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Abstract—Physical therapy (PT) exercises are critically impor-
tant for the rehabilitation of patients with motor deficits. While
rehabilitation exercises can be most effective when performed
properly under the supervision of a physical therapist, it can
be costly in terms of several aspects and may not be a viable
option for all patients. At-home systems offer more accessible and
less costly solutions to patients while also providing flexibility
in scheduling prescribed exercises. However, current systems
mostly depend on camera based solutions that have limitations
(i.e., deployment cost, requiring patients to be in the sight of
camera, potential privacy violations) or wearable solutions that
are cumbersome and intrusive. To this end, in this paper, our
goal is to leverage the WiFi infrastructure available in most
indoor locations (i.e., homes, apartments, nursing homes, etc.)
for tracking the exercises prescribed to patients during their
rehabilitation. Our solution, Wi-PT, is based on the analysis of
Channel State Information (CSI) captured from ambient WiFi
signals, and uses deep learning models trained to recognize the
prescribed physical therapy exercises. Through our experiments,
we show that the proposed solution can successfully recognize
different types of physical therapy exercises such as hand and
finger movements, limb movements and movements performed
with exercise equipment. Moreover, we show that our system
can recognize the person performing different activities and can
identify when they are at rest or actively performing an exercise.

Index Terms—WiFi sensing, physical therapy, rehabilitation
tracking, device-free.

I. INTRODUCTION

Rehabilitation is the process of recovering a patient’s health
condition to its normal state after a period of illness. This
is a critical process for patients affected by central nervous
system disorders such as Parkinson’s disease (PD) and cere-
brovascular diseases (e.g., stroke). For example, stroke affects
nearly 800,000 individuals each year in the U.S. and for
approximately 600,000 of them, this is their first event [1].
Many survivors experience persistent difficulty with daily
tasks as a direct consequence [2]. These include being less
active, being less stable, moving slower as well as adopting
inefficient movement patterns resulting in increased physical
demands. Thus, more than two thirds of stroke survivors
receive rehabilitation services after hospitalization. According
to recent studies, patients can recover up to 91% functional
ability if they start the rehabilitation within three months of
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Fig. 1: Physical therapy exercises based on (a) wrist and finger
movements, (b) whole body and limb movements, and (c)
movements using equipment.

the stroke [3]. Similarly, rehabilitation can also minimize sec-
ondary complications [4]. Thus, maintaining physical activity
and performing rehabilitation treatment as early as possible is
crucial for the recovery of a patient.

In current practice, rehabilitation treatment for a patient is
usually performed under the supervision of a physical therapist
who provides guidance to the patient when performing specific
exercises and makes sure that each exercise is performed prop-
erly to ensure successful treatment. While such a practice with
one on one attention from a physical therapy expert will ensure
a quality treatment for the patients, it limits the application of
rehabilitation treatment to a certain environment and comes
with several costs (e.g., treatment cost, trip cost to the facility,
dedication of specific time). Thus, alternative solutions which
allow patients to perform such rehabilitation activities at home
or outside of a dedicated rehabilitation facility can avoid such
costs and provide a ubiquitous, and easily accessible solution.
On the other hand, these alternative solutions should not
reduce the quality of the treatment and must continue to give
feedback to patients to ensure that rehabilitation exercises are
performed properly and as prescribed. Note that clinical visits
and expert based sessions can still be performed as needed but
they can be performed less frequently.

The existing at-home systems mainly depend on wearable
sensors or cameras located in the patients’ houses [5], [6].
However, such solutions come with several issues (e.g., intru-
sive, privacy concerns). Alternative to these existing systems,
in this paper, we propose a WiFi sensing based device-free
physical rehabilitation tracking (Wi-PT) system for patients.
There are a few other solutions that also rely on the analysis of
radio-frequency (RF) signals; however, these systems require
placement of special equipment (e.g., mmWave radar [7]), thus
they are still costly. On the contrary, our goal is to leverage
the WiFi infrastructure available in most indoor environments
and houses for rehabilitation activity tracking, thus providing
a low-cost and non-intrusive solution. Moreover, in order to
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provide a thorough system, we target a solution that can (i)
identify different types (e.g., hand, finger, limb) of exercises
performed by the person, (ii) identify which person is perform-
ing the activity given, and (iii) verify if the person is actively
exercising or resting for a period of time. We believe these
are critical in tracking the person who is supposed to perform
the physical rehabilitation activity as prescribed.

The rest of the paper is organized as follows. In Section II,
we provide a background on WiFi sensing and discuss the
related work. In Section III, we present the details of the
proposed Wi-PT system. We evaluate the proposed system
through experiments in Section IV. Finally, we provide our
concluding remarks in Section V.

II. PRELIMINARIES

A. Background on WiFi Sensing

WiFi sensing uses ambient WiFi radio signals to detect
and sense physical properties of the environment. These RF
signals propagate over multiple unique physical paths from a
transmitter (TX) to a receiver (RX). These multipaths cause
slight variations in the signal due to the RF signals reflecting
off of surfaces and propagating through objects such as walls,
furniture, and people within the environment.

Channel state information (CSI) is a signal metric captured
in communication systems which use orthogonal frequency-
division multiplexing (i.e., 802.11), to allow data-symbols
to be encoded in multiple subcarrier frequency allowing for
higher symbol throughput as well as resilience to signal
fading and shadowing caused by multipath interference in the
channel. CSI is modeled as y(i) = H(i)x(i) + η(i), where
i is the subcarrier index, x is the transmitted signal, y is
the received signal, η is a noise vector, and H is a complex
vector containing the CSI denoting the transformation change
required from the input x to the output y. The complex CSI
vector contains 64 subcarriers where 52 are data-subcarriers
and 12 are null-subcarriers. The CSI value for each subcarrier
is defined as a complex number with a real component (H(i)

r )
and an imaginary component (H(i)

im). We can transform this

raw CSI into amplitude, A(i) =

√
(H

(i)
im)2 + (H

(i)
r )2, and

phase, ϕ(i) = atan2(H
(i)
im, H

(i)
r ).

Leveraging these signal features, WiFi sensing has been
applied in various applications [8]–[10] including but not
limited to localization, human activity recognition and crowd
counting. In this paper, we focus on rehabilitation specific
physical activities and propose a system which can not only
recognize different kinds of physical therapy exercises but also
can recognize the person who is performing them using a low-
cost solution with an edge-based ML model inference.

B. Related Work

Thanks to the ubiquity of Internet of Things (IoT) devices,
there have been many smart health and assistive solutions
developed to track the activities of patients during a reha-
bilitation process. These solutions can be categorized into

two major approaches. In the first approach, the studies [11]–
[14] consider a wearable sensor attached to the body of the
patient. These sensor usually contain an Inertial Measurement
Unity (IMU) that can measure accelerometer, gyroscope and
magnetometer readings and can obtain different directional
and angular movements of the limbs of the patients. However,
patients may feel uncomfortable with wearing these sensors
and may not deal with charging them as needed.

In the second approach, the studies use camera based solu-
tions (e.g., Kinect [15], RGB camera [16], depth camera [17])
and through the analysis of collected frames, detailed patient
movements and poses can be detected. While such systems
are non-intrusive as they do not require a device worn by
the patient, they have certain limitations and drawbacks. For
example, they can only track a person when the person is
in the sight of the camera. These systems can also pose a
privacy risk to users as they not only detect the movements
of people but also their faces and the environment they live
in. Finally, they can be costly to deploy especially for large
areas where multiple cameras need to be deployed to obtain
sufficient coverage.

In addition to these major approaches, there is also relatively
new but growing number of studies that rely on RF signals and
radar imaging. These studies [7], [18], [19] rely on specific
signals (e.g., FMCW [18], mmWave [7], [19]) and deep
learning based analysis of signal features. These solutions can
be more effective than previous solutions as even the activities
that are performed out of sight can be detected because RF
signals can penetrate through some obstacles as well as bounce
off of some other objects in the environment and reach out
out of sight locations. On the other hand, these solutions
require special equipment (e.g., mmWave radar) which can
be costly. Different from these systems, our solution relies on
already available ambient WiFi signals found in most indoor
areas. Additionally, the proposed system can use low-cost
microcontrollers to capture the signals, preprocess them, and
make predictions directly on-board.

III. PROPOSED WI-PT SYSTEM

A. CSI Data Collection

In order to collect CSI data, we use the WiFi-enabled ESP32
microcontrollers and the ESP32-CSI Toolkit [20]. These mi-
crocontrollers provide a small-size, low-cost, and standalone
solution compared to other existing methods, which require a
host laptop with an updated Network Interface Card (NIC);
thus, they can be easily deployed anywhere. We transmit
frames from an ESP32 transmitter and then collect WiFi CSI
from a separate ESP32 receiver at a rate of 100Hz.

B. Preprocessing and Machine Learning Model Development

Once the CSI data is collected and labeled with the per-
formed exercise, we begin by performing some preprocessing
steps. First, we denoise the incoming CSI signal by applying a
moving average across each subcarrier independently using a
window of size w. After this, we use the Principal Component
Analysis (PCA) to achieve both dimensionality reduction and
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Fig. 2: Experimental design with TX/RX pairs illustrated for four different categories of activities: (a) hand and wrist movements,
(b) finger movements, (c) full-body and limb movements, (d) exercise equipment usage movements.

further reduce the amount of noisy data used as input into the
machine learning model.

After this preprocessing, we train a machine learning
classifier model M using a Dense Neural Network (DNN)
architecture with four dense layers for the equipment based
exercises and two dense layers for the other actions. We apply
a dropout layer between each dense layer to prevent overfitting.
Finally, we use Stochastic Gradient Descent (SGD) to optimize
the loss function L(x, y) = 1

N

∑N
i=1 (M(xi)− yi)

2
, where

M(xi) is the model prediction for input CSI xi and yi is the
true class for the i-th CSI measurement.

IV. EVALUATION

A. Data sets

In order to evaluate the proposed Wi-PT system, we have
collected CSI measurements for four physical therapy scenar-
ios, each with different scales from small finger movements
up to larger scale movements with full exercise equipment.
Table I gives an overview of the four new data sets with the
activities being tracked, number of repetitions of each activity,
number of TX/RX links and finally the number of volunteers
who performed these activities.

1) Wrist dataset: For our first data set, we collected CSI
data for three hand movements using one volunteer. The
movements are pitch (P), yaw (Y), and roll (R) of the palm
around the wrist as illustrated in Fig. 2a. The volunteer
repeated each hand movement multiple times for a duration

TABLE I: Information about the collected physical therapy
experiment data sets.

Data set Activities Reps. Links Volunteers

Wrist • Pitch (P)
• Yaw (Y)
• Roll (R)

22 1 1

Finger • OK Sign (O)
• Victory Sign (V)
• Three Fingers (T)

20 1 1

Whole-body • Raise Left Arm (LA)
• Raise Right Arm (RA)
• Raise Left Leg (LL)
• Raise Right Leg (RL)
• Jumping Jack (JJ)

10 1 1

Equipment • Hand weights (HW)
• Total gym (TG)
• Curl bar (CB)
• Weight bench (WB)

6 3 5

of 10 seconds each time and in a round-robin fashion over
22 repetitions with 5 seconds of pauses while in the line of
sight (LOS) of a single TX/RX pair. The TX/RX pair is placed
vertically across the palm of the volunteer with a distance of
50 centimeters in between.

2) Finger dataset: In our next experimental dataset, we
consider small scale finger movement tracking. For this ex-
perimental data collection, we collected CSI from a single
TX/RX pair while a single volunteer performed three finger-
based movements, namely, OK sign (O), Victory sign (V),
Three Fingers (T) as illustrated in Fig. 2b. These gestures
are repeated in a round-robin fashion for 20 repetitions, while
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Fig. 3: Confusion matrix for (a) wrist movements, (b) finger
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each action is performed for a duration of 5 seconds and with
5 seconds of pauses in between the successive actions. The
single pair of TX/RX is placed horizontally across the palm
of the volunteer with a distance of 60 centimeters in between.

3) Whole-body dataset: Our third experimental dataset
includes full-body calisthenics movements which focus on
the movements of the limbs. One volunteer performed five
activities in the LOS of a single TX/RX pair repeated 10 times
in a round-robin fashion, namely, raising left arm (LA), raising
right arm (RA), raising left leg (LL), raising right leg (RL),
and jumping jack (JJ) as illustrated in Fig. 2c. Each of these
activities involves repeatedly moving from a static position to
the active position over a period of 10 seconds and with 10
seconds of rests in between successive actions. The TX/RX
pair is placed across the left-to-right direction of the body
of the moving volunteer at the eye-level height and with a
distance of 2.4 meters in between TX and RX.

4) Equipment-based dataset: Here, we collected data dur-
ing exercises performed with different pieces of equipment.
Uniquely for this dataset, we also collected data using multiple
volunteers in order to test the system’s performance in terms of
person identification accuracy. More specifically, we asked 5
volunteers to perform exercises (i.e., hand weights (HW), total
gym (TG), curl bar weight (CB), weight bench (WB)) one by
one at four different stations in the same room (as shown in
Fig. 2d). We asked each of the volunteers to perform each
exercise for 10 seconds and rest the same amount of time and
repeat this activity/inactivity 6 times in total at each station. We
used three different TX/RX pairs located at different locations.

We collected CSI data from each of these activities and
developed deep learning models for three different detection
tasks, namely, (i) the equipment used by the person, (ii) the
identity of the person using it, and (iii) if the person is actively
exercising or not. We used 4 repetitions of the exercise by each
person as training data and remaining 2 repetitions for testing.

B. Experiment Results

1) Wrist results: For our first dataset, the three wrist move-
ments are found to be classifiable with an overall accuracy of
85.21% using our optimized deep neural network model. The
roll wrist activity is found to be more accurately classified
(i.e., with 97.4% accuracy), and the pitch action of the wrist
is found to be most prone to being confused with the yaw
wrist action as shown in Fig. 3a.

As the TX/RX pair is placed vertically (i.e., at the top and
bottom of the hand), the signals get the thinner view of the
palm from this angle and, to our understanding, it causes these
two movements to be less recognizable, while rolling actions
provide the signals a broader view of the back of the palm to
make recognizing this motion more accurately.

2) Finger results: For our next data set, we have achieved
an overall accuracy of 97.13% when classifying the three
multi-finger gestures. The model is optimized so well that it
recognizes the three gestures from a horizontal angle of view
of the wireless network across the human palm. All of these
three gestures involve the thumb finger’s movement, but the
other three involved fingers make the gestures unique when
classified during our evaluation.

The two slightly confused gestures among the three gestures
are the three-finger sign and the victory-sign (i.e., two-finger
sign) which is 5% in the worst case as depicted in the confu-
sion matrix in Fig. 3b. In both of these gestures, thumb and
little fingers are moving commonly and only the movement of
the ring finger makes the difference, so it is understandable
that these two gestures are more likely to be confused than
with the other gesture.

3) Whole-body results: The activities performed for our
whole-body data set can be divided into three subgroups: (i)
arm movements, (ii) leg movements, and (iii) jumping jack
which involves both arms and legs along with a whole body
jumping motion. Our model successfully classifies the two
actions of the leg movements along with the jumping jack
movement with at least 93% accuracy and at best with 100%
accuracy. However, the arm movements are found to be more
challenging to distinguish from the other movements. The
confusion matrix in Fig. 3c shows that the worst accuracy is
found with the left-arm movement at 47.65%, while 31.74%
left-arm moves are wrongly classified as right-leg movement
and 29.80% right-arm movements are wrongly classified as
the left-leg movement. The model confusion between the left
and right arms and legs can be due to the fact that raising
any leg sidewise (left or right) makes the body tilt towards the
opposite side. Therefore, the arm movement at that opposite
side is likely to be confused as a leg movement at that side,
especially if the TX/RX pair is close enough to the body.
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Fig. 4: Accuracy per TX/RX link when predicting active versus
resting states for each pair of volunteers and equipment. Each
link is better with distinct sets of equipment, thus using the
best link allows for greater accuracy across all equipment.

Considering this, it can be possible to increase the accuracy
of our model by increasing the distance between the pair of
TX/RX. Until then, the best overall accuracy achieved by our
DNN model to classify five of the mentioned simultaneous
actions is 80.65%.

4) Equipment-based results: For our equipment-based
dataset, we collected data from multiple volunteers, and as
such, we can review the accuracy of our model with respect
to each volunteer individually. We begin our analysis by
evaluating the ability of our model to distinguish both active
and resting states for each pair of volunteers and equipment.
The results in Fig. 4a-c shows the accuracy when using
each TX/RX link as illustrated in Fig. 2d. From the heatmap
figures, we can see that link A achieves the greatest accuracy
across volunteers for the TG and WB equipment while link C
achieves the highest accuracy across volunteers for HW and
CB equipment. While link B achieves slight improvements for
some of the volunteer/equipment pairs, there is no consistent
behaviour where it achieves greater accuracy than the other
TX/RX links. As such, while link B does not itself achieve the
greatest accuracy, it can still help improve the overall system.

Fig. 4d shows the best overall accuracy achieved across
each of the three TX/RX links. From here, we can see
that HW achieves a low accuracy (i.e., 64%) for volunteer
1. This may be due to inconsistencies in the actions being
performed between different repetitions. With additional data
collections, we expect that these inconsistencies should be
better handled by the model. Even so, we can see that the

HW equipment achieves consistently lower accuracy for all
volunteers compared to other equipment. We expect this is
due to the small movements of the hand weights compared to
the activities performed at the other equipment locations.

Next, we consider how well our system can predict which
equipment is being used per volunteer. For this evaluation,
we only use the active dataset for equipment identification.
Fig. 5 shows the accuracy of a multi-class classifier predicting
the four different equipment stations using CSI captured
with each TX/RX link. We can see that all three links can
successfully identify the equipment with an average accuracy
greater than 93%. This demonstrates that even though only
certain equipment is placed in the LOS of each TX/RX link,
the models can still successfully distinguish which equipment
is being used from any given link. Thus, we can see that link
positioning is unimportant for equipment identification.

When exercise equipment is used by different people, then
it can be important that an exercise tracking system is able to
distinguish which person is using the equipment at any given
time. As such, in Fig. 6, we show the accuracy of a multi-
class classifier when predicting the five different volunteers
at each given equipment station. From this, we can see
that no single TX/RX link achieves high prediction accuracy
for person identification at all equipment locations. This is
because person identification relies on understanding details
such as height, weight, and the way in which a volunteer
performs each activity. As such, we find that the highest
achieved accuracy for each TX/RX link corresponds directly
to the equipment most closely located in the LOS of the TX
and RX. This is because equipment located in the NLOS
may have environmental noise such as fans as well as the
physical movements being performed which may overshadow
the human identifying traits that could more easily be seen in
the LOS. Overall, the greatest accuracy that we can achieve
for HW is 85.6% while all other equipment achieves greater
than 91.1% respectively.

V. CONCLUSION

In this work, we proposed a non-intrusive WiFi sensing
based physical rehabilitation activity tracking system. We
discussed issues with existing methods and presented a low-
cost and device-free method that can use ubiquitous WiFi
signals for tracking physical activities. Using the proposed Wi-
PT system, we collected and evaluated four new WiFi sensing
physical therapy datasets: (i) wrist movements, (ii) finger
movements, (iii) whole-body movements, and (iv) equipment-
based exercise movements. We demonstrated that each of
these scales of movements can be tracked by Wi-PT at high
accuracies. Furthermore, with the equipment-based exercise
movements, we considered multiple volunteers and multiple
TX/RX link pairs. Through this, we demonstrated that we can
not only recognize the activity/exercise, but also identify the
person performing the exercise, which can be an important
feature when different patients use the same equipment at
different times. In our future work, we will collect addi-
tional data sets with multiple volunteers, develop environment-
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independent models [21], and evaluate the proposed system for
tracking physical therapy patients over longer periods of time.
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