
Joint Optimization of System and User oriented

Task Assignment in Mobile Crowdsensing

Fatih Yucel and Eyuphan Bulut

Department of Computer Science, Virginia Commonwealth University

401 West Main St. Richmond, VA 23284, USA

{yucelf, ebulut}@vcu.edu

Abstract—One of the fundamental challenges in mobile crowd-
sensing (MCS) systems is efficient task assignment. Existing
solutions consider the problem from system’s point of view
and try to maximize the system utility or minimize the cost
of sensing. However, such a task assignment process does not
consider the user (i.e., workers and task requesters) preferences
and can yield unhappy users with their assignments, impairing
the participation of users in the future. To incentivize the user
participation, stable matching based solutions can be utilized to
result in satisfactory assignments that will make the users happy
based on their preferences. However, this may adversely affect
the system utility especially when the set of eligible number of
workers for each task is limited. To address this issue, we study
the task assignment problem in MCS systems that maximizes
the main system utility (i.e., number of workers and tasks
assigned) as a system oriented goal while generating as happy
users as possible with their assignment. As the problem is NP-
complete, we first solve the problem optimally using Integer
Linear Programming (ILP) and then we propose a heuristic based
polynomial solution that runs very fast. Through simulations, we
show that the proposed approach achieves the maximum possible
system utility while generating small and close to optimal user
unhappiness as in ILP results.

Index Terms—Mobile crowdsensing, task assignment, stable
matching.

I. INTRODUCTION

Mobile crowdsensing (MCS) offers a promising and cost

effective solution for complex computation and sensing tasks

by exploiting the power of crowd [1]. With far-reaching

proliferation of mobile devices that are equipped with various

sensors (e.g., GPS, microphone, camera) and pervasive net-

work accessibility, users wearing these devices are recruited

to complete these tasks in parallel, hence achieving a shorter

completion time. Examples of MCS applications include traffic

monitoring [2], transit station labeling [3] and air quality

detection [4].

In a typical MCS, there is a platform, requesters, tasks and

workers1. Task requesters post a set of tasks with different

requirements such as a deadline to complete the task and

a reward for completing the task. The workers register to

the system together with their capabilities and any applicable

restrictions (e.g., can only perform tasks in a specific region,

or can perform a task with at least a minimum reward). The

platform defines the workers eligible for each task and either

1They are also called mobile users in some studies but we utilize the term
”user” to refer to both task requesters and workers.

automatically matches them based on some optimization goal

or let the workers select the tasks based on their preferences

or let the task requesters hire the workers as they want.

For example, a worker may prefer to take the tasks that

will provide more profit with a minimal effort based on the

worker’s capabilities.

MCS applications can also be classified into two based

on the way the data is collected, namely, opportunistic or

participatory MCS. In the former, the workers are not involved

actively and sensing is performed opportunistically without

changing their mobility. On the contrary, in the latter, workers

are actively involved and a centralized platform recruits them

and dispatches the sensing tasks. Depending on the MCS

application and its requirements, one may have advantages

over the other. However, in both types, the main challenging

problem is the assignment of tasks to users under some opti-

mization goal. In the literature, many studies have looked at

this problem from different perspectives and proposed various

solutions considering several parameters such as traveling

distances and sociability [5], privacy [6] and truthfulness of

users [7], location-awareness [8] and QoS sensitivity [9].

Despite the variety of the literature on the task assignment

problem in MCS systems, the goal is mostly defined from

overall system’s point of view without considering the user

preferences. Hence, the resulting task assignment could be

dissatisfying and unappealing for both task requesters and

workers. However, in practice, users would not like to sac-

rifice their individual convenience for the overall utility of

the system. To avoid this problem, recently, stable matching

has been used in the task assignment process [10], [11] to

make the users happy with their assignments. However, such

solutions can reduce the overall system utility by leaving some

tasks and workers unassigned. Such cases usually occur when

the eligible set of workers to do a task are not exhaustive

(i.e., not covering the entire list of workers as they may not

have required skills/trust/quality). For example, consider the

example in Fig.1 with two workers and tasks, where worker

1 prefers task 1 over task 2, while worker 2 can only perform

task 1 as he cannot travel longer distances. In a stable matching

considering user preferences, worker 1 is assigned to task 1

and worker 2 and task 2 are left unmatched as worker 2 was

not eligible to perform task 2. On the contrary, in a system

oriented matching that aims to maximize the system utility

by assigning as many workers and tasks, worker 1 could be

Task 1

Task 2

Worker 1

Worker 2

Fig. 1. Eligible workers for each task is shown by dashed edges. A system
oriented matching that aims to maximize the assigned workers and tasks will
assign worker 1 to task 2 and worker 2 to task 1. On the contrary, a user
oriented task assignment considering user preferences (e.g., closer worker/task
if cost of assignment is location dependent) will assign worker 1 to task 1
and leave the worker 2 and task 2 unassigned.

assigned to task 2 and worker 2 could be assigned to task 1.

In this paper, our goal is to jointly optimize the task

assignment process by considering both the system level

goals (e.g., maximizing the number of assigned workers/tasks)

within given assignment constraints (e.g., budget of workers,

rewards of tasks) and the user preferences. However, achieving

both of them may not be possible at the same time. Thus, we

aim to reach the system goals while generating as few unhappy

users as possible. As this problem is NP-complete (since it

can be reduced to max cardinality with min blocking pairs

problem [12]), we first define an Integer Linear Programming

(ILP) based solution to find the optimal result. Then, we

provide a heuristic based cost efficient solution and show that

it provides close to optimal results through simulations.

The rest of the paper is organized as follows. In Section II,

we provide the system model and our assumptions. In Sec-

tion III, we discuss the details of the ILP solution and heuristic

approach. In Section IV, we present an evaluation of the

proposed approach through simulations. Finally, we end up

with conclusion in Section V.

II. SYSTEM MODEL

A. Assumptions

Let W={w1, w2 . . . wn} denote the set of |W| = n workers

and T = {t1, t2 . . . tm} denote the set of |T | = m tasks in the

system. Let cij denote the cost of assigning worker wi to task

tj . Let also rj denote the reward of completing the task tj .

We assume that each worker will not perform a task if its cost

is higher than the reward of the task. Then, the set of tasks

that are eligible for worker wi to perform are:

E(wi) = {tj |rj ≥ cij , ∀j ∈ [1 . . .m]} (1)

Moreover, in order to increase the profit from the task, the

worker prefers the ones that have higher rj − cij value. We

use tj ≻wi
tj′ notation to express that wi prefers tj to tj′ ,

which happens when rj − cij > rj′ − cij′ .

Similarly, from task requesters’ side, they cannot hire a

worker if the reward that the task requester can provide (which

could be considered as the budget of the requester as well) is

more than the cost of hiring a worker. The set of eligible

workers that can perform the task tj is then defined as:

E(tj) = {wi|rj ≥ cij , ∀i ∈ [1 . . . n]} (2)

Moreover, even though the task requester pays the same reward

to any worker who completes the task, the task requester can

have preferences on the eligible set of workers. For example,

if the cost of assigning a worker to a task is dependent on

the traveling distance from the worker location to the task

location [5], [8], the requester of the task may prefer the

workers who have less cost, as they indicate quicker arrival

of the worker to the task location and early completion of

the task. Otherwise it could be a totally location-independent

cost function and the preference of the task requester can be

determined by other factors such as the quality of the work

the worker can provide [9]. We use wi ≻tj wi′ notation to

express that tj prefers wi to wi′ .

B. System vs. User oriented Task Assignment

Once the set of eligible workers for each task and eligible

tasks for each worker are determined, the platform can then

assign the tasks to workers with some optimization goal. From

the system’s perspective, this goal could be to match as many

workers with a task in order to increase the activity in the

platform (and potentially get more commission from workers

and requesters etc.) and attract more participants (more com-

plex utility based models can be considered similarly). Such

a matching can indeed be obtained by forming a bipartite

matching graph between workers and tasks and solving it

through the well-known Hungarian algorithm [13]. However,

from user’s perspective, this may result in unhappy workers

and task requesters due to their preferences. Thus, a stable

matching (also known as stable marriage [14]) based solutions

could be utilized to find a task assignment that will make both

the workers and task requesters happy with the assignment.

Here, we define that a worker is happy with the assignment,

if there is no other preferred task that would also prefer this

worker compared to the worker its assigned. Similarly, a task

requester or the task is considered happy with the assignment,

if there is no other preferred worker that would also prefer

this task compared to its assigned task. Such a stable task

assignment can be found by using the deferred acceptance

mechanism proposed in the Gale-Shapley algorithm [14].

LetM = {(wi1 , tj1) . . . (wik , tjk)}, k ≤ min{m,n} denote

the set of (worker, task) pairs assigned to each other depending

on the task requirements and worker skills. We denote the task

assigned to a worker w in a matching M by M(w). We say

M(w) = ∅, if w is not matched inM. Analogously, we denote

the user assigned to a task t by M(t).
In order for an assignmentM to be stable (i.e., no unhappy

users) there should not exist a 〈wi, tj〉 pair such that tj ∈
E(wi), wi ∈ E(tj), and

• tj ≻wi
M(wi) and wi ≻tj M(tj), or

• tj ≻wi
M(wi) and M(tj) = ∅, or

• wi ≻tj M(tj) and M(wi) = ∅, or

• M(wi) = ∅ and M(tj) = ∅.

Average number of eligible workers
0 10 20 30 40 50

%
 o

f
u
n
a
s
s
ig

n
e
d
 w

o
rk

e
rs

/t
a
s
k
s

0

2

4

6

8

10

12

14

16

18

20

22

Location dependent

Location independent

Fig. 2. Percentage of unassigned workers and tasks due to user oriented
task assignment compared to the maximum possible worker task assignment
in the system oriented task assignment. In the location-dependent case,
eligible workers are determined based on geographical restrictions (i.e., travel
distances) while in the location-independent case they are decided based on
other characteristics.

In system oriented task assignment process, there will be

such unhappy pairs as the user preferences are not considered

and solely the maximum system utility (i.e., count of assigned

pairs) is targeted. On the other hand, in user oriented stable

matching process, there can be unmatched workers or tasks

which may later impair the participation of them to the system.

Fig. 1 shows an example of that scenario but to quantify

unmatched user counts in general, we generated different

scenarios. To this end, we deployed 50 workers and 50 tasks

in a region of size 1 km by 1 km. We then defined eligible

workers for each task and eligible tasks for each worker

together with the preference orders. We have used two ways

for the cost function. In the location-dependent case, we

assume that each worker cannot travel more than the distance

which will have the cost of travel more than the reward of

the task and a worker prefers the task closer to the worker’s

location and vice versa. In the location-independent case, since

each user may have a distinct and unique set of criteria to

determine the eligibility, we randomly decide different number

of eligible worker/task sets for each task/worker, respectively.

In Fig. 2, we show the percentage of decrease in the

number of assigned workers/tasks in a user oriented stable

task assignment compared to the assigned workers/tasks in a

system oriented maximum utility assignment. For all results

in this and the following sections, we take the average of

100 different runs for statistical significance. The error bars

in graphs show the variance in results. As shown in Fig. 2,

when the average number of eligible workers/tasks is small,

the decrease in assigned workers/tasks approaches to 20% for

randomly formed eligibility lists, meaning that 1 of every 5

tasks/workers is left unassigned. Although this decreases as the

eligible worker/task set sizes increase, it should be noted that

in practice there could only be a limited number of eligible

workers for each task and vice versa.

III. TASK ASSIGNMENT WITH JOINT OPTIMIZATION

In this section, we first model the problem using Integer

Linear Programming (ILP) to find the optimal solution for a

given task and worker list with their restrictions and eligibility.

Then, we propose a heuristic based cost efficient solution.

A. ILP Design

Our goal is to assign as many workers and tasks as possible

with the minimum number of unhappy pairs, which can be

formally defined as follows:

max
∑

∀i,j

(

mnXij − Uij
)

(3)

with the constraints:
∑

∀i

Xij ≤ 1 ∀j

∑

∀j

Xij ≤ 1 ∀i

Xij ≤ eij ∀i, j

where,

eij =

{

1, if wi is eligible to perform tj

0, otherwise

Xij =

{

1, if wi is assigned to tj

0, otherwise

Uij =

{

1, if (wi, tj) is an unhappy pair

0, otherwise

Note that the number of unhappy pairs (which we also call

as unhappiness index (UI)) can be at most mn. Incrementing

the number of assigned pairs will increase the objective func-

tion value in (3) more than removing all unhappy pairs. Thus,

it first tries to reach an assignment with maximum system

utility (defined as the number of assigned worker and task

pairs), then reduces unhappiness index as much as possible.

B. Heuristic based Approach

As the ILP solution is costly, we propose a two stage

heuristic based algorithm that runs in polynomial time. We

first aim to obtain an assignment based on the preferences of

both task requesters and workers so that every user is happy

(i.e., unhappiness index zero). Then, we update it iteratively to

obtain the assignment with maximum system utility. Note that

this can increase unhappiness index but we aim to minimize

it as much as possible.

The iterative process goes through finding special paths

between workers and tasks at every step that will increase

the number of assigned pairs with respect to the current

assignment. We simply call these paths as beneficial paths.

Given a matching M defined on a bipartite graph G, a path

p = {p1, p2, . . . p2j+2} is considered a beneficial path if its

both endpoints are not matched with any node in M, and its

edges alternate between the edges in M and the other edges

not included M. More formally,

M(p1) = ∅,M(p2j+2) = ∅

M(p2i) = p2i+1, and (p2i, p2i+1) ∈M ∀i ∈ [1, j]

M(p2i−1) 6= p2i, but (p2i−1, p2i) ∈ G.E \M ∀i ∈ [1, j]

Algorithm 1: Heuristic Approach (W , T)

Input: W: The set of workers

T : The set of tasks

1 M← Find a stable matching via Gale-Shapley algorithm

between W and T .

2 while true do

3 set all t ∈ T as unvisited

4 foreach unmatched w ∈ W do

5 p = {w}
6 p← FindBeneficialPath(p)

7 if p.isBeneficialPath then

8 break

9 end

10 end

11 if a beneficial path p = {p1, p2, .., p2j+2} is found

then

12 for i← 1 to j + 1 do

13 M(p2i−1) ← p2i
14 M(p2i) ← p2i−1

15 end

16 else

17 break

18 end

19 end

20 return M

By definition, note that there cannot be a beneficial path of

even length, and for a path p = {p1, p2} of length 1 to be

beneficial, both p1 and p2 should be unmatched in M.

The proposed algorithm is given in Algorithm 1. We first

find a stable matching M between the given workers and

tasks using deferred acceptance mechanism in Gale-Shapley

algorithm [14]. Then, in each iteration of the while loop in

line 2, we try to find a beneficial path p inM. If we find one,

we update M as follows

M← (M\ E(p)) ∪ (E(p) \M),

where E(p) is the set of edges in p. Note that in a beneficial

path p of length 2j+1 (with 2j+2 nodes), there are j edges

that are inM, and j+1 edges that are not. Thus, replacing the

former j edges in M with the latter j+1 edges will increase

the system utility by 1, which is performed between lines 12-

15. However, if we cannot find a beneficial path, it means M
has reached the maximum possible assignment [15] and will

be returned as the final matching.

The procedure of finding a beneficial path is shown in

Algorithm 2. Starting from each worker w not matched

currently in M, we attempt to find a beneficial path (lines

4-10 in Algorithm 1). If w can be matched directly with

an unmatched task in E(w), a beneficial path of length 1 is

obtained immediately (lines 2-8 in Algorithm 2). Otherwise,

the tasks that are currently matched in M are processed in

their preference order. For each such task, a new potential path

Algorithm 2: FindBeneficialPath(p)

Input: p: Current path

1 w ← p.last() ; ⊲ last node on current path

2 foreach t ∈ E(w) do

3 if M(t) = ∅ then

4 p← p ∪ {t}
5 p.isBeneficialPath ← true

6 return p

7 end

8 end

9 foreach t ∈ E(w) in the preference order do

10 if t is unvisited then

11 set t as visited

12 p′ ← FindBeneficialPath(p ∪ {t,M(t)})
13 if p′.FindBeneficialPath then

14 return p′

15 end

16 end

17 end

1 a

2

4

3

5

b

c

d

e

1 a

2

4

3

5

b

c

d

e

Workers

(b)

{a,d,c}

{c,e,b,a}

{d,a,b,c}

{e,a,c}

{c,a,e,b}

{1,5,3,2,4}

{2,3,5}

{2,5,3,1,4}

{3,1}

(2,5,4}

Tasks Workers Tasks

(a)Preference

orders

(c)

Workers Tasks

1 a

2

4

3

5

b

c

d

e

Fig. 3. Dashed lines show eligibility (in a and b) and unhappy pairs (in c),
while solid lines show the actual assignment. Beneficial path examples on the
current assignment, M, between 4 and b: (a) 4 → e → 5 → b with length
3; (b) 4 → c → 2 → e → 5 → a → 1 → d → 3 → b with length 9.

is created by extending the current path with this task and its

matched partner, and the same process is repeated recursively

(lines 9-17 in Algorithm 2).

We run Algorithm 1 on a toy example given in Fig. 3. We

first obtain the stable matching given in Fig. 3a. Then, we

look for a beneficial path in this matching. The process in

Algorithm 2 finds the beneficial path 4 → e → 5 → b (of

length 3). Executing the lines 12-15 in Algorithm 1 will result

in the optimal solution (with unhappiness index 1 caused by

(5,e)) shown in Fig. 3c. Since this matching is maximum,

Algorithm 1 will return it as the final matching. However,

note that there can be multiple beneficial paths in the initial

stable matching, as illustrated in Fig. 3, and any of them might

be returned first based on the implementation. For example,

assume this time that we find the beneficial path 4→ c→ 2→
e → 5 → a → 1 → d → 3 → b. It gives us an assignment

with unhappiness index 4 and hence is not an optimal solution.

In our implementation, we visit the neighbors greedily in their

preference orders to find a beneficial path with the expectation

that it will generate smaller unhappiness index.

Average number of eligible workers

0 10 20 30 40 50

U
n

h
a

p
p

in
e

s
s
 i
n

d
e

x

0

100

200

300

400

500

600

700

800

ILP
Heuristic
Max System Utility

0 10 20 30 40 50
0

10

20

30

40

50

Average number of eligible workers

0 10 20 30 40 50

U
n

h
a

p
p

in
e

s
s
 i
n

d
e

x

0

100

200

300

400

500

600

700

800

ILP
Heuristic
Max System Utility

0 10 20 30 40 50
0

5

10

15

20

25

Fig. 4. Reduction in number of unhappiness index in location-dependent
(upper) and location-independent (lower) settings, respectively.

As for the complexity of Algorithm 1, the Gale-Shapley

algorithm takesO(N2), where N = max{m,n}. There can be

at mostO(N) cardinality difference between a stable matching

and a maximum matching in a bipartite graph. Since finding a

beneficial path, as well as updating the matching accordingly,

has O(N2) complexity (as we need to visit every edge once at

most), the total running time of Algorithm 1 becomes O(N3).

IV. SIMULATION RESULTS

A. Settings

In this section, we evaluate the performance of the proposed

algorithm. For main simulations, we use 50 workers and 50

tasks as the largest unhappiness index in maximum system

utility based assignment happens when W/T =1. Thus, the

reduction of it is much important and harder when the set

sizes are equal. But we also provide results with differentW/T
ratios and up to 1000 workers/tasks.

We study two different cases, where the eligibility is defined

based on geographical restrictions (i.e., location dependent)

and it is defined based on location-independent characteristics

of workers. For the former, we assign location distances ri
that defines the serving region of each worker wi and find the

eligibility accordingly. In the latter, we use random eligibility

and preferences, as described in Section II.

B. Results

We first look at the effectiveness of the heuristic based

approach by comparing it with ILP results in terms of unhappi-

ness index (as their system utility is always the same). Fig. 4a-

Average number of eligible workers

0 10 20 30 40 50

A
d
d
it
io

n
a
l
u
n
h
a
p
p
in

e
s
s
 i
n
d
e
x
 o

v
e
r

IL
P

0

5

10

15

20

25

30

35

|W | = 50, |T | = 50

|W | = 40, |T | = 60

|W | = 30, |T | = 70

|W | = 20, |T | = 80

|W | = 10, |T | = 90

Fig. 5. Additional unhappiness index produced over ILP results with different
ratios of worker counts and task counts.

TABLE I
RUNNING TIME COMPARISON.

Eligible worker count ILP Heuristic

10 44 s 0.24 s

20 5.25 min 0.43 s

50 60 min 1.05s

b show the results in location-dependent and random settings,

respectively. First of all, note that as expected, the unhappiness

index in the initial maximum system utility based assignment

grows linearly with increasing number of average eligible

workers for the tasks. The heuristic algorithm can decrease

unhappiness index remarkably while achieving maximum sys-

tem utility and gives very close results to ILP in general. On

the other hand, it behaves differently when the eligible workers

are determined based on location restrictions or not. In location

independent case, it can find very close results to ILP while

the gap with ILP is higher in the location dependent case. Note

that it is still very small compared to the unhappiness index

in the initial assignment. Another point is with larger eligible

worker counts, it always finds the assignment where everybody

is happy and the maximum system utility is obtained. The

maximum gap between the heuristic based algorithm and the

ILP results occurs with around 10-20 eligible workers and gets

smaller as the eligible worker count increases or decreases.

In Table I, we compare the running time of the heuristic

based algorithm in location dependent setting (the results are

similar in location independent case). As expected, ILP has an

excessively long running time, which makes it impractical to

try to find the optimal solution for applications that demand

timely response. In contrary, the proposed algorithm runs very

fast while providing very close results to the ILP.

In Fig. 5, we analyze the performance of the proposed

algorithm when there are unequal number of workers and tasks

in the system. Specifically, we calculate the difference of the

unhappiness index between the ILP and heuristic algorithm

results. We observe that the difference gets smaller as the ratio

between the number of workers and tasks fades away from 1.

The heuristic based algorithm can achieve better results in such

cases as well. This is because when the number of workers and

Average number of eligible workers

10
0

10
1

10
2

10
3

U
n

h
a

p
p

in
e

s
s
 i
n

d
e

x

0

100

200

300

400

500

600

700

|W | = |T | = 32

|W | = |T | = 64

|W | = |T | = 128

|W | = |T | = 256

|W | = |T | = 512

|W | = |T | = 1024

Fig. 6. The unhappiness index obtained with the heuristic based algorithm
for different number of workers and tasks (in location-independent setting).

Average number of eligible workers

10
0

10
1

10
2

10
3

%
 o

f
re

m
a

in
in

g
 u

n
h

a
p

p
in

e
s
s
 i
n

d
e

x

0

10

20

30

40

50

60

70

|W | = |T | = 32

|W | = |T | = 64

|W | = |T | = 128

|W | = |T | = 256

|W | = |T | = 512

|W | = |T | = 1024

Fig. 7. The percentage of the unhappiness index in the heuristic based
algorithm to the unhappiness index in the maximum system utility based
assignment for different number of workers and tasks.

tasks are not equal, the unhappiness index is determined by

the smaller set size, thus there will be a smaller unhappiness

index in the maximum system utility based task assignment.

Finally, we look at the scalability results in location-

independent case (location-dependent case provides similar

outcomes). Fig. 6 shows the unhappiness index in the heuristic

based algorithm results with different worker and task counts.

The results show that the unhappiness index is more with more

workers and tasks, as expected, but the peak is always obtained

when the average number of eligible workers are around 4-5.

Moreover, as shown in Fig. 7 when we calculate the ratio

of this unhappiness index to the unhappiness index in the

maximum system utility based task assignment, we obtain a

similar percentage regardless of the number of workers and

tasks. Thus, the performance scales well in percentage. It

is also worth noting that as the average number of eligible

workers increases, we achieve a better performance.

V. CONCLUSION

In this paper, we study the problem of joint optimization of

system and user oriented task assignment process in mobile

crowdsensing (MCS) systems. We show that it may not be

possible to achieve a task assignment with maximum system

utility and all happy users. To this end, we introduce a

new metric called unhappiness index to define the level of

unhappiness of users and aim a joint optimization that achieves

the maximum system utility with minimum unhappiness index.

We provide both ILP and a heuristic based fast algorithm,

and show that the heuristic based algorithm can achieve close

to optimal results. In our future work, we will develop other

heuristic based approaches and perform extensive simulations

with different system utility definitions.

ACKNOWLEDGEMENT

This material is based upon work supported by the U.S. Na-

tional Science Foundation (NSF) under Grant CNS1647217.

REFERENCES

[1] R. K. Ganti, F. Ye, and H. Lei, “Mobile crowdsensing: current state and
future challenges,” IEEE Communications Magazine, vol. 49, no. 11,
pp. 32–39, 2011.

[2] S. Hu, L. Su, H. Liu, H. Wang, and T. F. Abdelzaher, “Smartroad:
Smartphone-based crowd sensing for traffic regulator detection and
identification,” ACM Transactions on Sensor Networks (TOSN), vol. 11,
no. 4, p. 55, 2015.

[3] M. Elhamshary, M. Youssef, A. Uchiyama, H. Yamaguchi, and T. Hi-
gashino, “Transitlabel: A crowd-sensing system for automatic labeling
of transit stations semantics,” in Proceedings of the 14th Annual In-

ternational Conference on Mobile Systems, Applications, and Services.
ACM, 2016, pp. 193–206.

[4] Y. Cheng, X. Li, Z. Li, S. Jiang, Y. Li, J. Jia, and X. Jiang, “Aircloud: a
cloud-based air-quality monitoring system for everyone,” in Proceedings

of the 12th ACM Conference on Embedded Network Sensor Systems.
ACM, 2014, pp. 251–265.

[5] C. Fiandrino, B. Kantarci, F. Anjomshoa, D. Kliazovich, P. Bouvry, and
J. Matthews, “Sociability-driven user recruitment in mobile crowdsens-
ing internet of things platforms,” in 2016 IEEE Global Communications

Conference (GLOBECOM). IEEE, 2016, pp. 1–6.

[6] L. Wang, D. Yang, X. Han, T. Wang, D. Zhang, and X. Ma, “Loca-
tion privacy-preserving task allocation for mobile crowdsensing with
differential geo-obfuscation,” in Proceedings of the 26th International

Conference on World Wide Web. International World Wide Web
Conferences Steering Committee, 2017, pp. 627–636.

[7] J. Li, Z. Cai, J. Wang, M. Han, and Y. Li, “Truthful incentive
mechanisms for geographical position conflicting mobile crowdsensing
systems,” IEEE Transactions on Computational Social Systems, vol. 5,
no. 2, pp. 324–334, 2018.

[8] X. Wang, R. Jia, X. Tian, and X. Gan, “Dynamic task assignment in
crowdsensing with location awareness and location diversity,” in Proc.

of IEEE INFOCOM, 2018, pp. 2420–2428.

[9] T. Hu, M. Xiao, C. Hu, G. Gao, and B. Wang, “A qos-sensitive task
assignment algorithm for mobile crowdsensing,” Pervasive and Mobile

Computing, vol. 41, pp. 333–342, 2017.

[10] W. Li, L. Wang, Y. Gu, R. Li, M. Song, and Z. Han, “Stable multiple
activity matching based content sharing for mobile crowd sensing,” in
IEEE International Conference on Comm. (ICC), 2018, pp. 1–6.

[11] Y. Chen and X. Yin, “Stable job assignment for crowdsourcing,” in
GLOBECOM 2017-2017 IEEE Global Communications Conference.
IEEE, 2017, pp. 1–6.

[12] P. Biró, D. Manlove, and S. Mittal, “Size versus stability in the marriage
problem,” Theor. Comput. Sci., vol. 411, no. 16-18, pp. 1828–1841,
2010. [Online]. Available: https://doi.org/10.1016/j.tcs.2010.02.003

[13] H. W. Kuhn, “The hungarian method for the assignment problem,”
in 50 Years of Integer Programming 1958-2008 - From the Early

Years to the State-of-the-Art, 2010, pp. 29–47. [Online]. Available:
https://doi.org/10.1007/978-3-540-68279-0\ 2

[14] D. Gale and L. Shapley, “College admissions and stability of marriage.
american mathematicas monthly, 69, 9-15,” 1962.

[15] R. L. R. Thomas H. Cormen, Charles E. Leiserson and C. Stein,
“Introduction to algorithms, third edition.” MIT Press, 2009.

