstrate through real world experiments
how an attacker could perform surveillance of a building if
given access to a single room or even from a single exterior
wall. Through the use of our previously developed WiFi
sensing toolkit [17], we demonstrate how this sort of attack is
very low cost and much easier to conceal compared to camera-
based surveillance methods. Using the signal pre-processing
steps proposed in this work, we are able to demonstrate that
the two components required for tracking humans, namely,
presence and moving direction, can be successfully predicted
even in one-sided through-wall scenarios which can then be
used for crowdcounting by adversaries.

In our future work, we will look at person detection and
tracking with multiple targets and analyze the impact of
different parameters such as the speed of targets, distance
of the targets from the wall as well as overlapping of target
movement within the target hallway area. Moreover, because
this work shows that it is possible for an adversary to identify
human presence and direction information which could be
used for crowdcounting purposes, we will investigate defense
mechanisms to prevent such detection scenarios in passive
WiFi receiving mode.

ACKNOWLEDGEMENTS

This work is supported in part by National Science Foun-
dation (NSF) Graduate Research Fellowship Program (GRFP)
under Grant No. 1744624, Virginia Commonwealth University
Presidential Research Quest Fund (PeRQ) and Commonwealth
Cyber Initiative (CCI). Any opinions, findings, and conclu-
sions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of the
funding agencies.

REFERENCES

[1] C. Wang, K. Pattawi, and H. Lee, “Energy saving impact of occupancy-
driven thermostat for residential buildings,” Energy and Buildings, vol.
211, p. 109791, 2020.

[2] G. Aravamuthan, P. Rajasekhar, R. K. Verma, S. V. Shrikhande, S. Kar,

and S. Babu, “Physical intrusion detection system using stereo video

analytics,” in Proceedings of 3rd International Conference on Com-
puter Vision and Image Processing, B. B. Chaudhuri, M. Nakagawa,

P. Khanna, and S. Kumar, Eds. Singapore: Springer Singapore, 2020,

pp. 173-182.

Z. Zhang, M. Wang, and X. Geng, “Crowd counting in public video

surveillance by label distribution learning,” Neurocomputing, vol. 166,

pp. 151-163, 2015.

S. Depatla and Y. Mostofi, “Crowd counting through walls using

WiFi,” in IEEE International Conference on Pervasive Computing and

Communications (PerCom), 2018, pp. 1-10.

[3

[t}

[4

=

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

[20]

[21]

(22]

(23]

S. Fang, R. Alterovitz, and S. Nirjon, “Non-Line-of-Sight around the
corner human presence detection using commodity WiFi devices,” in
Proceedings of the 1st ACM International Workshop on Device-Free
Human Sensing. ACM, 2019, pp. 22-26.

Z. Ma and A. B. Chan, “Crossing the line: Crowd counting by integer
programming with local features,” in The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2013.

M. B. Shami, S. Magbool, H. Sajid, Y. Ayaz, and S. S. Cheung, “People
counting in dense crowd images using sparse head detections,” I[EEE
Transactions on Circuits and Systems for Video Technology, vol. 29,
no. 9, pp. 2627-2636, Sep. 2019.

M. Kiichhold, M. Simon, V. Eiselein, and T. Sikora, “Scale-adaptive
real-time crowd detection and counting for drone images,” in 25th [EEE
International Conference on Image Processing (ICIP), 2018, pp. 943—
947.

D. Ryan, S. Denman, C. Fookes, and S. Sridharan, “Scene invariant
multi camera crowd counting,” Pattern Recognition Letters, vol. 44, pp.
98-112, 2014.

I. Mutis, A. Ambekar, and V. Joshi, “Real-time space occupancy sensing
and human motion analysis using deep learning for indoor air quality
control,” Automation in Construction, vol. 116, p. 103237, 2020.

R. Razavi, A. Gharipour, M. Fleury, and I. J. Akpan, “Occupancy
detection of residential buildings using smart meter data: A large-scale
study,” Energy and Buildings, vol. 183, pp. 195-208, 2019.

L. M. Candanedo and V. Feldheim, “Accurate occupancy detection of
an office room from light, temperature, humidity and co2 measurements
using statistical learning models,” Energy and Buildings, vol. 112, pp.
28-39, 2016.

N. Li, G. Calis, and B. Becerik-Gerber, “Measuring and monitoring
occupancy with an RFID based system for demand-driven HVAC
operations,” Automation in Construction, vol. 24, pp. 89 — 99, 2012.

P. Barsocchi, A. Crivello, M. Girolami, F. Mavilia, and F. Palumbo,
“Occupancy detection by multi-power bluetooth low energy beaconing,”
in IEEE International Conference on Indoor Positioning and Indoor
Navigation (IPIN), 2017, pp. 1-6.

E. Vattapparamban, B. S. Ciftler, I. Giiveng, K. Akkaya, and A. Kadri,
“Indoor occupancy tracking in smart buildings using passive sniffing of
probe requests,” in IEEE International Conference on Communications
Workshops (ICC), 2016, pp. 38—44.

Y. Ma, G. Zhou, and S. Wang, “WiFi Sensing with Channel State
Information: A Survey,” ACM Comput. Surv., vol. 52, no. 3, pp.
46:1-46:36, 2019. [Online]. Available: https://doi.org/10.1145/3310194
S. M. Hernandez and E. Bulut, “Lightweight and Standalone IoT based
WiFi Sensing for Active Repositioning and Mobility,” in 21st Inter-
national Symposium on "A World of Wireless, Mobile and Multimedia
Networks” (WoWMoM), Cork, Ireland, Jun. 2020.

S. M. Hernandez and E. Bulut, “Performing WiFi Sensing with Off-
the-shelf Smartphones,” in IEEE International Conference on Perva-
sive Computing and Communications Workshops (PerCom Workshops),
2020, pp. 1-3.

T. Hwang, C. Yang, G. Wu, S. Li, and G. Y. Li, “OFDM and Its Wireless
Applications: A Survey,” IEEE Transactions on Vehicular Technology,
vol. 58, no. 4, pp. 1673-1694, May 2009.

B. Korany, C. R. Karanam, H. Cai, and Y. Mostofi, “XModal-ID:
Using WiFi for Through-Wall Person Identification from Candidate
Video Footage,” in 25th Annual International Conference on Mobile
Computing and Networking. ACM, 2019, p. 36.

O. T. Ibrahim, W. Gomaa, and M. Youssef, “CrossCount: A Deep
Learning System for Device-Free Human Counting Using WiFi,” IEEE
Sensors Journal, vol. 19, no. 21, pp. 9921-9928, 2019.

S. Liu, Y. Zhao, and B. Chen, “WiCount: A Deep Learning Approach for
Crowd Counting Using WiFi Signals,” in IEEE International Symposium
on Parallel and Distributed Processing with Applications and IEEE In-
ternational Conference on Ubiquitous Computing and Communications
(ISPA/IUCC), 2017, pp. 967-974.

H. Zou, Y. Zhou, J. Yang, W. Gu, L. Xie, and C. J. Spanos, “FreeCount:
Device-Free Crowd Counting with Commodity WiFi,” in IEEE Global
Communications Conference (GLOBECOM), Singapore, December 4-8,
2017, pp. 1-6.



