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Mobile crowdsensing (MCS) is an emerging form of crowdsourcing, which fa-

cilitates the sensing data collection with the help of mobile participants (workers).

A central problem in MCS is the assignment of sensing tasks to workers. Existing

work in the field mostly seek a system-level optimization of task assignments (e.g.,

maximize the number of completed tasks, minimize the total distance traveled by

workers) without considering individual preferences of task requesters and workers.

However, users may be reluctant to participate in MCS campaigns that disregard

their preferences. In this dissertation, we argue that user preferences should be a

primary concern in the task assignment process for an MCS campaign to be effective,

and we develop preference-aware task assignment (PTA) mechanisms for five different

MCS settings. We first look at the PTA problem in a setting, where the objective

of task requesters is to maximize their additive utility functions based on worker

qualities by recruiting multiple high-quality workers within their budgets, and that

of workers is to maximize their profits. Following that, we consider a more general
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model that allows for non-additive, coverage-based utility functions to describe task

requester preferences. We then study the PTA problem in a setting with uncertain

and uncontrollable worker trajectories, where the assignments have to be made in

an online manner based on the visits of workers to task regions unfolding in real

time. Next, we consider a semi-controlled mobility setting, where workers are asked

to provide multiple paths they find acceptable between their starting locations and

destinations. Finally, we investigate the problem of finding a maximum size task as-

signment that satisfies user preferences as much as possible. Since the PTA problem

is computationally hard in most of these settings, we present efficient approximation

and heuristic algorithms. Extensive simulations performed on synthetic and real data

sets validate our theoretical results, and demonstrate that the proposed algorithms

produce near-optimal solutions in terms of preference-awareness, outperforming the

state-of-the-art assignment algorithms by a wide margin in most cases.
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CHAPTER 1

INTRODUCTION

Mobile crowdsensing (MCS) is an emerging form of crowdsourcing that aims to ac-

complish spatiotemporal sensing tasks with the help of mobile participants (workers).

It connects the entities that need to collect a certain type of sensing data from a

set of regions of interest with the individuals who are willing to perform the desired

sensing tasks for them in return for monetary rewards or voluntarily to support the

cause of the sensing campaign (e.g., environmental protection [1]). Notable recent

applications of MCS can be found in various fields such as urban planning [2], public

safety [3], and indoor localization [4]. A recent study [5] also discusses the timely

applications of MCS in Spain to address the COVID-19 outbreak. Typical sensing

tasks in MCS include recording noise pollution for a urban planning system [2] and

taking pictures of buildings for a place naming system [6].

According to the involvement level of workers, MCS applications can be classi-

fied into two types [7]: participatory and opportunistic. In the former, workers are

expected to travel to the regions of the assigned sensing tasks by interrupting their

own schedules for a period of time, while in the latter they are asked to perform a

sensing task if they are already in or close to the task region. Thus, participatory

MCS campaigns usually have shorter task completion times as workers are immedi-

ately dispatched to the task regions. However, they require workers to devote their

resources and time to carry out the assigned tasks, which introduces significant extra

costs for workers who then need to be compensated for these costs by task requesters.

Opportunistic MCS campaigns, on the other hand, only deal with the costs of
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sensing and delivery of the sensed data, which tend to be much smaller compared

to the time and travel costs incurred in participatory MCS campaigns. However,

for opportunistic MCS campaigns to function effectively, the assignment of sensing

tasks to workers should be made very efficiently especially under capacity or budget

constraints [8], because the assignment opportunities hinge upon the presence of

workers in the task regions, and they emerge and vanish as workers move.

Accordingly, a pivotal problem in both participatory and opportunistic MCS

campaigns is the assignment of sensing tasks to workers. In fact, the utility of an

MCS system is generally quantified by the quality of the assignments made by the

adopted task assignment algorithm. However, the quality of assignments has been

measured differently in the literature. For example, some studies [36, 11] favor the

assignments that minimize the travel distance of workers, while others [39, 12] prefer

those that maximize the total quality of service (QoS) received by task requesters.

Despite the variety of existing task assignment algorithms [40], the ultimate goal of

the assignment is mostly defined as the maximization of a system utility without

considering the individual user needs and preferences. However, such solutions may

result in dissatisfied users and impair their future participation, as users in practice

may not want to sacrifice their individual convenience for the system utility.

Preference-awareness has been extensively studied in general bipartite matching

problems especially in the economics literature [41] under the name of stable match-

ing problem. However, these studies do not tackle the issues peculiar to MCS such

as budget constraints of task requesters, uncertain matching opportunities due to

unknown worker trajectories, and time constraints of tasks. In this dissertation, we

study the preference-aware (or stable) task assignment problem in MCS in a variety of

settings. Below, we first discuss the benefits of considering the concept of preference-

awareness (or stability) in the task assignment process of an MCS campaign, and
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then summarize our contributions.

Stability is an important concept in matching problems with selfish and rational

individuals. In broad terms, it defines the satisfaction of users with their assignments.

A stable matching promotes long-term user participation by making certain that users

are not upset by being forced into less favorable assignments whilst there are better

options available. Thus, considering stability in the matching process is not only

beneficial for task requesters and workers, but also for the platform.

The goal with the stability is to ensure that no user u (i.e., a worker or a re-

quester) can lay claim to have deserved a better assignment. That is, all the possible

assignments that user u prefers1 more than his/her current assignment in the stable

matching are matched with someone they prefer to user u; thus, they would not like

to break up with their current assignments to get matched with user u. This ensures

that workers will be satisfied with their assignments and will be motivated to carry

out their tasks, which will in turn improve their performance [43] and the quality of

results. Moreover, this also ensures that task requesters will obtain the most benefit

while respecting the workers’ preferences.

A stable matching solution based on individual user preferences also allows incor-

porating various metrics that are appraised uniquely by each user. For example, the

priority of a worker might be the proximity to the task location, so he would form his

preference list in a way that the closer tasks precede the others. On the other hand,

another worker who does not mind traveling long distances can form his preference

list solely based on the rewards he will be paid. Moreover, they can even reflect their

own personal interests in their preference lists such as location of tasks being close to

1When we use the active voice for a task (e.g., prefers, pays a reward), we mean
the person/entity that corresponds to it, i.e., the task requester/owner. Also, we use
male and female subject pronouns for workers and tasks respectively as a reference
to the original stable marriage problem [42].
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their home or work, and pleasure of performing the tasks (e.g., preference for taking

pictures of a scene of interest over recording noise pollution).

Despite these benefits attached to stability, user preferences have been mostly

ignored in the existing literature on the task assignment problem in MCS. In this

dissertation, we study the preference-aware task assignment problem in various types

of MCS systems, define the stability conditions peculiar to MCS systems, develop

efficient task assignment algorithms, and conduct extensive experiments using real

and synthetic data sets to show their performances in comparison with the benchmark

task assignment algorithms. Our major contributions are as follows:

• In Chapter 3, we study the many-to-one stable task assignment problem in a

system model where task requesters aim to maximize the quality of sensing (or

service) they get by hiring multiple high-quality workers within their budget.

We prove that a stable matching may not exist in some MCS instances in this

model, and that it is NP-hard to find a stable matching (if exists). We propose

two different pseudo-polynomial time approximation algorithms, which produce

2-approximate and pairwise (i.e., a relaxed stability requirement) stable task as-

signments under certain assumptions about worker qualities and task rewards.

We also develop a pseudo-polynomial time heuristic algorithm that guarantees

the perfect happiness of at least one task requester. Through extensive sim-

ulations, we show that the proposed algorithms significantly outperform the

benchmark stable matching algorithms.

Related publication [44]: Fatih Yucel, Murat Yuksel, and Eyuphan Bulut.“QoS-

based budget constrained stable task assignment in mobile crowdsensing.” IEEE

Transactions on Mobile Computing (2020).

• In Chapter 4, we investigate the problem of finding a stable matching between
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workers that perform assigned tasks only in an opportunistic manner and com-

plex sensing tasks with coverage requirements. In presence of coverage require-

ments, the utility of workers for sensing tasks become non-additive (different

from the problem studied in Chapter 3, which deals with additive utility func-

tions based on worker qualities) due to overlaps in the regions covered by work-

ers. We begin by showing that the nonexistence and hardness results mentioned

above hold for this problem as well. We then present a polynomial-time task

assignment algorithm, and derive its (non-constant) approximation ratio. How-

ever, we prove that a variant of this algorithm has a constant approximation

ratio under the assumption that task rewards are proportional to coverage-based

utilities of workers. In simulations, we compare the performance of our algo-

rithms with the state-of-the-art task assignment algorithms that also consider

coverage requirements of task requesters, and show that our algorithms not

only make users happier with their assignments, but also achieve better system

utility scores in most of the scenarios examined.

Related publication [45]: Fatih Yucel, Murat Yuksel, and Eyuphan Bulut. “Cov-

erage-aware stable task assignment in opportunistic mobile crowdsensing.” IEEE

Transactions on Vehicular Technology (2021).

• In Chapter 5, we study the problem in an online setting, where workers per-

form sensing tasks only opportunistically, but their trajectories are uncertain

or unknown to the matching platform in advance. This introduces novel issues

such as uncertain matching opportunities between worker-task pairs, and makes

the existing stability conditions invalid. Thus, we first describe how to measure

stability in this online setting, and then present a method to compute the av-

erage utility of users in all possible (exponentially many) stable matchings in
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a given matching instance in polynomial-time, which enables us to make opti-

mal decisions in the online setting. We propose efficient online task assignment

algorithms for MCS systems with and without capacity constraints, and prove

their optimality. Extensive simulations performed on both synthetic and real

data sets validate our theoretical results, and demonstrate that the proposed

algorithms significantly outperform the existing solutions.

Related publication [46]: Fatih Yucel and Eyuphan Bulut. “Online stable task

assignment in opportunistic mobile crowdsensing with uncertain trajectories.”

IEEE Internet of Things Journal (2021).

• In Chapter 6, we consider a semi-opportunistic sensing mode, where workers are

asked to provide the matching platform with multiple paths they find accept-

able between their starting locations and destinations in order to alleviate the

problem of poor coverage in opportunistic MCS without forcing them to take

potentially much costlier and hence undesirable paths as in participatory MCS.

We formally define the stability conditions for this three-dimensional task as-

signment problem (i.e., workers/paths/tasks), and propose two polynomial-time

task assignment algorithms: an exact algorithm for systems with uniform worker

qualities, and a c-approximate algorithm for general systems (i.e., with/without

uniform worker qualities), where c is the number of the acceptable paths of the

worker with the largest set of acceptable paths. We also provide an empirical

analysis of the proposed algorithms.

Related publication: Fatih Yucel and Eyuphan Bulut. “Three-dimensional sta-

ble task assignment in semi-opportunistic mobile crowdsensing.” (Submitted for

publication).

• In Chapter 7, we consider the happiness of the matching platform as well as the
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happiness of the workers and task requesters. We assume that the happiness

of the matching platform is proportional to the number of matched users, and

study the problem of finding maximum size task assignments with as few un-

happy worker-task pairs as possible, which turns out to be NP-hard. We first

present an Integer Linear Programming model to solve the problem optimally.

Then, we propose two novel methods to adjust the number of matched users and

happiness of users in a given task assignment by re-matching a carefully-selected

user set. Based on these methods, we develop two polynomial-time heuristic

algorithms, and show via extensive simulations that they produce near-optimal

task assignments.

Related publication [47]: Fatih Yucel and Eyuphan Bulut. “User satisfaction

aware maximum utility task assignment in mobile crowdsensing.” Computer

Networks 172 (2020): 107156.

Next, we present a summary of the related work in Chapter 2. In the following

five chapters, we study the stable task assignment problem in different settings as

outlined above. Finally, we provide our concluding remarks in Chapter 8.
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CHAPTER 2

LITERATURE REVIEW

In this chapter, we review the recent studies on mobile crowdsensing and matching

under preferences. A comprehensive survey on mobile crowdsensing and a summary

of various matching problems with user preferences can be found in [48] and [49],

respectively.

2.1 Mobile Crowdsensing

Mobile crowdsensing has attracted a lot of attention recently, and a number of

studies have explored the issues that need to be addressed to realize its true potential.

One of the key problems investigated in these studies is the task assignment (or

worker recruitment) problem since the overall performance of an MCS system and

the satisfaction of its users are highly dependent on the efficiency of the assignments.

These studies have considered various objectives in the task assignment process such

as maximizing the number of completed tasks [25], minimizing the completion times

of tasks [13], minimizing the incentives provided to the users [14, 15, 29], assuring

the task or sensing quality [12] under some constraints on traveling distance [11],

energy consumption [39], and expenses of task requesters [26]. Beyond these works,

the issues of security [16], privacy [17, 18], and truthfulness [22, 19] have also been

considered in the worker recruitment process.

In participatory MCS, since workers need to travel between the task regions to

perform the assigned tasks, a key factor that shapes the task assignment process is the

travel costs of the workers. In [27], the authors investigate the problem of minimizing
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the total travel costs of the workers while maximizing the number of completed tasks

and keeping the rewards to be paid to the workers as low as possible. In [11], the

authors study the task assignment problem in an online setting, and aim to maximize

the total task quality while ensuring that the travel costs of the workers do not

exceed their individual travel budgets. In [20], the authors adopt a system model in

which each worker has a maximum travelling distance that needs to be considered in

the assignment process, and the objective is to maximize the profit of the platform.

The authors propose a deep reinforcement learning-based scheme that significantly

outperforms the other heuristic algorithms. In [21], the goal is also to minimize the

travel distance of workers, however, differently from the aforementioned studies, the

authors consider the issue of user privacy, and present a mechanism that finds the

task assignments without exposing any private information about workers or task

requesters. Lastly, in [28], the authors study the destination-aware task assignment

problem in participatory crowdsourcing systems. The unique aspect of this problem

is the constraint that each worker should be able to arrive at his destination by the

deadline he specifies, thus he cannot be assigned to too many tasks or tasks that are

far away from his destination.

On the other hand, in opportunistic MCS, the main objectives are to maximize

the coverage and to minimize the completion times of the tasks due to the uncontrolled

mobility (i.e., a task can only be performed if its region resides on the trajectory of a

worker). In [8], the authors study the maximum coverage task assignment problem in

opportunistic MCS with worker trajectories that are known beforehand. It is assumed

that each task needs to be performed at a certain point of interest and has a weight

that indicates how important its completion is to the platform, which has a fixed

budget and can hence recruit only so many workers. The objective of the platform

is to select a set of workers within the budget constraints, which maximizes the
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weighted coverage over the set of tasks according to the given trajectories of workers.

The authors develop a (1 − 1/e)-approximate algorithm with a time complexity of

O(n5), where n is the number of workers in the system. [9] studies the same problem,

and proposes a greedy algorithm that, despite not having a theoretical guarantee,

outperforms the algorithm proposed in [8] in terms of achieved coverage in certain

settings, and runs in O(n2) time.

The problem studied in [10] differs from those in [8] and [9] as it also considers

the delivery of the sensed data in an opportunistic manner. That is, after carrying

out a task, a worker should either deliver the sensed data to the server through one of

the collection points (i.e., WiFi APs) on his trajectory, or transmit it to another user

who will deliver it for him. Thus, here, not only does the platform need to estimate

whether and when workers would visit task regions and collection points, but it is

also crucial to obtain and utilize the encounter frequencies of workers to improve the

delivery probability of the sensed data. The authors present different approximation

algorithms for the systems with deterministic and uncertain worker trajectories, and

evaluate their performance on real data sets. The data delivery aspect of the problem

in [10] has also been studied in [23] and [24]. They both utilize Nash Bargaining

Theory to decide on whether or not selfish data collectors and mobile (relay) users

who only take part in delivery of sensed data would like to cooperate with each other

according to their utility in either scenario. However, in [24], the authors consider a

more complete mobile social network model and present an enhanced data collection

mechanism.

In [31], the problem of maximizing spatio-temporal coverage in vehicular mo-

bile crowdsensing with uncertain but predictable vehicle (i.e., worker) trajectories is

investigated. The authors first prove that the problem is NP-hard when there is a

budget constraint, and then propose a greedy approximation algorithm and a genetic
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algorithm. In [30], the authors also assume predictable worker trajectories. However,

they focus on the task assignment problem in a mobile social network where task

assignments and delivery of sensed data are realized in an online manner when task

requesters and workers encounter with each other. They aim to minimize the task

completion times, and propose different approximation algorithms to optimize both

worst-case and average-case performance. For predictions of worker trajectories, [31]

uses spatio-temporal trajectory matrices, while [30] assumes that user inter-meeting

times follow an exponential distribution, which is used widely in mobile social net-

works [50, 51, 52] literature.

There are a few recent studies [37, 38] that look at the task assignment problem in

a hybrid system model to integrate the advantages of participatory and opportunis-

tic MCS. In [37], the authors propose a two-phased task allocation process, where

opportunistic task assignment is followed by participatory task assignment. The ob-

jective behind this design is to maximize the number of tasks that are performed in

an opportunistic manner, which is much less costly compared to participatory MCS,

and then to ensure that the tasks that cannot be completed by opportunistic workers

are assigned to workers that are willing to perform tasks in a participatory manner

to alleviate the coverage problem in opportunistic MCS. On the other hand, in [38],

the workers carry out the sensing tasks only in opportunistic mode, but they provide

the matching platform with multiple paths that they would take if requested, instead

of a single path as in classic opportunistic MCS. This enables the platform to find a

matching with a high task coverage.

2.2 Matching under Preferences

Stable Matching (SM) problem is introduced in the seminal paper of Gale and

Shapley [42] and can simply be defined as the problem of finding a matching between
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two groups of objects such that no pair of objects favor each other over their partners

in the matching. Gale and Shapley have also introduced what is called the deferred ac-

ceptance procedure that finds stable matchings in both one-to-one matching scenarios

(i.e., stable marriages) and many-to-one matching scenarios with capacity constraints

(i.e., stable college admissions) in O(mn) time, where m and n are the size of the

sets being matched (e.g., men/women, colleges/students, workers/tasks). Since its

introduction in [42], the concept of stability has been utilized in different problems

including hospital resident assignment [53], resource allocation in device-to-device

communications [54], SDN controller assignment in data center networks [55], and

supplier and demander matching in electric vehicle charging [56].

Since there can be multiple stable matchings in a matching instance, finding

the best SM in terms of another performance metric has received a lot of attention.

First, [57] proves that the set of matched nodes is identical in all stable matchings,

therefore all stable matchings are of the same size. [58] studies the problem of finding

sex-equal stable matchings where the difference between the quality of the matching

for two sides (e.g., men/women) of the matching is minimum. The authors prove that

the problem is NP-hard and propose a polynomial time approximation algorithm.

[59] focuses on the maximum weighted stable matching problem, which turns out to

be solvable in O(N4 logN) time (N = max{m,n}) and remains as one of the few

significant optimal stable matching problems that are solvable in polynomial time.

Note that an explicit method to solve these problems and all optimal stable matching

problems is simply to enumerate all stable matchings and find the best according

to the utility metric considered. In fact, [60] proposes an algorithm that iterates all

stable matchings in a matching instance of size N in O(N2 +N |S|) time, where S is

the set of all stable matchings in the instance. However, since the number of stable

matchings (|S|) can be massive even for small problem sizes (e.g., the maximum
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number of stable matching for a matching instance of size N = 32 is larger than

1011) and grows exponentially with increasing problem size [61], this method (i.e.,

enumerating stable matchings to find the optimal one) would be a feasible solution

only in a very limited set of scenarios.

In a given matching instance with preferences, the number of the matched users

in a stable matching may be significantly less than that in a maximum size matching

if the preferences of some users are incomplete (i.e., they prefer being unmatched

to being matched with some users on the other side). When this is the case, it

may be desirable to find a maximum size matching that satisfies users based on

their preferences as much as possible. This issue is firstly addressed in [62] from

a theoretical perspective, and it has been shown that given a matching instance

with incomplete preference lists, the problem of finding a matching of maximum size

with as few blocking/unhappy pairs as possible is NP-hard and is not approximable

within a constant factor. In other words, there cannot exist a polynomial time c-

approximation algorithm that would produce matchings with at most c× β unhappy

pairs unless P=NP, where c is a constant (≥ 1) and β is the number of blocking pairs

in the optimal matching. In the SM literature, the idea of relaxing the stability in

order to achieve a better matching in terms of another utility has also been studied

under the concept of almost stable matchings, but these studies [63, 64] have mostly

focused on reducing the running time by sacrificing from the stability, for which they

propose truncated versions of the deferred acceptance procedure.

Some matching problems allow or require nodes in one or both sides to be

matched with multiple nodes (i.e., many-to-one and many-to-many matching prob-

lems). A few studies investigate the issue of stability in such matching problems. For

instance, [65] and [66] study the many-to-one stable matching of students-colleges

and doctors-hospitals, respectively. In [65], all colleges define a utility and a wage
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value for students, and aim to hire the best set of students (i.e., with the highest

total utility) within their budget constraints. Each student also forms a preference

list over colleges. The authors prove that there may not exist a stable matching in

this setting and even checking the existence is NP-hard. However, they provide a

polynomial time algorithm that finds pairwise stable matchings in the so called typed

weighted model where students are categorized into groups (e.g., Master’s and PhD

students) and colleges are restricted to define a set of possible wages for each group

(i.e., they cannot define a particular wage for each student). [66] studies the same

problem and proposes two different fully polynomial-time approximation algorithms

with some performance guarantee in terms of coalitional stability for general and

proportional (i.e., the wage of doctors are proportional to their utility for hospitals)

settings. However, the study does not provide an experimental analysis of the algo-

rithms or discuss their actual/expected performance in these settings. Moreover, the

proposed solutions can only be applied to a limited set of scenarios.

There are some studies that look at the stable matching problem in settings

with incomplete information on user preferences or dynamic user arrivals/departures.

[67] and [68] both study the dynamic stable taxi dispatching problem considering

passenger and taxi preferences. However, the objective adopted in [68] is to find

locally optimal stable assignments for a given time-point, whereas that in [67] is to

minimize the number of unhappy taxi-passenger pairs globally. [69] investigates the

stable matching problem in the presence of uncertainty in user preferences. [70] looks

at the problem of minimizing the number of partner changes that need to be made in

a stable matching to maintain stability when preference profiles of some users change

in time. Lastly, [71] studies an interesting combination of famous stable marriage and

secretary (hiring) problems.

The concept of stability is studied in multi-dimensional matching problems as
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well. In [72], the authors introduce the three-dimensional stable matching problem.

In this problem, there are three sets of different types, each individual from a set

has a preference list over all pairs from the other two sets, and the goal is to form

stable/satisfactory families of three, where each individual in a family is a member

of a different set. Wu [73] investigates a different version of this problem, where

each individual has a one-dimensional preference list over the individuals from the

other two sets instead of over all pairs of individuals as in [72]. In [74], the authors

extend the stable roommates problem [75] to a three-dimensional setting, where a

set of individuals are assigned into groups of three instead of two based on their

preferences. Lastly, in [76], the authors study the problem of matching data sources,

servers, and users in a stable manner in video streaming services under restricted

preference settings.

In a typical MCS system, the objectives of workers and task requesters can be

defined as to maximize their profits and to have their tasks completed with the highest

quality possible, respectively. Thus, they are likely to have preferences over possible

assignments they can get, and the task assignment in MCS can be consequently

characterised as a matching problem under preferences. However, apart from the

work in this dissertation, there are only a few studies that consider user preferences

in mobile crowdsensing (or in mobile crowdsourcing). In [32], the authors study the

budget-constrained many-to-many stable task assignment problem, which they prove

to be NP-hard, and propose efficient approximation algorithms. In [33], the authors

study the same problem, but in a system model with capacity constraints. On the

other hand, [34] considers a many-to-one matching setting and introduce additional

constraints (e.g., minimum task quality requirements) that are taken into account in

the matching process, along with user preferences. Lastly, in [35], the authors consider

a budget-constrained MCS system where the quality of a worker is identical for all
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Chap. 6

Fig. 1. A summary of related work. If a study considers a quality-based additive util-

ity function, or adopts a system-level objective disregarding user preferences,

then it is, respectively, placed outside of the ‘Coverage-based utility function’

and ‘Preference-awareness’ boxes. If it assumes a participatory sensing mode

with controllable worker trajectories, then it is placed outside of both ‘Uncer-

tain worker trajectories’ and ‘Fixed worker trajectories’ boxes, which contain

the related work that assume an opportunistic sensing mode. [36], [37], [38],

and Chap. 6 are on the borders of these two boxes, as [36] studies the task

assignment problem in participatory and opportunistic (with uncertain worker

trajectories) MCS separately, [37] considers a hybrid model, where an oppor-

tunistic sensing process is followed by a participatory one to reduce costs, and

[38] and Chap. 6 assume a semi-opportunistic sensing mode with partly con-

trollable worker trajectories. Lastly, our work in Chapter 7, which considers

both overall system utility and user preferences in the task assignment process,

is accordingly on the border of the ‘Preference-awareness’ box.

tasks, and presents an exponential-time algorithm to find weakly-stable many-to-one

matchings. A summary of the related work discussed in this chapter is presented in

Fig. 1.
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CHAPTER 3

QOS-ORIENTED PREFERENCE-AWARE TASK ASSIGNMENT

WITH BUDGET CONSTRAINTS

3.1 Introduction

Most of the existing work in the MCS literature aim to maximize a predefined

system utility (e.g., quality of service or sensing) in the task assignment process,

however users (i.e., task requesters and workers) may value different parameters and

hence find an assignment unsatisfying if it is produced by disregarding these parame-

ters that define their preferences. While several studies utilize incentive mechanisms

to motivate user participation in different ways, they do not take individual user pref-

erences into account either. Besides, the existing approaches to find preference-aware

matchings between two groups of objects (e.g., men/women, students/colleges) do

not work in MCS systems that contain task requesters with budget constraints, and

that require many-to-one or many-to-many assignments between tasks and workers.

In this chapter, we focus on these issues, and study the problem of finding many-

to-one, preference-aware task assignments in MCS systems with task requesters that

aim to maximize the quality of sensing (QoS) they get by recruiting high-quality

workers within a given budget. We begin by defining the criteria for stability as

the existing ones are not applicable to our setting due to its unique requirements

(i.e., multiple assignments and budget constraints). We then provide a classification

of MCS systems based on their reward scheme and QoS setting, and present three

different algorithms that find optimal or near-optimal task assignments in terms of

stability in different types of MCS systems.
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Our key contributions in this chapter can be summarized as follows:

• We present QoS-based stability conditions under budget constraints in many-to-

one MCS systems, and discuss existence and hardness results for stable match-

ings in different types of MCS systems.

• We propose a polynomial time algorithm to find pairwise stable matchings in

MCS systems in which the preference profiles of tasks are identical (i.e., uniform

MCS system), which is a significant improvement from the exponential time

algorithm proposed in [35]. Also, our algorithm does not require the rewards

that workers will be paid to be proportional with the corresponding QoS they

provide (i.e., proportional MCS system), while [35] does.

• Despite the nonexistence results for pairwise stable matchings in general set-

tings, we prove that there always exists a pairwise stable matching in a pro-

portional MCS system by providing a pseudo-polynomial time algorithm that

always finds pairwise stable matchings in these systems. Furthermore, this al-

gorithm outperforms all the benchmark algorithms in terms of pairwise stability

regardless of the type of the MCS system.

• We propose a heuristic algorithm that also runs in pseudo-polynomial time and

produces considerably higher quality assignments in terms of overall stability

and user happiness compared to the benchmark algorithms especially in pro-

portional MCS systems.

• In addition to the theoretical analysis of the proposed algorithms, we provide ex-

tensive simulation results where we compare the performance of our algorithms

with three benchmark algorithms in different types of MCS systems.
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3.2 System Model

3.2.1 Assumptions

We assume a system model with a set of workersW = {w1, w2, . . . , wn} and a set

of sensing tasks T = {t1, t2, . . . , tm}. Let ct(w) denote the cost of performing task t

for worker w, which may be calculated by taking into account various factors such as

the time and cost required to travel to the task location and perform the task, energy

consumption on the worker’s device due to sensing, and privacy risks to the worker.

Also, let rt(w) denote the reward that worker w is offered to carry out task t. We

assume ct(w) and rt(w) to have a financial value so that rt(w) − ct(w) is simply the

profit worker w would make by performing task t. Additional cost functions can be

used to determine the eligibility of the workers for the tasks based on worker resources

and task requirements (e.g., to check whether a worker has sufficient residual battery

power in his sensing device to carry out a given task).

Since a rational worker will aim to maximize his profit and will not accept to

perform the tasks that cost higher than the corresponding rewards he will be paid,

we can define the preference list of worker w as

Pw = ti1 , ti2 , . . . , tik (3.1)

where Pw ⊆ T , ∀t ∈ Pw, rt(w) > ct(w), and ∀t′ = tij , t
′′ = tij+1

, rt′(w) − ct′(w) >

rt′′(w) − ct′′(w). We denote the jth task (tij) in Pw by Pw(j) and utilize t′ ≻w t′′

notation to express that t′ precedes t′′ in Pw. For each worker w, ≻w is a strict

relation, so even if two tasks provide the same gain to worker w, we assume that he

prefers one over another (i.e., no ties are allowed). Note that in our system model, we

only need the preference profiles of workers, so a worker can form his preference list

himself by estimating his profit from each task using the announced rewards for the
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tasks on the platform2 and then submit only the list to the platform. Alternatively,

he can submit an estimated cost value for each task to the platform, which can then

form his preference list based on this information.

On the other hand, a rational task requester will try to maximize the total

quality of service/sensing (QoS) she gets from the workers she hires within her budget

constraint. Let qt(w) denote the QoS that worker w can provide for task t, which may

be based on various factors such as the quality of the sensing device and the average

satisfaction of the task requesters that have hired worker w in the past. Also, let bt

denote the budget of task t. Then, we can define the preference list of task t as

Pt = S1, S2, . . . , Sk (3.2)

where ∀S ∈ Pt, S ⊆ W and
∑

w∈S rt(w) ≤ bt, and ∀Si, Si+1 ∈ Pt,
∑

w∈Si
qt(w) ≥∑

w∈Si+1
qt(w). Note that we allow ties in preference lists of tasks as it is very likely

for tasks to have multiple sets with an equal total quality value in their preference

list. Thus, a task is said to prefer a set S ′ of workers to another set S ′′ of workers

only if S ′ has a greater total quality value than S ′′. For ease of reading, we let

rt(S) =
∑

w∈S rt(w), qt(S) =
∑

w∈S qt(w) and use S ′ ≻t S ′′ notation to indicate

qt(S
′) > qt(S

′′).

Given a worker-task pair (w, t), we assume that ∄S ∈ Pt : w ∈ S if worker w finds

task t unacceptable (i.e., rt(w) <= ct(w)). Also, in MCS systems where the rewards

are determined by the server instead of the task requesters, we might have rt(w) > bt

for a worker-task pair (w, t). In this case, if t ∈ Pw, we remove task t from Pw as the

2Throughout this dissertation, we assume that workers and task requesters have
a perfect communication medium through a central server (matching platform), and
that the delivery of sensed data from a worker to a task requester is either realized
using the central server as an intermediary, or via a direct communication channel
between the worker and the task requester, which is established by the central server.
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Notation Description

W , T Set of workers and tasks, respectively

n, m Number of workers and tasks, respectively

M Many-to-one task assignment

ct(w) Cost of performing task t for worker w

qt(w) QoS that worker w can provide for task t

qt(S) Total QoS that S ⊆ W can provide for task t

Qt(S) List of QoS that workers in S can provide for task t

rt(w) Reward offered to worker w by task t

rt(S) Total reward offered to S ⊆ W by task t

Rt(S) List of rewards offered to workers in S by task t

bt Budget of task t

β maxt∈T bt

bMt Remaining budget of task t inM

Pu Preference list of user (worker/task) u

Pw(x) xth task in Pw

Table 1. Notations used in Chapter 3.

budget of task t is insufficient to recruit worker w. Lastly, we assume that for each

task t, bt and rt(w) values for all w ∈ W are either defined as integers or scaled into

integers with the smallest scaling factor (different tasks might have different scaling

factors).

To make a formal development and evaluation of our matching algorithms, we

make the following definitions and observations:
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bx = 7
x

1 by = 5
y

2

3

bx = 7
x

1

by = 5
y

2

3

Fig. 2. A uniform and proportional MCS instance with 3 workers (1, 2, 3) and 2 tasks

(x, y). [crqt(w) = ct(w), rt(w), qt(w)]

Definition 1 (Feasible matching). A mapping

M : (W 7→ T ∪ {∅}) ∪ (T 7→ 2W) (3.3)

is a feasible many-to-one matching if it satisfies the following:

• ∀(w, t) ∈ W × T ,M(w) = t iff w ∈M(t),

• ∀w ∈ W, t ∈ Pw ifM(w) = t,

• rt(M(t)) ≤ bt.

Here, given a matching M and w ∈ W , t ∈ T , the partner3 of worker w is

denoted byM(w) and the partner set of task t is denoted byM(t). IfM(u) = ∅ for

user u ∈ W ∪ T , it means user u is unmatched inM. Note that the last set in the

preference list of each task t is ∅, so we have S ≻t ∅, ∀S ∈ (Pt \ ∅). Also, even though

the preference lists of workers do not include ∅, since we assume that the workers in

3The partner of a worker refers to the task that the worker is assigned to perform,
while the partner set of a task refers to the set of all workers assigned with the task.
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User Preference list

x {2, 3}, {1}, {2}, {3}, ∅

y {2}, {3}, ∅

1 x

2 x, y

3 y, x

Table 2. Preference lists of the users in Fig. 2.

our system are rational, we have t ≻w ∅, for all w ∈ W and t ∈ Pw. We denote the

remaining budget of task t inM by bMt = bt − rt(M(t)).

Definition 2 (Unhappy pair). Given a matchingM, a worker w and a task t form

an unhappy (blocking) pair ⟨w, t⟩ if t ≻w M(w) and there is a subset S ⊆M(t) such

that {w} ≻t S and rt(w) ≤ bMt + rt(S).

Definition 3 (Pairwise stable matching). A matchingM is said to be pairwise stable

if it does not admit any unhappy pairs.

Definition 4 (Unhappy coalition). Given a matchingM, a subset of workers S ⊆ W

and a task t form an unhappy (blocking) coalition ⟨S, t⟩ if ∀w ∈ S, t ≻w M(w) and

there is a subset S ′ ⊆M(t) such that S ≻t S
′ and rt(S) ≤ bMt + rt(S

′).

The reason such a coalition ⟨S, t⟩ is said to block the stability of the matching is

that the users in the coalition can communicate with each other and decide to jointly

update their partners to have a better assignment.

Definition 5 (Coalitionally stable matching). A matchingM is said to be coalition-

ally stable if it does not admit any unhappy coalitions.
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Note that the coalitional stability is a stronger requirement compared with the

pairwise stability. In fact, since every unhappy pair ⟨w, t⟩ corresponds to an unhappy

coalition ⟨{w}, t⟩, coalitionally stable matchings are also pairwise stable, but not

the other way around. For example, on the MCS instance shown in Fig 2 (with

preference lists given in Table 2), the matching in which task x is matched with the

worker 1 and task y is matched with the worker 2 is a pairwise stable matching, yet

it has an unhappy coalition (⟨{2, 3}, x⟩), and hence is not coalitionally stable. This is

because worker set {2, 3} provides a higher QoS (i.e., 7) to x than what her current

assignment, worker 1, provides (i.e., 5) and both worker 2 and worker 3 prefer task x

to their currently assigned tasks as their net income (i.e., reward - cost) with task x

are larger.

Definition 6 (Coalitionally unhappy pair). Given a matching M, a worker w and

a task t form a coalitionally unhappy pair if there is an unhappy coalition ⟨S, t⟩ such

that w ∈ S.

When the objective is to achieve pairwise stability, the number of unhappy pairs

can be used as the degree of instability of the resulting matching. On the other hand,

it is not feasible to use the number of unhappy coalitions to measure the coalitional

stability for two reasons. First, since the number of unhappy coalitions in a matching

can be as large as m(2n − 1), even just enumerating them would take exponential

time. Second, given a worker-task pair (w, t), knowing all the unhappy coalitions

⟨S, t⟩ : w ∈ S does not provide any useful information to either party, whereas

knowing that there is at least one makes them aware that there is a matching in which

they are matched to each other and are both better off. For these reasons, we propose

to use the number of coalitionally unhappy pairs to measure the coalitional instability

of a matching. Note that we can check whether a certain worker-task pair (w, t) is a
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coalitionally unhappy pair as described in Algorithm 1. This algorithm uses a sub-

procedure named solve01Knapsack(c,W, V ) in line 9, which denotes the dynamic-

programming based algorithm [77] to find the optimal solution for an instance of

0-1 knapsack problem with a knapsack capacity of c, and k items (k = |W | = |V |)

whose weights and values are given in order in W and V , respectively. It returns

the item set that has the largest total value among the sets that have a total weight

less than c. Since solving the 0-1 knapsack problem is the most costly operation in

Algorithm 1 and has a time complexity of O(nbt), we can find and count the unhappy

and coalitionally unhappy pairs in a matching in pseudo-polynomial time O(mn2β),

where β = maxt∈T bt. Lastly, it should be noted that every unhappy pair is also a

coalitionally unhappy pair.

We classify MCS systems according to the variability in the QoS provided by

the workers for different tasks (uniform/non-uniform), and the relationship between

the QoS provided by the workers and the rewards they are offered (proportional/non-

proportional). Note that these classifications are exclusive; thus, it is possible to

have four different MCS systems, namely, (i) proportional and non-uniform, (ii)

non-proportional and non-uniform, (iii) proportional and uniform, and (iv) non-

proportional and uniform.

Definition 7 (Uniform MCS system). An MCS system is called uniform if the QoS

provided by each worker is the same for all tasks.

That is, for all (w, t, t′) ∈ W × T 2, qt(w) = qt′(w). This indicates that all tasks

have the same preference ordering for all S, S ′ ⊆ W since we have qt(S) = qt′(S)

and qt(S
′) = qt′(S

′), ∀t, t′ ∈ T . However, they may not have the same preference list

because of the difference in their budgets (i.e., a task will not include a certain worker

set in her preference list if the total reward to be paid to that worker set exceeds her
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Algorithm 1: Check Pair (w, t,M, CheckIf )

Input: (w, t): Worker, task pair to check

M: The current many-to-one matching

CheckIf = CoalitionallyUnhappyPair or UnhappyPair

1 if M(w) = t orM(w) ≻w t then

2 return false

3 S ←M(t)

4 if CheckIf = CoalitionallyUnhappyPair then

5 foreach w′ ∈ W do

6 if t ∈ Pw and t ≻w′ M(w′) then

7 S ← S ∪ {w′}

8 S ← S \ {w}

9 Smax ← solve01Knapsack(bt − rt(w), Rt(S), Qt(S))

10 if qt(Smax) + qt(w) > qt(M(t)) then

11 return true

12 else

13 return false

budget) and being unacceptable to different workers. Despite their simplicity, uniform

MCS systems are actually quite common. For example, all MCS systems in which the

QoS of workers are determined solely based on trustworthiness or seniority scores of

workers (e.g., Waze [78] in which users are ranked according to what is called Waze

points that they collect by performing different tasks such as editing the map), or

that only contain very basic tasks (e.g., taking a picture of a scene, measuring noise

pollution) that do not demand any expertise and can be performed as effectively by

27



all workers can be viewed as uniform MCS systems. An MCS system that is not

uniform is called a non-uniform MCS system.

Definition 8 (Proportional MCS system). An MCS system is called proportional if,

for each task, the rewards that are offered to the workers are proportional to the QoS

they provide.

That is, rt(w)
qt(w)

= θt for all (w, t) ∈ W × T , where θt is a constant defined by task

t. Thus, different tasks might have a different reward per QoS ratio. Note that in

proportional MCS systems, the objective of tasks can be expressed as maximizing the

total reward paid to workers within the budget constraints as it also maximizes the

total QoS they get. Hence, we will use rt(w) in place of qt(w) in the relevant sections.

Also, if an MCS system is not proportional, we simply call it a non-proportional MCS

system.

3.2.1.1 Existence of Stable Matchings

In the following theorems, we give the existence results for pairwise and coali-

tionally stable matchings in different types of MCS systems.

Theorem 1. There exists a non-proportional MCS instance, in which none of the

feasible matchings is pairwise stable.

Proof. We prove by giving a counterexample. Let qx(3) = 6 in the instance given

in Fig. 2. This adjustment results in rx(2)
qx(2)

̸= rx(3)
qx(3)

, hence makes the instance non-

proportional. It also changes the preference list of task x, which becomes Px =

{2, 3}, {3}, {1}, {2}, ∅. The preference list of the other users remain the same as given

in Table 2. Let us analyze all possible task assignments in this modified instance.

• AssumeM(y) ̸= {3}. Then, for (3, y) to not be an unhappy pair, we must have
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M(y) = {2}. In this case, if M(x) ̸= {3}, then (3, x) is an unhappy pair. If

M(x) = {3}, then (2, x) is an unhappy pair.

• Assume M(y) = {3}. If M(x) ̸= {1}, then (1, x) is an unhappy pair, and if

M(x) = {1}, then (2, y) is an unhappy pair.

Therefore, we conclude that no pairwise stable matching exists in the given non-

proportional MCS instance.

Since every unhappy pair is also an unhappy coalition, the following corollary is

an immediate result of Theorem 1.

Corollary 1.1. There exists a non-proportional MCS instance, in which none of the

feasible matchings is coalitionally stable.

Theorem 2. There exists a uniform and/or proportional MCS instance, in which

none of the feasible matchings is coalitionally stable.

Proof. We prove by giving a counterexample. Note that the MCS instance given in

Fig. 2 is both uniform and proportional. Then, it suffices to show that all feasible

matchings that can be defined on this instance have at least one unhappy coalition.

• Assume M(x) ̸= {1}. Then, the worker set {1} and task x do not form an

unhappy coalition only ifM(x) = {2, 3}. However, ifM(x) = {2, 3}, then the

worker set {3} and task y form an unhappy coalition.

• AssumeM(x) = {1}. IfM(y) ̸= {2}, then ({2}, y) is an unhappy coalition. If

M(y) = {2}, then ({2, 3}, x) is an unhappy coalition.

We will show in the next section that there always exists a pairwise stable match-

ing in uniform and proportional MCS systems.
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3.2.1.2 Hardness of Finding Stable Matchings

Consider an MCS instance with n workers (w1, w2, . . . , wn) and a single task

(t). Note that, by definition, finding a coalitionally stable matching in this instance

is exactly the same problem with finding an optimal solution for a 0-1 knapsack

instance with a knapsack that has a weight capacity of bt and n items such that

the weight and value of ith item are, respectively, the reward (rt(wi)) and the QoS

(qt(wi)) of ith worker (wi) for task t. Since the 0-1 knapsack problem is NP-hard, we

can conclude that the problem of finding a coalitionally stable matching (even for an

MCS system that has only one task) is NP-hard as well.

In fact, as proved in [65], given a many-to-one matching instance with budget

constraints, both checking the existence of a coalitionally stable matching and finding

one if exists are NP-hard. Also, since even checking whether a particular worker-task

pair form an unhappy pair in a given matching is NP-hard (as it requires to solve the

corresponding 0-1 knapsack problem shown in Algorithm 1), it is highly likely that

the same hardness results apply to the pairwise stable matchings as well.

3.2.2 Problem Formulation

Given the definitions as well as the nonexistence and hardness results provided

above, we can formally define our objective function as

minimize
∑
i

∑
j

uij (3.4)

such that

∑
j

xij ≤ 1 ∀i (3.5)

∑
i

xij × rtj(wi) ≤ btj ∀j (3.6)
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xij ≤ eij ∀i, j (3.7)

where

uij =


1, if ⟨wi, tj⟩ is a (coalitionally) unhappy pair

0, otherwise

(3.8)

xij =


1, if wi is assigned to tj

0, otherwise

(3.9)

eij =


1, if tj ∈ Pwi

(eligibility)

0, otherwise.

(3.10)

That is, we would like to produce feasible matchings with as few (coalitionally) un-

happy pairs as possible. When the goal is to minimize the number of coalitionally

unhappy pairs (i.e., uij = 1 for coalitionally unhappy pairs), the optimization objec-

tive in (3.4) attains the strongest stability conditions, but becomes intractable in all

types of MCS systems. On the other hand, minimizing the number of unhappy pairs

is a more practical objective and generally adequate to virtually satisfy the users for

two reasons. First, it is much harder for a pair of users to find out that they are

a coalitionally unhappy pair than that they are simply an unhappy pair, since the

former requires them to know the preferences and the current partners of all workers

in the platform. Second, unlike unhappy pairs, modifying the matching to make a

coalitionally unhappy pair happy necessitates that all the workers in the correspond-

ing unhappy coalition (see Definition 6) cooperate and break up with their current

partners simultaneously, which might be hard to attain.

It is also desirable to minimize the degree of user unhappiness in general rather

than the number of unhappy users. In this case, an alternative objective would be
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to minimize the highest dissatisfaction ratio in the matching from the perspective of

tasks, since they, unlike workers who are simply either happy or not with their assign-

ments, have a degree of unhappiness based on the total QoS service they receive (i.e.,

non-binary utility) in the many-to-one matching scenario described earlier. Formally,

let

St = {S : ⟨S, t⟩ is an unhappy coalition}, (3.11)

and ∀S ∈ St, let SR ⊆ M(t) be the set with the lowest total quality such that its

removal from the partner set of task t suffices to accept S (i.e., rt(S) ≤ bMt + rt(S
R)).

Then, the dissatisfaction ratio of task t can be computed by:

δt =


1, if St = ∅

∞, if St ̸= ∅ andM(t) = ∅

max
S∈St

qt(S)+qt(M(t)\SR)
qt(M(t))

, otherwise.

(3.12)

Thus, for a task t the optimal (minimum) value of δt is 1. Finally, the objective

function can formally be defined as:

minimize max
t∈T

δt (3.13)

We will address this version of the problem using the following definition.

Definition 9 (Coalitionally α-stable matching). A matching M is said to be coali-

tionally α-stable if ∀t ∈ T

δt ≤ α. (3.14)

3.3 Proposed Solution

In this section, we provide the details of the proposed task assignment algorithms.

32



Algorithm 2: Uniform Task Assignment (W , T , PT )

Input: W : The set of workers

T : The set of tasks

PT : The common preference profile of tasks

1 for i← 1 to n do

2 w ← ith worker in PT

3 for j ← 1 to |Pw| do

4 t ← Pw(j)

5 if bMt ≥ rt(w) then

6 M(w)← t

7 M(t)←M(t) ∪ {w}

8 bMt ← bMt − rt(w)

9 break

10 returnM

3.3.1 Uniform Task Assignment (UTA) Algorithm

The stable task assignment problem in uniform MCS systems has recently been

investigated in [35], and an ILP-based algorithm with a O(nm2n) time complexity was

proposed to find pairwise stable matchings in MCS systems that are both uniform and

proportional. Here, we propose UTA algorithm that finds pairwise stable matchings in

all uniform MCS systems (i.e., proportional/non-proportional) in only O(n log n+nm)

time.

A pseudo-code description of UTA algorithm is given in Algorithm 2. First,

apart from the set of workers and tasks, UTA algorithm takes the common preference

profile of tasks (PT ) as input, which is simply a sorted version of the worker setW , in
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which workers with higher QoS values precede the others. Formally, it can be defined

as

PT = wi1 , wi2 , . . . , win (3.15)

where ∀w′ = wij , w
′′ = wij+1

, qt(w
′) ≥ qt(w

′′), ∀t ∈ T . Since we assume that the

system is uniform, hence the QoS value of a worker is same for all tasks, it is in fact

possible to create such a list. Then, the algorithm begins to seek the best available

assignment for the workers (w) in order of their appearance in PT (i.e., in decreasing

order of their QoS). To this end, it iterates through the tasks in their preference lists

(Pw) in order to find the first task in their preference lists (i.e., the most preferred)

that has sufficient amount of remaining budget to hire them. If it finds such a task t

for worker w, it updates the matching and the remaining budget of task t, otherwise

it leaves worker w unassigned and continues the assignment process with the next

worker in PT . We now show that the resulting matching will always be pairwise

stable.

Theorem 3. In uniform MCS systems, UTA algorithm always produces a pairwise

stable matching.

Proof. We will prove it by contradiction. Assume that the matchingM returned by

UTA algorithm contains at least one unhappy pair, say ⟨w, t⟩. Since worker w and

task t form an unhappy pair, we know that they are not matched to each other and

worker w prefers task t to his current partner inM. This means when the algorithm

was iterating the preference list of worker w in line 3, it has attempted to match him

with task t, but could not do it due to the limited budget of task t, so that it either

matched worker w with a task that come after t in Pw or left him unmatched. Let A

be the partner set of task t and ρ be her remaining budget when the algorithm tried,
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but failed to assign worker w to her. Then, (i) ρ < rt(w). Since the algorithm matches

the workers in order of their appearance in the common preference list of the tasks,

we have {w} ≻t {w}, ∀w ∈ A. Also, note that once the algorithm matches a worker

and a task, it never unmatches them again. Thus, we have A ⊆M(t). However, for

(w, t) to be an unhappy pair, there should exist a subset S ′ ⊆ M(t) such that (ii)

rt(w) ≤ rt(S
′) + bMt and (iii) {w} ≻t S

′. From (iii), we have {w} ≻t {w}, ∀w ∈ S ′,

which means all workers in S ′ got matched with task t after the algorithm failed to

match worker w and task t, hence we have

ρ ≥ rt(S
′) + bMt (3.16)

ρ ≥ rt(w) (by (ii)) (3.17)

ρ > ρ (by (i)) (3.18)

which is a contradiction.

The following corollary is a direct result of Theorem 3.

Corollary 3.1. In uniform MCS systems, there always exists a pairwise stable match-

ing.

Note that even if an MCS system is not uniform (i.e., ∃(w, t, t′) ∈ W × T 2,

qt(w) ̸= qt′(w)), UTA algorithm can still produce pairwise stable matchings if it

is possible to create a common preference list (PT ) for tasks. In other words, if

∄(w,w′, t, t′) ∈ W2 × T 2, qt(w) > qt(w
′), qt′(w) < qt′(w

′), UTA algorithm can still be

used to find pairwise stable matchings.

Example. The instance given in Fig. 2 is a uniform MCS system, so UTA

algorithm can be used to find a pairwise stable matching in this instance as fol-

lows. First, we create the common preference list of tasks as PT = 1, 2, 3 since

qx,y(1) > qx,y(2) > qx,y(3). The first worker in PT is worker 1, so the algorithm starts
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the matching process with him. Since the first and only task in his preference list,

task x, has enough budget to hire him (the preference lists of users are given in Ta-

ble 2), it assigns worker 1 to task x, and updates the remaining budget of task x as

7 − 5 = 2. The next worker in PT is worker 2, who also prefers task x to task y,

but task x does not have enough budget to hire him (2 < 4), so the algorithm tries

to match him with task y. Task y has enough budget to hire worker 2, so they get

matched and the remaining budget of task y becomes 5 − 4 = 1. Worker 3 is the

last worker in PT . However, neither task x nor task y has sufficient remaining budget

to hire him, so he will be left unmatched. Thus, the final matching will be (x ↔ 1,

y ↔ 2), and it can easily be checked that it does not contain any unhappy pairs and

hence it is pairwise stable.

Running time. Forming the common preference profile of tasks (PT ) requires to

sort the workers according to their QoS values and thus takes O(n log n). Then, since

the first for loop will iterate n times and the second will iterate at most m times (i.e.,

|Pw| ≤ m,∀w ∈ W), it is straightforward to see that the worst-case running time of

UTA algorithm is O(n log n+ nm).

3.3.2 Pairwise Stable Task Assignment (PSTA) Algorithm

PSTA algorithm is a pseudo-polynomial time algorithm that, unlike UTA algo-

rithm, can be run in any type of MCS system, and aims to produce matchings with as

little pairwise instability as possible (which is why it is named as Pairwise-STA). In

fact, in Theorem 4, we will show that it always produces pairwise stable matchings in

proportional MCS systems. Besides, in non-proportional MCS systems where a pair-

wise stable matching may not exist, it manages to produce matchings with almost

optimal pairwise stability as it will be shown in Section 3.4.

The details of PSTA algorithm are given in Algorithm 3. It follows the classic
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deferred acceptance mechanism [42] but updates the set of workers assigned to a task

optimally from the set of workers currently assigned to the task and the worker under

consideration. It keeps a stack of unmatched workers that still have tasks to propose

to4, pops them one by one (line 3) and lets them (worker w) propose to the next task

(task t) in their preference list (line 5). If task t has enough remaining budget, the

algorithm directly matches them (lines 8-10). Otherwise, it finds the most favorable

worker set (Smax) for task t among the workers in her current partner set and worker w

within her budget constraint (lines 12-13), assigns that worker set as the new partner

set of task t (lines 14-17) and pushes the remaining workers back onto the stack after

setting them free (lines 18-20). If the partner set of task t has not changed, worker w

will be the only worker to be pushed onto the stack, in which case we say that task t

rejected the proposal of worker w. This continues until there is no unmatched worker

that still has a task that he has not yet proposed to in his preference list. In the

following theorem, we prove that the resulting matching is guaranteed to be pairwise

stable if the MCS system is proportional.

Theorem 4. In proportional MCS systems, PSTA algorithm always produces a pair-

wise stable matching.

Proof. We will prove it by contradiction. Assume that in a proportional MCS system

(without loss of generality, let qt(w) = rt(w), ∀w, t), PSTA algorithm produces a

matchingM that contains at least one unhappy pair, say ⟨w, t⟩, which either means

that task t rejected worker w’s proposal and they never got matched, or that task t

accepted worker w’s proposal, but then discarded him (possibly along with a set of

workers) from her partner set to accept the proposal of another worker with a higher

4We use the terminology of the stable marriage problem (i.e., propose, accept,
reject) to indicate that this algorithm can also be run in a distributed manner using
the procedures proposed in [79] to find stable marriages in a distributed manner.
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Algorithm 3: PairwiseStableTaskAssignment(W ,T )
Input: W : The set of workers

T : The set of tasks

1 Stack.push(W)

2 while Stack is not empty do

3 w ← Stack.pop()

4 if Pw is not empty then

5 t ← Pw(1) ; ▷ w proposes to t

6 Pw ← Pw \ {t}

7 if bMt ≥ rt(w) then

8 M(w)← t

9 M(t)←M(t) ∪ {w}

10 bMt ← bMt − rt(w)

11 else

12 S ←M(t) ∪ w

13 Smax ← solve01Knapsack(bt, Rt(S), Qt(S))

14 M(t)← Smax, b
M
t ← bt − rt(Smax)

15 if w ∈ Smax then

16 M(w)← t

17 foreach w′ ∈ S \ Smax do

18 M(w′)← ∅, Stack.push(w′)

19 returnM

QoS. Let A and ρ denote task t’s partner set and remaining budget at the time

task t and worker w broke up by one of these two cases (i.e., rejected or discarded),
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respectively. Then, we have

∄S ⊆ A : rt(S) < rt(w), rt(w) ≤ rt(S) + ρ (3.19)

because if there were such a subset S, the 0-1 knapsack solution would include worker

w instead of S, and w would not get rejected/discarded.

We define a node as a tuple (x, y), where x and y are the label and length of the

node, respectively. Let A0 = {(w′, rt(w
′)) : w′ ∈ A}, so each node in A0 corresponds

to a worker in A. Also, let l(S) be the total length of the nodes in S. Then, from

(3.19), we have

∄S ⊆ A0 : l(S) < rt(w), rt(w)− l(S) ≤ ρ (3.20)

Note that task t will discard a group G of workers from her partner set only when

she is proposed by a worker w′ who has a higher total reward than G and will not

violate her budget constraint when replaced by G. After the break up of worker w

and task t, whenever such a change (say ith change) occurs in the partner set of task

t, we create Ai from Ai−1 as follows:

1. Ai ← Ai−1.

2. Let K be the set of nodes in Ai that have the same label with any worker in G.

3. Change the labels of all nodes in K as w′.

4. Create a new node (w′, rt(w
′) − rt(G)) (note that rt(G) = l(K)) and add it to

Ai.

In other words, we add the new worker to Ai by dividing it into several nodes so that

the node lengths in Ai−1 are preserved. An example is provided in Fig. 3 to illustrate

this process.

Let c be the number of changes occurred in the partner set of task t since her
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break up with worker w until the end. Then, the last node set created, Ac, can be

partitioned into two sets A′
0 and B, where A′

0 contains |A0| nodes that have exactly

the same lengths with the nodes in A0, but possibly have different labels, and B is

the set of newly created nodes such that (i) l(B) + bMt = ρ. Since we assumed that

(w, t) form an unhappy pair in the final matching M, there should exist a subset

S ′ ⊆M(t) such that rt(w) > rt(S
′) and rt(w) ≤ rt(S

′)+ bMt . As Ac has a distinct set

P of nodes that jointly correspond to each worker w′ in M(t) (i.e., l(P ) = rt(w
′)),

there should also exist a subset S ⊆ A′
0 ∪ B such that (ii) rt(w) > l(S) and (iii)

rt(w) ≤ l(S) + bMt . Then, we have

rt(w)− l(S ∩ A′
0) ≤ l(S ∩B) + bMt (by (iii)) (3.21)

ρ < l(S ∩B) + bMt (by (3.20) and (ii)) (3.22)

ρ < ρ (by (i)) (3.23)

which is a contradiction.

A significant result of Theorem 4 is the following corollary.

Corollary 4.1. In proportional MCS systems, there always exists a pairwise stable

matching.

In the following theorem, we show that pairwise stability ensures a certain degree

of coalitional stability in proportional MCS systems.

Theorem 5. In proportional MCS systems, a pairwise stable matching is coalitionally

2-stable.

Proof. We prove by contradiction. LetM be a pairwise stable matching in a propor-

tional MCS system and ⟨S, t⟩ be an unhappy coalition inM such that

rt(S ∪ (M(t) \ S ′)) > 2rt(M(t)) (3.24)
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Fig. 3. An example illustrating the process used in the proof of Theorem 4. A0 is

created right after task t and worker w broke up, so the partner set of task t is

{w3, w2, w5, w7} at that time. A1 is created after the first change in the partner

set of task t, which is the substitution of G = {w5} with w6, and A2 is created

after the second change in the partner set of task t, which is the substitution

of G′ = {w2, w6} with w4. Note that the length of the nodes in A0 are always

preserved throughout the process.

where S ′ ⊆ M(t) satisfies rt(S) > rt(S
′) and (i) rt(S) ≤ bMt + rt(S

′). Thus, ⟨S, t⟩

breaks the coalitional 2-stability of M according to (3.14). First, note that if (ii)

rt(M(t)) ≥ bt/2, we would have

rt(S) + rt(M(t))− rt(S
′) > 2rt(M(t)) (by (3.24)) (3.25)

rt(M(t)) + bMt > 2rt(M(t)) (by (i)) (3.26)

rt(M(t)) + bMt > bt (by (ii)) (3.27)

bt > bt (3.28)

which is false. So, we have rt(M(t)) < bt/2. Let w be any worker in S. If rt(w) ≤

rt(M(t)), then M is not pairwise stable because task t can add worker w to her

partner list without removing anyone as rt(w) + rt(M(t)) < bt. Thus, we have

rt(w) > rt(M(t)), which also implies that M is not a pairwise stable matching as
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task t can simply replaceM(t) with worker w to obtain a better partner set within

her budget constraint (i.e., rt(w) ≤ rt(S) ≤ bMt + rt(S
′) ≤ bt).

From Theorem 3, Theorem 4 and Theorem 5, we obtain the following corollaries.

Corollary 5.1. In MCS systems that are both proportional and uniform, UTA algo-

rithm always returns coalitionally 2-stable matchings.

Corollary 5.2. In proportional MCS systems, PSTA algorithm always returns coali-

tionally 2-stable matchings.

Example. We run PSTA algorithm on the same MCS instance illustrated in

Fig. 2. To make things slightly different, we assume that the workers are pushed onto

the stack in line 1 in increasing order of their identifiers so that the first worker that

is popped in line 3 is worker 3. As shown in Table 2, the first task in the preference

list (P3) of worker 3 is task y, so he first proposes to her (task y gets removed from

P3). Task y has enough budget, so worker 3 and task y get matched to each other

and the remaining budget of task y becomes 2 (line 8-10). The next worker popped

from the stack is worker 2, whose first preference is task x. Thus, worker 2 proposes

to task x (task x gets removed from P2). Since task x also has enough budget, she

gets matched with worker 2, which reduces her remaining budget to 3. Next, worker

1 gets popped and proposes to the only task in his preference list: task x (task x

gets removed from P1, so P1 = ∅). Task x does not have enough remaining budget

to hire worker 1, so the algorithm finds the best set of workers among the workers in

M(x) ∪ {1} = {1, 2} that does not exceed the budget limit of task x by solving the

corresponding 0-1 knapsack problem (line 13). The subset {1} provides the highest

QoS without violating the budget constraints, so worker 1 and task x will get matched

to each other, and worker 2 will be set free and pushed onto the stack. In the next
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step, worker 2 will be popped and propose to task y (task y gets removed from P2, so

P2 = ∅). Task y does not have sufficient remaining budget, but the algorithm, after

solving the knapsack problem, will replace her current partner, worker 3, with worker

2 as this will increase the total QoS task y gets. Consequently, it will set worker 3

free and push him onto the stack. Then, it will pop him from the stack and let him

propose to task x (task x gets removed from P3, so P3 = ∅). The budget of task x is

not adequate to hire worker 3, and replacing his current partner is also not beneficial,

hence worker 3 will be pushed onto the stack, again. When popped next time, since

there does not remain any other task for worker 3 to propose to in his preference

list, he will not be pushed onto the stack again. This will leave the stack empty, so

the matching (x ↔ 1, y ↔ 2) will be returned by the algorithm, which is the same

pairwise stable matching found by UTA algorithm.

Running time. Note that since the preference list of a worker (w) shrinks in size

by 1 every time he is popped from the stack (line 6) until his preference list becomes

empty (after which he will not be pushed onto the stack ever again), he can be pushed

onto the stack at most O(m) times as |Pw| ≤ m. Thus, the while loop in line 2 will

iterate at most O(nm) times. Since the most costly operation in each iteration is

solving the 0-1 knapsack problem, which takes O(nβ) where β = maxt∈T bt, the time

complexity of PSTA algorithm is O(n2mβ).

3.3.3 Heuristic Algorithm

Heuristic algorithm is a task-oriented, pseudo-polynomial time algorithm that

can also be run in any type of MCS system and is designed in a way that the tasks

in the system take turns at modifying the matching according to their preferences.

That is, each task t, in her turn, changes her partner set to the best feasible set

of workers among all the workers that are already in her partner set, or that prefer
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herself to their current assignments. Thus, Heuristic algorithm ensures that there is

no unhappy coalition ⟨S, t⟩ for any S ⊆ W immediately after the turns of task t.

It can, hence, be expected that as we increase the number of iterations/turns, there

will be fewer unhappy coalitions, which will improve the coalitional stability of the

matching.

The outline of Heuristic algorithm is provided in Algorithm 4. In each of the k

iterations, the algorithm goes through all tasks (t) in the system (line 2) and first finds

all workers that are either already matched with task t or would be better off with

task t compared to their current partners (lines 3-6). Then, among these workers,

it identifies the set Smax of workers that require a total reward of less than bt and

provide as large total QoS as possible for task t by solving the corresponding knapsack

problem (line 7). Finally, it sets the workers that are presently matched with task

t, but are not in Smax free (lines 8-9), and matches task t and the workers in Smax

with each other after removing these workers from the partner sets of the tasks with

whom they were previously matched (lines 10-14).

The fact that a task is perfectly happy (i.e., has a dissatisfaction ratio of 1) right

after her turns indicates that the task that is considered the latest in the for loop

in line 2 will be perfectly happy in the end as well. This nice property of Heuristic

algorithm can be used to make a different task requester happy at each (e.g., hourly,

daily) assignment cycle, and to ensure that all task requesters become perfectly happy

with their assignments periodically. Another useful property of Heuristic algorithm is

that it allows to explore different feasible matchings that are shaped by the preference

profile of a different task, which will become clearer in the toy example provided below.

Example. We once again utilize the MCS instance given in Fig. 2 to show how

Heuristic algorithm functions. Assume that the for loop in line 2 iterates through

the tasks in order of task x and task y. In the first iteration, since all workers are
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Algorithm 4: Heuristic Approach(W , T )
Input: W : The set of workers

T : The set of tasks

k: The number of iterations

1 for i← 1 to k do

2 foreach t ∈ T do

3 S ←M(t)

4 foreach w ∈ W do

5 if t ∈ Pw and t ≻w M(w) then

6 S ← S ∪ {w}

7 Smax ← solve01Knapsack(bt, Rt(S), Qt(S))

8 foreach w′ ∈M(t) \ Smax do

9 M(w′)← ∅

10 foreach w′ ∈ Smax do

11 let t′ denoteM(w′)

12 M(t′)←M(t′) \ w′

13 M(w′)← t

14 M(t)← Smax, b
M
t ← bt − rt(Smax)

15 returnM

unmatched, task x will be assigned to the best (i.e., with the highest total QoS)

subset of workers in {1, 2, 3} with a total reward of less than 7, which is {2, 3}:

M : x↔ {2, 3}, y ↔ ∅

In this matching. worker 3 is the only one that prefers task y to task x, so when it is
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task y’s turn, she will directly be matched with worker 3:

M : x↔ {2}, y ↔ {3}

In the next iteration, task x will be assigned to the best worker set from {1, 2}, which

are the workers that are either matched with task x (i.e., worker 2) or prefer task

x to their current partners (i.e., worker 1). Since her budget does not allow to hire

both, worker 2 will be replaced by worker 1 who provides a higher QoS:

M : x↔ {1}, y ↔ {3}

At this point, since worker 2 prefers task y to being unassigned, task y will be assigned

to the best feasible worker set from {2, 3} in her turn, which is {2}:

M : x↔ {1}, y ↔ {2}

In this matching, both worker 2 and worker 3 prefers task x to their current partners,

so the algorithm will assign task x the best feasible worker set from {1, 2, 3}, which

is {2,3}:

M : x↔ {2, 3}, y ↔ ∅

Note that this is exactly the same as the first matching we obtained above. In fact,

after this point, the algorithm will repeatedly generate the same matchings, and

return the matching (x ↔ {2}, y ↔ {3}) if k is odd, and the matching (x ↔ {1},

y ↔ {2}), otherwise. The former is the best possible matching in terms of coalitional

stability, as there does not exist any coalitionally stable matching in this instance

(Theorem 2) and this matching contains only one coalitionally unhappy pair (worker

1 and task x). On the other hand, the latter is the same matching as the one found by

UTA and PSTA algorithms and is the optimal matching in terms of pairwise stability.
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Running time. The two outermost loops in line 1 and 2 will iterate k and m

times, respectively. Similar to PSTA algorithm, solving the 0-1 knapsack instance in

line 7 takes O(nβ) where β = maxt∈T bt, and is the most costly operation within the

for loop in line 2. This makes the total running time of Heuristic algorithm O(knmβ).

3.4 Evaluation

In this section, we evaluate the performance of the proposed algorithms in dif-

ferent types of MCS systems.

3.4.1 Simulation Settings

Similar to previous work [29, 80], we utilize a taxi trip dataset [81] in a city (i.e.,

New York City (NYC)) to have a realistic geographic distribution of workers and

tasks. Specifically, we randomly select a day in 2015 and then create a worker at the

most recent drop-off location of each taxi that has become available between 1-2 pm

on the selected day, and a task at the pick-up location of each passenger that has

demanded a taxi in the next hour of the same day. Then, we use random-sampling to

obtain the worker and task sets of certain size based on the experiment requirements.

Note that each of the four types of MCS systems (i.e., proportional (P.) and non-

uniform (N.U.), non-proportional (N.P.) and non-uniform, proportional and uniform

(U.), non-proportional and uniform) necessitates different QoS and reward settings.

Thus, we generate a unique scenario for each MCS system by integrating this infor-

mation on top of the geographical information.

As the default setup for all scenarios, we sample n = 100 workers and m = 50

tasks (an instance is illustrated in Fig. 4), and randomly assign a budget for each

task between Bmin = 100 and Bmax = 1000. Given the distance d between a worker

w and a task t, we let ct(w) = d × C, where C = 20 denotes the cost per kilometer.
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Fig. 4. Distribution of workers (circles) and tasks (triangles) on the NYC map with

different sampling ratios: (a) 100 workers, 50 tasks; (b) 500 workers, 500 tasks.

Below, we describe the typical settings for each scenario.

• Proportional (P.) and uniform (U.): We assign a unique QoS value v to

each worker w randomly from [1, 200] and let qt(w) = v, ∀t ∈ T . Then, the

rewards are set as

rt(w) =


θt × qt(w) if θt × qt(w) ≤ bt

0 otherwise

(3.29)

where θt is randomly selected from [1, 5] for each task t.

• Proportional (P.) and non-uniform (N.U.): Given a worker-task pair

(w, t), we randomly assign the reward rt(w) from [1, bt] (we also examine the

cases where reward values are assigned from [1, bt/2] and [bt/2, bt]), and let
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qt(w) = rt(w)/θt, where θt is set as in the previous scenario, yet its value is

actually arbitrary for all the algorithms considered in this scenario, unlike the

previous scenario where it is unarbitrary for UTA algorithm.

• Non-proportional (N.P.) and uniform (U.): For this scenario, the QoS

information is produced exactly as it is in the proportional and uniform scenario.

The only difference is that for each worker-task pair (w, t), the reward rt(w) is

assigned randomly from [1, bt].

• Non-proportional (N.P.) and non-uniform (N.U.): Given a worker-task

pair (w, t), we randomly assign the reward rt(w) from [1, bt] and qt(w) from

[1, 200].

Given the settings described above, the preference profiles of workers and tasks can be

determined by (3.1) and (3.2), respectively. (Yet it should be noted that in practice

none of the algorithms requires tasks to form their preference lists, which would take

O(n2n) time and space.)

Lastly, we run the simulations 100 times with a different user set in each run and

present the averaged results.

3.4.1.1 Benchmark Algorithms

We compare the performance of our algorithms with the following algorithms

proposed in [35] and [66] (see Table 3 for a comparison of the time complexities of all

algorithms).

• Stable Job Assignment (SJA): This ILP-based algorithm [35] produces pairwise

stable matchings solely in proportional and uniform MCS systems.

• ϕ-Stable Task Assignment (ϕ-STA): Proposed in [66], this approximation algorithm
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Algorithm Time complexity

UTA* O(n log n+ nm)

PSTA* O(n2mβ)

Heuristic* O(knmβ)

SJA O(nm2n)

ϕ-STA O(mn log(mn))

θ-STA O(mn log(mn))

Table 3. Time complexities of all algorithms considered in the simulations (* indicates

the algorithms proposed in this study).

produces matchings that are guaranteed to be coalitionally ϕ-stable in proportional

matching markets, where ϕ (≈ 1.618) denotes the golden ratio. In this algorithm,

tasks (t) simply run the ϕ-approximation algorithm for the single bin removable

online knapsack problem proposed in [82] to decide whether to accept (and discard

some other workers if needed) or reject the proposing workers (w) using the rewards

rt(w) as the weights of items and bt as the size of the knapsack. The running time

of this algorithm is O(mn log(mn)).

• θ-Stable Task Assignment (θ-STA): This approximation algorithm is also proposed

in [66] and generates coalitionally θ-stable matchings in general matching markets,

where

θ =
1

1−maxw∈W,t∈T
rt(w)
bt

(3.30)

It follows the classic deferred acceptance mechanism: workers make the proposals,

tasks (t) that have available budget accept the incoming proposals and those that

do not have available budget temporarily add the proposing worker to their partner
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MCS Type UTA PSTA Heuristic SJA ϕ-STA θ-STA

P. & U. ✓ ✓ ✓ ✓ ✓ *

P. & N.U. ✓ ✓ ✓ *

N.P. & U. ✓ ✓ ✓ ✓

N.P. & N.U. ✓ ✓ ✓

Table 4. Mobile crowdsensing scenarios and corresponding applicable algorithms (∗
indicates that the algorithm is applicable but has a very poor performance

since it is not specifically designed for that scenario).

set and then discard the workers (w′) with the lowest qt(w′)
rt(w′)

ratio until the sum of

rewards to be paid to the remaining workers is less than or equal to bt. As it is shown

in Table 4, although it can be run in all types of MCS systems, we do not provide

results for this algorithm in proportional MCS systems due to its unpredictable

and mostly poor performance in these systems. This is because it randomly selects

the workers to be discarded in proportional settings as all workers (w′) have the

same qt(w′)
rt(w′)

ratio for each task t. The time complexity of this algorithm is also

O(mn log(mn)).

Note that neither ϕ-STA nor θ-STA has a performance guarantee in terms of pairwise

stability.

3.4.1.2 Performance Metrics

We utilize the following performance metrics in the evaluations.

• Overall user happiness : This is calculated as

100×

(
1− # of coalitionally unhappy pairs

# of all matchable worker-task pairs

)
(3.31)
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and expresses the overall user happiness based on the instability of the matching.

Thus, it is the main metric that defines the performance of the algorithms.

• Outward user happiness : This is calculated as

100×

(
1− # of unhappy pairs

# of all matchable worker-task pairs

)
(3.32)

and quantifies the outward user happiness based on the one-dimensional instability

of the matching. The reason it is called outward is that compared to coalitionally

unhappy pairs, unhappy pairs are easier to notice for users, and the users forming an

unhappy pair have a stronger incentive to deviate from (a subset of) their partners

to each other as they do not need a collective agreement that involves other users

(unlike coalitionally unhappy pairs).

• Maximum dissatisfaction ratio: This is the dissatisfaction of the task in the un-

happy coalition with the largest incentive to deviate from the current matching,

which is formally defined as

δmax = max
t∈T

δt. (3.33)

Given the maximum dissatisfaction ratio δmax of a matchingM, we can say that

M is coalitionally δmax-stable and is not coalitionally (δmax − ϵ)-stable for any

positive real ϵ. If a matching does not have any unhappy coalition, then δmax = 1

by definition.

• Running time: We also compare the algorithms with respect to their running time,

which might be critical for MCS systems with strict time constraints.
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Fig. 5. Performance comparison of algorithms in proportional and non-uniform sce-

nario with varying number of workers (m = 50 tasks).

3.4.2 Results

We first look at the performance of the proposed algorithms in proportional and

non-uniform scenario. Fig. 5 shows the performance of algorithms with different

number of workers. First, note that Heuristic algorithm (which is run with k = 3 as

default) usually performs the best and produces optimal assignments in terms of both

overall and outward user happiness when the number of workers is larger than 200. It

is interesting that it achieves very similar overall and outward user happiness scores,

which indicates that it yields matchings in which most of the coalitionally unhappy

pairs are also unhappy pairs. Second, we see that despite having a better upper bound

(UB) in terms of maximum dissatisfaction ratio (i.e., the upper bounds for ϕ-STA and
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Fig. 6. Performance comparison of algorithms in proportional and non-uniform sce-

nario with varying number of tasks (n = 100 workers)

PSTA are, respectively, ϕ (≈ 1.618) and 2, while Heuristic algorithm is unbounded),

ϕ-STA mostly performs much worse than our algorithms. Besides, its performance

gets worse as the number of workers increases and it even produces matchings with as

low as 10% overall user happiness. Since the system is proportional, PSTA algorithm

always achieves 100% outward user happiness (Theorem 4), but we still include it

in all figures for completeness. Also, it outperforms Heuristic algorithm when the

number of workers is small and generally achieves a maximum dissatisfaction ratio

that is much smaller than its upper bound and very close to the optimal value (i.e.,

1).

Fig. 6 shows the performance of algorithms with varying number of tasks. As

for the performance of Heuristic algorithm, we see a trend that is similar to what we
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Fig. 7. Performance of Heuristic algorithm with increasing number of iterations in

proportional and non-uniform scenario withm = 50 tasks and n = 100 workers.

have seen in Fig. 5. It performs worse when the number of workers and tasks are

close to each other. On the other hand, ϕ-STA and PSTA algorithms always have a

better performance with increased number of tasks. This is because they are worker-

oriented algorithms where the proposals are made by workers, so the increase in the

number of tasks reduces the competition among workers and results in improved user

happiness. Here, PSTA always performs better than ϕ-STA, and it also outperforms

Heuristic algorithm when the number of tasks get larger than that of workers.

In Fig. 7, we show the performance of Heuristic algorithm when it is run with

different k values. We see that even with a few number of iterations, it achieves about

95% overall user happiness, and that increasing the number of iterations continues to

improve the performance even up until 100 iterations, but it may not be worth the

increase to be seen in the runtime, which is linear to the number of iterations.

In Fig. 8, we look at the impact of C (cost per kilometer) on the performance of

the algorithms. Note that an increased C value can be interpreted as having very se-

lective workers who do not even find most of the tasks acceptable. Thus, it deescalates

the competition among workers and results in an improvement in the performance of
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Fig. 8. Performance comparison of algorithms with varying cost per kilometer values

in proportional and non-uniform scenario with m = 50 tasks and n = 100

workers.

worker-oriented algorithms (ϕ-STA and PSTA). Conversely, it escalates the compe-

tition among tasks as there will be less number of eligible workers for each task, so

the performance of task-oriented Heuristic algorithm gets slightly worse. The simi-

lar outcomes are also seen in Fig. 9 where we look at the impact of reward ranges.

When we lower the reward range from [1, bt] to [1, bt/2], there will be fewer workers

eligible for each task, so the performance of ϕ-STA and PSTA algorithms gets better,

while that of Heuristic algorithm gets worse due to the same reasons pointed out

above. However, when the reward range is made [bt/2, bt], the performance of all

algorithms get better (PSTA and Heuristic algorithms even achieve optimal overall

user happiness) because tasks can now hire at most 2 workers, making it an almost

competition-free setting for both workers and tasks.

Next, we analyze the performance of algorithms in non-proportional and non-

uniform scenario in Fig. 10. Note that since the system is non-proportional, PSTA

algorithm fails to achieve perfect outward user happiness most of the times, but

still manages to outperform the others in terms of outward user happiness. The

performance of Heuristic algorithm seems similar to its performance in proportional
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Fig. 9. Performance comparison of algorithms with varying reward ranges in propor-

tional and non-uniform scenario with m = 50 tasks and n = 100 workers.
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Fig. 10. Performance comparison of algorithms in non-proportional and non-uniform

scenario with varying number of workers and tasks.

and non-uniform scenario: it achieves higher than 85% overall/outward user happiness

regardless of the number of workers/tasks and performs the worst when the number

of workers and tasks are similar. However, in this scenario, our algorithms are usually
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Fig. 11. Performance comparison of algorithms in proportional and uniform scenario

with varying number of workers (m = 50 tasks).

outperformed by θ-STA algorithm in terms of overall user happiness. In fact, θ-STA

algorithm has a quite reliable performance in this scenario as its overall user happiness

score never drops below 95%.

Fig. 11 and 12 show the performance comparison of algorithms in proportional

and uniform scenario for varying number of workers and tasks, respectively. Here,

Heuristic algorithm always outperforms all other algorithms in terms of overall user

happiness by steadily achieving very close to optimal scores (≥ 97%) regardless of

worker and task counts. On the other hand, ϕ-STA algorithm always has the poorest

performance in terms of all metrics considered here. Since the system is both pro-

portional and uniform, UTA and PSTA algorithms are guaranteed to achieve perfect

outward user happiness due to Theorems 3 and 4, respectively. It is remarkable that
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Fig. 12. Performance comparison of algorithms in proportional and uniform scenario

with varying number of tasks (n = 100 workers).

the increase in the number of tasks improves the performance of UTA and PSTA

algorithms in terms of overall user happiness, while it has a detrimental effect on

them in terms of maximum dissatisfaction ratio.

In Fig. 13, we look at the performance of algorithms in non-proportional and

uniform scenario. We first observe that UTA algorithm generally has the worst per-

formance in terms of overall user happiness, yet it is the only algorithm that ensures

a perfect outward user happiness. Second, the performance of Heuristic algorithm

is significantly worse in this scenario compared to that in the others. In fact, this

is the only scenario where it achieves less than 85% overall user happiness. Similar

to the non-proportional and non-uniform scenario, θ-STA algorithm usually manages

to deliver a higher overall user happiness score than the others when there are more
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Fig. 13. Performance comparison of algorithms in non-proportional and uniform sce-

nario with varying number of workers and tasks.

workers than tasks, but its performance is also worse in this scenario. Besides, it is

significantly outperformed by PSTA and UTA algorithms in terms of outward user

happiness for the most part.

Lastly, in Fig. 14a-b, we compare the running time of all algorithms. We only

provide the results for the proportional and uniform scenario as all of the algorithms

can be run in this scenario and those that are also run in different scenarios have an

almost indistinguishable running time in all scenarios they have been used with. First,

note that the objective of SJA algorithm is to obtain assignments with perfect outward

user happiness in proportional and uniform systems. Our UTA algorithm achieves

the same in not only proportional and uniform systems, but also in non-proportional

and uniform systems in an extremely shorter time (by a few orders of magnitude).

Furthermore, it has the lowest running time among all, which is consistent with its
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Fig. 14. Comparison of algorithms in terms of running time (a-b); Impact of Bmax on

the running time of Heuristic and PSTA algorithms (c).

superior time complexity (O(n log n + mn)). Our other algorithms (Heuristic and

PSTA) are also much more time-efficient than SJA algorithm, though they have

notably larger running time compared to the rest of the algorithms. Nonetheless, it

should be noted that we have assumed a pre-scaling will have to be made in case

budgets and rewards are not defined as integers. Therefore, we used relatively large

budget (up to Bmax = 1000) and hence reward values in all experiments. If pre-

scaling can be avoided (or the task requesters in the system have a rather limited

budget), the running time of Heuristic and PSTA algorithms will decrease linearly

61



with reduced budget values as shown in Fig. 14c. Finally, we observe that increasing

the number of tasks after when there are equal number of workers and tasks in the

system (n = m = 100) either reduces the running time or the increase in the running

time of all algorithms. This is because when there are more tasks than workers,

workers will be able to find their stable partners in a shorter time as they are more

likely to be matched with a task that is at the top of their preference lists.

3.5 Conclusion

In this chapter, we studied the stable task assignment problem in MCS systems.

Different from the classic stable matching problem, the task requesters in an MCS

system may recruit multiple workers within their budget ranges to reinforce the qual-

ity of the sensed data. This makes the generic stability definitions obsolete and the

existing approaches to find stable matchings inapplicable in MCS systems. To address

this problem, we first defined the stability conditions peculiar to MCS systems, and

provided the existence and hardness results for stable task assignments in different

types of MCS systems. Then, we introduced three different stable task assignment

algorithms, namely UTA, PSTA, and Heuristic. We proved that UTA and PSTA algo-

rithms always produce pairwise stable task assignments in uniform and proportional

MCS systems, respectively. Finally, we evaluated the performance of the proposed

algorithms in terms of user happiness through extensive simulations. The results have

shown that our algorithms significantly outperform the state-of-the-art stable task as-

signment algorithms in most scenarios. Specifically, PSTA and Heuristic algorithms

usually achieve the highest outward and overall user happiness, respectively.
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CHAPTER 4

PREFERENCE-AWARE TASK ASSIGNMENT WITH COVERAGE

REQUIREMENTS

4.1 Introduction

In opportunistic mobile crowdsensing, the objective of service requesters is to

have as many of their sensing tasks completed as possible within their budget con-

straints, whereas that of participants (workers) is to collect the highest monetary

reward possible on their trajectories. However, these objectives can conflict and may

result in unhappy service requesters or workers if the matching between them is not

handled carefully. In this chapter, we study the problem of finding task assignments

that fulfill both coverage-aware preferences of service requesters and profit-based pref-

erences of workers in a budget-constrained, opportunistic mobile crowdsensing system.

In the problem studied in the previous chapter, task requesters were assumed to have

additive utility functions based on worker qualities. However, in this study, task re-

questers have non-additive utility functions due to their coverage requirements, which

makes the solutions proposed in the previous chapter inapplicable to the setting con-

sidered here. The key issues that need to be taken into account in this problem and

the studies that partly address them can be summarized as follows:

• Task requester preferences [8, 9, 26]: Each task requester desires to have a

matching that maximizes the coverage over the PoIs that her task needs.

• Budget feasibility [8, 9, 26, 44, 35]: Each task requester has a budget constraint

which should not be violated.
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• Worker preferences [47, 44, 35, 33]: Each worker desires to maximize his net

profit from the system in each task assignment period.

• Stability [47, 44, 35, 33]: Since the objectives above are likely to be in conflict

with each other, they should be achieved in a fair way that results in as few

unhappy users as possible.

In this study, we address all of these issues together and make the following

contributions:

• We formally define the stability conditions for task assignments in coverage-

aware, opportunistic MCS systems with budget constraints.

• We prove that a fully stable task assignment may not exist in some MCS in-

stances, and it is NP-hard even to check whether one exists in a given instance.

• We present a polynomial-time approximation algorithm for the stable task as-

signment problem, and prove that it always produces 4
1−ρ
−stable matchings,

where ρ is the largest reward to budget ratio (normalized between 0 and 1) in

the system.

• We show that a variant of our algorithm has an approximation ratio of 5 in

MCS systems with proportional reward schemes, where the rewards offered to

the workers are proportional to the utility they provide for the tasks.

• We compare the performance of our algorithms with two benchmark algorithms

proposed in [8] and [9] via real-data based, extensive simulations, and show that

our algorithms produce significantly better task assignments in terms of both

user happiness (up to 25%) and achieved coverage (up to 18%), and run up to

four orders of magnitude faster compared to the benchmark algorithms in most

settings.
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4.2 System Model

4.2.1 Assumptions

We assume a system model with a matching platform that receives sensing task

requests T = {t1, t2, . . . , tn} over a set of PoIs P = {p1, p2, . . . , pk}, and determines

the assignments between these tasks and workers (data contributors). Each task t

needs a type of sensed data from a certain subset of PoIs, denoted by P (t) ⊆ P . For

a task, some of the PoIs might be more important than the others due to their spatial

features (e.g., being close to a production plant for an air pollution sensing task),

thus we also let each task t assign a weight vt(p) to each PoI p in P (t).

Let W = {w1, w2, . . . , wm} be the set of registered workers in the system. We

assume that workers are not willing to interrupt their daily schedule, but they accept

to perform the tasks on their trajectories, i.e., opportunistic sensing. According to

the frequency of task assignments and the nature and time sensitivity of tasks in

the system, a different portion and timescale of their future trajectories (e.g., daily,

hourly) can be considered in the task assignment process. Let Xw be the set of all

locations that will be visited by worker w during the considered time frame. Similar

to the previous work [8], we assume that a PoI is covered by worker w if it falls in

the sensing range dw of the worker. Then, the set of PoIs that are covered by worker

w is given by

C(w) = {p ∈ P : d(p, x) ≤ dw,∃x ∈ Xw}, (4.1)

where d(p, x) is the Euclidean distance between the PoI p and x ∈ Xw. The coverage

set of worker w for task t can then be defined as:

Cw
t = C(w) ∩ P (t) (4.2)
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If the requester of task t needs to have some of the PoIs sensed by a deadline that is

earlier than the end of the current assignment cycle, and worker w will not arrive at

the corresponding locations in time according to his trajectory, then we can simply

remove these PoIs from Cw
t . The total utility of a set S of workers for task t is equal

to their total weighted coverage over P (t), which can be calculated by

Ut(S) =
∑
p∈CS

t

vt(p), where CS
t = ∪w∈SC

w
t (4.3)

Consider the instance illustrated in Fig. 15, and let t be a task in this instance with

the following properties:

P (t) = {p1, p2, p3, p4},

vt(pi) = vt(pj) = 1,∀i, j ∈ {1, 2, 3, 4}.

Then, the individual utilities of workers w1 and w2 for task t would be Ut(w1) = 3

and Ut(w2) = 2, since they cover 3 and 2 of the PoIs requested in task t, respectively.

Their joint utility for task t would be Ut({w1, w2}) = 4, which is evidently less than

the sum of their individual utilities. This demonstrates the non-additiveness of the

utility function given in Eq. 4.3.

Moreover, we assume a budget-constrained system model with monetary incen-

tives, where the requester of task t has a budget bt that limits the amount of monetary

incentives to be spent for the completion of task t, and offers each eligible worker w

a reward rt(w) (≤ bt) to cover the PoIs in Cw
t . Let rt(S) be the total rewards offered

to the worker set S (i.e., rt(S) =
∑

w∈S rt(w)). Besides, for each worker w, there is a

cost ct(w) associated with each task t, which worker w can estimate considering the

factors such as cost of delivering the sensed data to the task requester via cellular

networks, energy consumption due to sensing, and privacy risks.
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Fig. 15. An MCS instance with 2 workers (w1, w2) and 4 PoIs (p1, p2, p3, p4). The

trajectories of workers are shown with solid lines.

Let M be a matching between the tasks and the workers in the system. Also,

letM(u) denote the assigned task (worker set) to worker (task) u inM. In order for

M to be a feasible and individually rational matching, it should satisfy the following

conditions:

• a worker w is either unmatched or matched with a task, i.e.,

M(w) = ∅ orM(w) ∈ T , (4.4)

• a task is matched with a subset of workers (which may be ∅), i.e.,

M(t) ⊆ W , (4.5)

• if worker w is matched with task t, the worker set of task t also includes worker
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w, and vice versa, i.e.,

M(w) = t iff w ∈M(t), (4.6)

• no worker w is matched with a task that is not economically beneficial for him,

i.e.,

rt(w) > ct(w) ifM(w) = t, (4.7)

• and, no task t is matched with a set of workers that she cannot afford, i.e.,

∑
w∈M(t)

rt(w) ≤ bt. (4.8)

The worker-task pair (w, t) is said to be a qualified pair if there exists a feasible and

individually rational matching, in which worker w is matched with task t.

Reward schemes. In this study, we consider two different reward schemes: general

and proportional. In the general scheme, there is not any assumed relation between

the rewards a task requester offers to workers and the utility they provide for the

relevant task. However, based on the common practice seen in most of the real-world

applications (e.g., Amazon MTurk [83]), it is natural to see a correlation between the

two. Hence, in the proportional scheme, we assume that for each task t, the amount

of rewards offered to the workers are proportional to their utility. That is

rt(w) = θt × Ut(w), (4.9)

where θt denotes the reward per utility value for task t. It should be noted that a

different task t′ may have a different reward per utility value (i.e., θt ̸= θt′).

A summary of the key notations used in this chapter is presented in Table 5.
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Notation Description

W , T , P Set of workers, tasks and PoIs, respectively

m, n, k Number of workers, tasks and PoIs, respectively

M A feasible & individually rational task assignment

M(u) Assigned task (worker set) to worker (task) u inM

ct(w) Cost of performing task t for worker w

rt(w) Reward offered to worker w to perform task t

gt(w) Profit of worker w from task t (rt(w)− ct(w))

rt(S)
∑

w∈S rt(w)

P (t) PoI set of task t

vt(p) Weight of PoI p ∈ P (t) for task t

C(w) Set of PoIs covered by worker w

Cw
t C(w) ∩ P (t)

Ut(S) Utility of S ⊆ W for task t

bt Budget of task t

bMt Remaining budget of task t inM

δt Dissatisfaction ratio of task t

Lw Preference list of worker w

dw Sensing range of worker w

ρ maxw∈W,t∈T rt(w)/bt

Table 5. Notations used in Chapter 4.

4.2.2 Problem Formulation

Below, we formally define the stability conditions for our settings.
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Definition 10 (Unhappy coalition). Given a matching M, a task t and a subset S

of workers form an unhappy coalition (denoted by ⟨S, t⟩) if the following conditions

hold for a subset S ′ of the workers assigned to task t inM:

• task t would be better off with S than with S ′, i.e.,

Ut(S ∪ (M(t) \ S ′)) > Ut(M(t)), (4.10)

• task t can replace S ′ with S without violating her budget constraint, i.e.,

rt(S)− rt(S
′) ≤ bMt , (4.11)

where bMt is the remaining budget of task t inM (i.e., bMt = bt−
∑

w∈M(t) rt(w)),

• every worker w in S prefers task t to task t′ to whom he is currently assigned

inM, i.e.,

∀w ∈ S, gt(w) > gt′(w), (4.12)

where gt(w) = rt(w)− ct(w) is the net profit of performing task t for worker w,

and gt′(w) = 0 if worker w is currently unmatched (i.e.,M(w) = t′ = ∅).

Given a worker-task pair (w, t), if there exists an unhappy coalition ⟨S, t⟩ such

that w ∈ S, we call this pair a coalitionally unhappy pair.

Definition 11 (Stable matching). A matching M is (coalitionally) stable if it does

not contain any unhappy coalitions.

Note that this is the strongest stability definition in many-to-one matching prob-

lems (see [65] for weaker stability definitions). Therefore, if a matching is stable, no

one in the matching has even a small incentive to deviate from their current assign-

ment. However, even with additive utilities where the total utility of a set of workers
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for a task is simply the sum of their individual utilities, a stable matching may not

exist, and checking the existence (and finding one if exists) is NP-hard [65]. Since

non-additive utilities are a more generalized form of additive utilities (i.e., a prob-

lem instance with additive utilities can easily be converted to one with non-additive

utilities, but not vice versa), we conclude that the same existence and hardness re-

sults also apply to the problem of finding stable matchings in our settings where the

utilities of workers for tasks are non-additive as we have

Ut({wi, wj}) < Ut({wi}) + Ut({wj}). (4.13)

when Ct(wi) ∩ Ct(wj) ̸= ∅. The following theorem formally proves nonexistence of

optimal solutions in some MCS instances.

Theorem 6. There exist MCS instances that do not allow for a stable matching.

Proof. We prove by giving an example, which is described in Table 6. All of the

feasible and individually rational matchings that can be defined on this instance is

also provided in Table 7. Since each matching contains at least one unhappy coalition,

we conclude that no stable matching exists in this instance.

Due to the nonexistence and hardness results for stable matchings, we consider

the following relaxation. First, let St be the set of all worker sets that form an

unhappy coalition with task t in a given matchingM. Formally,

St = {G ⊆ W : ⟨G, t⟩ is an unhappy coalition}. (4.14)

Also, ∀S ∈ St, let

ES = {E ⊆M(t) : rt(S) ≤ bMt + rt(E)}, (4.15)
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Rewards

W C(w) t1 t2 T P (t) bt

w1 p1, p2, p3, p4 4 0 t1 p1−9 5

w2 p5, p6, p7, p10, p11 3 2 t2 p10−12 3

w3 p8, p9, p12 2 3

Table 6. An MCS instance where no fully optimal or stable task assignment exists.

The weights of the PoIs are identical for both tasks, and cw(t) = 0 for all

(w, t) pairs.

M Unhappy coalition δt1 δt2

t1 → ∅; t2 → ∅ ⟨{w1}, t1⟩ ∞ ∞

t1 → ∅; t2 → w2 ⟨{w1}, t1⟩ ∞ 1

t1 → ∅; t2 → w3 ⟨{w1}, t1⟩ ∞ 2

t1 → w1; t2 → ∅ ⟨{w2}, t2⟩ 5/4 ∞

t1 → w2; t2 → ∅ ⟨{w3}, t2⟩ 5/3 ∞

t1 → w3; t2 → ∅ ⟨{w2}, t2⟩ 5/2 ∞

t1 → w2, w3; t2 → ∅ ⟨{w3}, t2⟩ 1 ∞

t1 → w1, t2 → w2 ⟨{w2, w3}, t1⟩ 5/4 1

t1 → w1, t2 → w3 ⟨{w2}, t2⟩ 1 2

t1 → w2, t2 → w3 ⟨{w1}, t1⟩ 4/3 1

t1 → w3, t2 → w2 ⟨{w2}, t1⟩ 5/2 1

Table 7. All feasible matchings that can be defined on the instance given in Table 6

along with one of the unhappy coalitions they contain and the dissatisfaction

ratios of tasks.
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and

SR = argmin
E∈ES

Ut(E \ (S ∪M(t))). (4.16)

That is, SR ⊆M(t) is the minimum loss worker set that can be replaced by S within

the budget constraint of task t. Then, we can calculate the dissatisfaction ratio of

task t in this matching by:

δt =



1, if St = ∅

∞, if St ̸= ∅,M(t) = ∅

max
S∈St

{
Ut(S∪(M(t)\SR))

Ut(M(t))

}
, otherwise.

(4.17)

Note that the minimum value that δt can have is 1, which indicates that task t

is perfectly happy in the matching. Finally, we can formally define our objective

function as:

maximize min
t∈T

1

δt
. (4.18)

Consider the instance given in Table 6. Based on the dissatisfaction ratios of

tasks in different feasible matchings provided in Table 7, the optimal matching with

respect to (4.18) is t1 → w1, t2 → w2 where the value of (4.18) is 0.8. The following

definition will be used hereafter to signify how optimal a matching is in terms of

stability.

Definition 12 (α-stable matching). A matchingM is α-stable (α ≥ 1) if

max
t∈T

δt ≤ α. (4.19)
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Algorithm 5: Initialize (W , T ),M
Input: W : Set of workers

T : Set of tasks

M: Matching between W and T

1 foreach w ∈ W do

2 Lw ← order T by non-increasing value of gt(w)

3 Lw ← Lw \ {t ∈ Lw | gt(w) ≤ 0}

4 indexw = 1

5 M(w) = ∅

6 foreach t ∈ T do

7 foreach w ∈ W do

8 xt(w) = 0, ηt(w) = 0

9 foreach p ∈ P (t) do

10 zt(p, w) = 0

11 Ht = ∅

12 M(t) = ∅

13 At = false

4.3 Proposed Solution

The outline of our polynomial-time approximation algorithm is presented in Al-

gorithm 6. The main idea behind it is to check the potential assignments between

the qualified pairs following the order in the preference lists of the workers, and make

matching decisions by converting the worker selection problem to an online optimiza-

tion problem. It begins by calling Algorithm 5, which forms the preference list Lw
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Algorithm 6: StableTaskAssignment (W , T , σ)
Input: W : Set of workers

T : Set of tasks

σ: Reward scheme (general or proportional)

1 LetM be a matching between W and R

2 Initialize(W , T ,M)

3 Stack.push(W)

4 while Stack is not empty do

5 w ← Stack.pop()

6 if indexw ≤ |Lw| then

7 t ← (indexw)th task in Lw

8 indexw = indexw + 1

9 M(w) = t,M(t) =M(t) ∪ {w}

10 if σ is general then

11 R ←WorkerSelection(t, w,M)

12 else

13 R ←WorkerSelectionProportional(t, w,M)

14 foreach w′ ∈ R do

15 M(t)←M(t) \ w′,M(w′) = ∅

16 Stack.push(w′)

17 returnM

of each worker w5 (i.e., tasks in non-increasing order of profits they will provide to

5A worker can also form his preference list himself and submit only this list to the
platform, if he does not like to disclose his cost (or profit) for each task.
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worker w), and initializes the matching and the other required variables. Throughout

its execution, our algorithm maintains a stack that consists of the workers that are

unmatched and whose preference lists have not been entirely traversed by the algo-

rithm (i.e., indexw ≤ |Lw|). In each iteration of the while loop, it pops one (w) of

these workers from the stack and attempts to assign him to the next task (t) in his

preference list. Although the matching is temporarily updated by assigning worker

w to task t (line 9), the actual decision of acceptance is made by calling Algorithm

7 or Algorithm 8 (which are described later in this section) according to the adopted

reward scheme. These algorithms return the workers (R) that are removed from the

current assignment set of task t. Then, the algorithm sets these workers free again

and pushes them back onto the stack (lines 14-16).

Below, we present the performance guarantees of the algorithm with both gen-

eral and proportional reward schemes by leveraging the analogy between the worker

selection step of the algorithm (lines 11 and 13) and the online budgeted maximum

coverage (OBMC) problem. To this end, we first give a brief description of this

problem.

OBMC problem: Assume that a predefined budget B and a universal set U =

{u1, u2, . . . , up̂} with associated weights {v̂i : i = 1, . . . , p̂} are given. In each iteration

i, a set Si ⊆ U with a cost of ci is introduced in an online manner, and the objective

is to maximize the weighted coverage over U within the budget constraint by keeping

a certain subset of the introduced sets S = {S1, S2, . . . , Sn̂}. However, the budget

limit cannot be exceeded at any time (i.e., the total cost of the retained sets should

always be less than B), and a set that has been rejected/preempted at some point

cannot be included in the solution later.

Theorem 7. (Rawitz and Rosen [84]) There is a 4
1−r

-competitive online deterministic
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algorithm for the OBMC problem, where r = maxSi∈S
ci
B
.

4.3.1 General Reward Scheme

We first describe the task selection mechanism for the general reward scheme by

giving a pseudo-code description in Algorithm 7. This algorithm is adapted from the

OBMC algorithm mentioned in Theorem 7 to our setting (also optimized for running

time, which was not a primary concern in [84])). It accepts a new set if the ratio of

the additional utility (i.e., weighted coverage) the set will provide to its cost is larger

than 2 times the ratio of the total utility to the total cost in the current solution (line

6). If accepting the set violates the budget constraint, the sets in the current solution

are discarded one by one in non-decreasing order of efficiency (utility provided per

cost) until the budget constraint is satisfied. Another unique aspect of this algorithm

is that when it calculates the total utility in the current solution, it also accounts for

the distinct utility that was provided by the set that was discarded the latest as if it

had been partially kept in the solution. For each task t, the workers in this imaginary

solution are stored in Ht, the fraction of Cw
t used in the imaginary solution is stored

in xt(w), the efficiency of a worker w in Ht is stored in ηt(w), and the fraction of a

PoI p covered by Cw
t is stored in zt(p, w). Interested readers are referred to [84] for

more detailed descriptions of these variables.

Theorem 8. Algorithm 6 always produces 4
1−ρ

-stable matchings in an MCS system

with a general reward scheme, where

ρ = max
w∈W,t∈T

(
rt(w)

bt
). (4.20)

Proof. We prove this by contradiction. Assume that there is an unhappy coalition

⟨Ŝ, t̂⟩ that prevents the final matching produced by the algorithm from being a 4
1−ρ

-

stable matching. Thus, based on Definition 12, there must be a set S ′ ⊆ M(t̂) such
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Algorithm 7: WorkerSelection (t, w,M)

Input: t, w,M: task evaluating worker w, candidate worker, current

matching

1 xt(w) = 1

2 foreach p ∈ Cw
t do

3 zt(p, w) = 1−
∑

w′∈Ht
zt(p, w

′)

4 ηt(w) = ηt(w) + zt(p, w)vt(p)

5 ηt(w) = ηt(w)× bt/rt(w)

6 if ηt(w) ≤ 2×
∑

p∈P (t)

∑
w′∈Ht

zt(p, w
′)vt(p) then return {w}

7 insert w to Ht by maintaining the order, i.e., Ht = {ŵ1, ŵ2, .., ŵq} s.t.

ηt(ŵi) ≥ ηt(ŵi+1), ∀i < q

8 k ← max{k′ ≤ |Ht| : γ =
∑k−1

i=1 rt(w) < bt}

9 bMt = bt − γ

10 w′ ← kth worker in Ht

11 β = min{bMt /rt(w
′), 1}

12 foreach p ∈ Cw′
t do zt(p, w

′) = β
xt(w′)

zt(p, w
′)

13 R = ∅

14 if xt(w
′) = 1 and β < 1 then R ← {w′}

15 xt(w
′) = β

16 for i← |Ht| down to k + 1 do

17 ŵ ← ith worker in Ht

18 Ht.remove(ŵ)

19 if xt(ŵ) = 1 then R ← R∪ ŵ

20 return R
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that

Ut̂(Ŝ ∪ (M(t̂) \ S ′)) >
4× Ut̂(M(t̂))

1− ρ
(4.21)

and rt̂(Ŝ) ≤ bMt̂ + rt̂(S
′).

LetW = {w1, w2, . . . , wl} be the set of workers that have been matched to task t̂

at some point during the course of the execution of Algorithm 6. The corresponding

coverage sets of these workers are C t̂ = {C
wi

t̂
: 1 ≤ i ≤ l}, and the rewards offered to

these workers by task t̂ are given as Rt̂ = {rt̂(wi) : 1 ≤ i ≤ l}.

Note also that the algorithm attempts to match a single worker-task pair at a

time, and if a worker w is first matched with a task t (line 9) and then removed from

M(t) at some point (lines 14-16), the algorithm will never attempt to match him

with task t afterwards, instead it will try to match him with other tasks which come

after task t in his preference list Lw. Thus, from a task’s perspective, say task t̂,

this is exactly the same problem with the OBMC problem, as we have a collection C t̂

of sets with associated costs Rt̂ that arrive one at a time, and that cannot be later

included to the solutionM(t̂) after they are discarded, and the goal of task t̂ is also

to maximize the weighted coverage within the budget. In fact, we can map the two

problems to each other as follows:

U ←→ P (t̂),

S ←→ C t̂,

Si ←→ Cwi

t̂
,

ci ←→ rt̂(wi),

B ←→ bt̂.

(4.22)

For this reason, Algorithm 6 runs the adapted version of the OBMC algorithm (i.e.,

79



Algorithm 7) as a subroutine (line 11) to decide which workers to keep in the worker

set of a task after the algorithm attempts to assign another worker to her. Then, by

Theorem 7, we have that

Ut̂(Sbest) <
4× Ut̂(M(t̂))

1− ρt̂
(4.23)

where Sbest ⊆ W is the best set that could be assigned to task t̂ providing the highest

total weighted coverage within the budget constraint (i.e., an optimal solution of the

corresponding online budgeted maximum coverage problem), and ρt̂ = maxw∈W
rt̂(w)

bt̂
.

Note that Ŝ cannot include a worker that is not in W , thus we have

(
Ŝ ∪ (M(t̂) \ S ′)

)
⊆ W . (4.24)

That is because, by Definition 10, all workers in Ŝ must be preferring task t̂ to the

tasks they are currently assigned. However, if a worker w is currently matched with

task t′, the algorithm should have attempted to assign him all the other tasks that

precede task t′ in his preference list. Then, if worker w prefers task t̂ to task t′, which

means that task t̂ also precedes task t′ in his preference list, we must have w ∈ W .

Due to (4.24) and the fact that Sbest is the best feasible set in W for task t̂, we

have

Ut̂(Sbest) ≥ Ut̂(Ŝ ∪ (M(t̂) \ S ′)). (4.25)

Then, combining the inequalities (4.21), (4.23) and (4.25), we get

4× Ut̂(M(t̂))

1− ρt̂
>

4× Ut̂(M(t̂))

1− ρ
(4.26)

which is a contradiction as ρ ≥ ρt̂.
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Algorithm 8: WorkerSelectionProportional (t,w,M)

Input: t: Task evaluating worker w

w: Candidate worker

M: Current matching

1 if At is false and rt(w) ≥ 0.2× bt then

2 At ← true

3 µ←M(t)

4 M(t)← {w}

5 bt = bt − rt(w)

6 foreach w′ ∈ W \ {w} do

7 Cw′
t ← Cw′

t \ Cw
t

8 Ht ← ∅

9 R ← ∅

10 foreach w′ ∈ µ do

11 M(t) =M(t) ∪ {w′}

12 ηt(w
′) = 0

13 R← R ∪ WorkerSelection(t, w′,M)

14 return R

15 else

16 return WorkerSelection(t, w,M)

4.3.2 Proportional Reward Scheme

We propose Algorithm 8 for the proportional reward scheme. It directly runs

Algorithm 7 (line 16) for task t until the main algorithm attempts to assign her a

worker w that satisfies rt(w) ≥ 0.2×bt. When this happens, the algorithm finalizes the
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assignment of worker w to task t (i.e., in the end, they will be matched to each other),

and updates the budget of task t (line 5) and coverage sets of workers (lines 6-7) to

reflect the fact that a certain proportion of task t’s budget is not available anymore,

and that the utility of the other workers should be computed considering only the

PoIs that are not covered by worker w. It also attempts to re-assign the previous

worker set of task t to her considering the modified budget and coverage sets (lines

10-14). In the subsequent iterations in which the main algorithm attempts to assign

another worker to task t, since At is previously set to true (line 2), the algorithm

continues to run Algorithm 7 with the modified budget of task t and coverage sets of

workers (line 16).

Theorem 9. Algorithm 6 always produces 5-stable matchings in the presence of a

proportional reward scheme.

Proof. We prove it by contradiction. LetM be the returned matching by the algo-

rithm, and ⟨Ŝ, t̂⟩ be an unhappy coalition inM that, for some S ′ ⊆M(t̂), satisfies

Ut̂(Ŝ ∪ (M(t̂) \ S ′)) > 5× Ut̂(M(t̂)) (4.27)

and rt̂(Ŝ) ≤ bMt̂ + rt̂(S
′).

Thus, ⟨Ŝ, t̂⟩ preventsM from being a 5-stable matching according to Definition 12.

If At̂ is true in the end, thenM(t̂) includes a worker w such that

rt̂(w) ≥ 0.2× bt̂. (4.28)

Since the utility Ut̂(w) of worker w is proportional to his reward rt̂(w), we have

Ut̂(M(t̂)) ≥ Ut̂(w) = θt × rt̂(w) (4.29)

Also, given the budget limit of task t̂, the total weighted coverage that the best
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feasible worker set can provide for task t̂ is at most

Umax = θt × bt̂. (4.30)

Then, by (4.28), (4.29) and (4.30), we get

5× Ut̂(M(t̂)) ≥ Umax (4.31)

≥ Ut̂(Ŝ ∪ (M(t̂) \ S ′)) (4.32)

which contradicts (4.27).

On the other hand, if At̂ is false in the end, then only Algorithm 7 has been run

for task t, similar to the case with the general reward scheme, thus the inequality

(4.23) must hold here as well. Since the inside of the if block in Algorithm 8 is never

executed, we have rt̂(w) < 0.2× bt̂, for all w ∈ W . Then, (4.23) becomes

Ut̂(Sbest) < 5× Ut̂(M(t̂)) (4.33)

Following the same steps ((4.24) and (4.25)) in the proof of Theorem 8, we obtain

5× Ut̂(M(t̂)) > 5× Ut̂(M(t̂)) (4.34)

which is also false and completes the proof.

4.3.3 Feasibility, Rationality and Efficiency Analysis

We lastly show that the proposed algorithms always produce individually rational

and feasible matchings, and analyze their asymptotic running times.

Theorem 10. Algorithm 6 always produces individually rational and feasible match-

ings.

Proof. Note that a worker can only get matched with a task in his preference list
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(line 7), and matching with any of the tasks in his preference list is profitable for him

since those that are not so are removed from his preference list in Algorithm 5 (line

3). Thus, we conclude that the produced matchings are individually rational. It is

clear from lines 9 & 15 of Algorithm 6 that the produced matchings are feasible in

terms of mutual partnership. As for the budget feasibility, when the reward scheme

is general, Algorithm 7 returns (line 8) the set of the least efficient workers that need

to be removed from the worker set of task t to stay within the budget constraint

bt, which are then actually removed from the worker set of task t in lines 14-16 of

Algorithm 6. When the reward scheme is proportional, Algorithm 8 either only runs

Algorithm 7 (line 16), or executes the inside of the if block beginning in line 1 at

most once for each task t, where the budget of task t is decreased (line 5) by the

reward amount that will be paid to the accepted worker w. After that, it always runs

Algorithm 7 for task t. Therefore, the produced matchings are also feasible.

We note that similar to the PSTA algorithm of Chapter 3, Algorithm 6 can

also be run in a distributed manner [79], because in each iteration of the main while

loop, the matching is updated according to the preference relation between a single

worker-task pair (w, t), so the changes in the matching can be communicated by this

worker-task pair to the other users that get affected by these changes (i.e., workers

in the set R computed in line 11 or 13 based on the reward scheme).

Running time. The initialization (i.e., running Algorithm 5) takes O(knm +

mn log(n)), where the latter term is due to sorting T for each worker. In Algorithm

6, each worker w is pushed onto the stack at most |Lw| ≤ T times, thus the while loop

iterates at most nm times. The costliest operations in the while loop for the general

and proportional reward schemes are running Algorithm 7 (line 11) and Algorithm

8 (line 13), respectively. Algorithm 7 runs in O(km) time. Since the inside of the if
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block in Algorithm 8 will be run at most once and hence Algorithm 7 will be called

at most 2 times for each worker-task pair (from lines 13 and 16 in Algorithm 8),

the amortized cost of Algorithm 8 also becomes O(km). Therefore, the worst-case

running time of our approximation algorithm is O(knm2 + mn log(n)) regardless of

the reward scheme.

4.4 Evaluation

In this section, we present an extensive evaluation of the proposed algorithms in

MCS systems with both general and proportional reward schemes.

4.4.1 Simulation Settings

Similar to [8], we utilize two real data sets [85, 86] that consist of the trajectories

of 39 and 92 participants from New York City (NYC) and the campus of the Korea

Advanced Institute of Science and Technology (KAIST), respectively. We create 300

PoIs at random locations that are on the trajectory (i.e., within 50 meters) of at least

one participant. Fig. 16 and 17 show the trajectories in the data sets and an example

of PoI distribution. Note that the way we determine PoI locations ensures that PoIs

are, as it can be seen in both figures, mostly in hot spots that are visited frequently

by participants as we would expect to see in a real-world scenario.

We let the trajectories in the data sets to be the trajectories of the workers in our

system. To look at the impact of the number of workers, we use random-sampling

to obtain a worker set of certain size. According to the experiment requirements,

we create n tasks whose budgets are assigned randomly from [10, 100]. In order to

determine the PoI list of a task t, we first select a random number s from [1, 25]. Then,

we randomly insert s of the all PoIs to P (t) after assigning a random weight value

from (0, 1]. Since we utilize deterministic trajectories, the lists of PoIs to be visited
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Fig. 16. Trajectories of the workers in the KAIST data set (circles denote the PoIs).

Fig. 17. Trajectories of the workers in the NYC data set (circles denote the PoIs).

by workers and the tasks they can complete are known in advance. The assignment

of the rewards for different reward schemes is made as follows:

• General reward scheme: For each worker-task pair (w, t), we assign the

reward rt(w) randomly from the range [0.05× bt, 0.95× bt]. If C
w
t = ∅, we set
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rt(w) = 0.

• Proportional reward scheme: For each worker-task pair (w, t), the reward

is set as

rt(w) = bt ×
∑

p∈Cw
t
vt(p)∑

p∈P (t) vt(p)
. (4.35)

Since the rewards are already determined based on the randomly assigned budget

values, we let ct(w) = 0 for all worker-task pairs (w, t)6.

4.4.1.1 Benchmark Algorithms

In the simulations, we let CSTAG and CSTAP denote the execution of the pro-

posed Coverage-aware S table Task Assignment algorithm with general and propor-

tional reward schemes, respectively. We compare the performance of these algorithms

with that of Maximum Coverage Quality Assignment (or MCQA) algorithm proposed

in [8] and Greedy algorithm proposed in [9] for the problem of finding the worker set

with the maximum total weighted coverage over a given set of PoIs. They both are

originally proposed for the MCS systems with only a single task requester, m work-

ers, and k PoIs. The MCQA algorithm has an approximation ratio of (1 − 1/e) for

the aforementioned optimization problem and a time complexity of O(kn5). On the

other hand, the Greedy algorithm does not have a theoretical performance guarantee

and runs in O(knm2). We adapt them to our settings with multiple task requesters

as follows. For each task t in the system, we first find the set S of workers that,

among all the tasks in the system, prefer task t the most. Then, we separately run

the MCQA/Greedy algorithm for each such (t, S) pair with P (t) being the set of

6Introducing extra, random cost values naturally reduces the number of qualified
pairs and consequently the average coverage quality, but it does not have a notable
effect on the relative performance of the algorithms.
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PoIs, and finalize the assignments made in each run. Lastly, for each worker w that

is still unmatched, we traverse his preference list Lw from the beginning, and match

him with the first task that benefits from hiring him (i.e., worker w increases the

coverage quality of task t) and has sufficient budget to do so. These adapted versions

are denoted by MCQA* and Greedy* in the simulations.

4.4.1.2 Performance Metrics

Here, we introduce the performance metrics that will be used in the evaluation

of the results.

• Stability success ratio (%): This metric shows how often an algorithm achieves

the best known upper-bound in terms of stability in different settings. Specifi-

cally, letM1,M2, . . . ,M100 be the matchings produced by an algorithm A in 100

consecutive runs on different MCS instances. Also let

s(Mi, α) =


1, ifMi is an α-stable matching,

0, otherwise.

(4.36)

Then, the stability success ratio of A is calculated by

100∑
i=1

s(Mi,
4

1− ρ
) (4.37)

for the MCS systems with a general reward scheme, and by

100∑
i=1

s(Mi, 5) (4.38)

for the MCS systems with a proportional reward scheme.

• User happiness (%): This quantifies the user happiness based on the stability of
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the matching as follows:

100×

(
1− # of coalitionally unhappy pairs

# of qualified pairs

)
(4.39)

• Stability (σ): This is the value of the objective function defined in (4.18), and in-

dicates that the produced matching is (1/σ)-stable. If there is not any unhappy

coalition in the matching, then σ = 1 (by definition of δt).

• Average coverage quality (%): This is the average weighted coverage that the pro-

duced matching,M, provides for the tasks, or formally:

100

n
×
∑
t∈T

Ut(M(t))∑
p∈P (t) vt(p)

. (4.40)

• Running time: In order to show the scalability of the algorithms, we also present

their running times with increasing number of workers/tasks/PoIs on an Intel core

i7 processor with 16 GB memory and 2.5 GHz speed.

Lastly, we note that all results provided in this section are the average of the

results obtained in 100 runs (each with a different MCS instance).

4.4.2 Results

We first analyze the results for the KAIST data set. Fig. 18 & 19 show the

impact of the number of tasks n on the performance of the algorithms with general

and proportional reward schemes, respectively. First, note that the performances of

the MCQA* and Greedy* algorithms in terms of stability (Fig. 18b and Fig. 19b)

deteriorate significantly as n increases. This is due to the fact that these algorithms

do not consider the system as a whole, and aim to maximize the coverage for each

task separately. However, since they optimize the assignments for individual tasks
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Fig. 18. General setting: performance comparison against varying number of tasks in

the KAIST data set (m = 92).

extensively (which, in turn, increases their running time significantly as can be seen

in Fig. 26), they outperform the other algorithms when n is small in terms of user

happiness (Fig. 18c and Fig. 19c) and average coverage quality (Fig. 19d).

In terms of stability success ratio, the CSTAG and CSTAP algorithms produce

perfect task assignments in the general and proportional settings, respectively, as

expected (due to Theorem 8 & 9), and vastly outperform the other algorithms. We see

that the CSTAG algorithm occasionally fails to produce perfect assignments in terms

of stability success ratio in the proportional setting, which indicates that assigning a
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Fig. 19. Proportional setting: performance comparison against varying number of

tasks in the KAIST data set (m = 92).

task t with the first worker w such that rt(w) ≥ 0.2 × bt (lines 1-14 in the CSTAP

algorithm) is required to achieve 5-stable matchings. Yet, this comes with a trade-off

as the CSTAP algorithm yields significantly lower stability scores (σ) compared to the

CSTAG algorithm as seen in Fig. 19b. Since the Greedy* algorithm selects workers

according to the ratio of how much utility they will bring for the tasks to the reward

they will be paid, its performance is much better than the MCQA* algorithm in the

proportional setting where the value of the proposed reward per utility is constant

for all workers.
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Fig. 20. General setting: performance comparison against varying number of workers

in the KAIST data set (n = 15).

In the average coverage quality graphs (Fig. 18d and 19d), we see that the

average coverage decreases for all algorithms with increasing n as there will be fewer

workers assigned to each task. We also see that the coverage scores in the proportional

setting are remarkably larger than those in the general setting mainly because of the

discrepancy between reward and utility values in the latter setting (i.e., a high reward

does not indicate a high utility for tasks, unlike the proportional setting). It is also

noteworthy that in terms of coverage, the proposed algorithms mostly outperform the

MCQA* and Greedy* algorithms, whose sole objective is to maximize the coverage.
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Fig. 21. Proportional setting: performance comparison against varying number of

workers in the KAIST data set (n = 15).

This demonstrates that taking user preferences into account does not necessarily yield

less efficient assignments in terms of system-level utility metrics such as coverage.

Next, we look at the performance of the algorithms with varying number of

workers in Fig. 20 & 21. Except for the user happiness results, we observe that

increasing the number of workers m has a similar impact on the performance of the

MCQA* algorithm with decreasing the number of tasks n. This is because both

changes result in a smaller ratio of n to m (i.e., task scarcity), which alleviates the

deficiency of the MCQA* algorithm in handling multi-task assignments. This is also
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Fig. 22. General setting: performance comparison against varying number of tasks in

the NYC data set (m = 39).

mostly true for the Greedy* algorithm, however its performance in terms of stability

success ratio in the proportional setting is more stable. We note that the changes in

the number of tasks or workers do not have a significant impact on the stability and

stability success ratio scores of the proposed algorithms in the proportional setting

as seen in Fig. 19a-b and 21a-b. Another remarkable point is that the MCQA*

and Greedy* algorithms have almost identical performance in the general setting

with varying n and m values, yet their performance in the proportional setting is

quite different. Specifically, in terms of stability success ratio and user happiness,

94



0 5 10 15 20 25

# of tasks (n)

0

20

40

60

80

100

S
ta

b
ili

ty
 s

u
c
c
e
s
s
 r

a
ti
o
 (

%
)

CSTA
G

CSTA
P

MCQA*

Greedy*

(a)

0 5 10 15 20 25

# of tasks (n)

0

0.2

0.4

0.6

0.8

1

S
ta

b
ili

ty
 (

)

CSTA
G

CSTA
P

MCQA*

Greedy*

(b)

0 5 10 15 20 25

# of tasks (n)

40

50

60

70

80

90

100

U
s
e
r 

h
a
p
p
in

e
s
s
 (

%
)

CSTA
G

CSTA
P

MCQA*

Greedy*

(c)

0 5 10 15 20 25

# of tasks (n)

20

30

40

50

60

70

80

A
v
e
ra

g
e
 c

o
v
e
ra

g
e
 q

u
a
lit

y
 (

%
)

CSTA
G

CSTA
P

MCQA*

Greedy

(d)

Fig. 23. Proportional setting: performance comparison against varying number of

tasks in the NYC data set (m = 39).

the Greedy* algorithm mostly outperforms the MCQA* algorithm, while it is the

opposite in terms of stability and average coverage quality.

Fig. 20 & 21 show that the CSTAG algorithm always outperforms the MCQA*

algorithm in terms of user happiness (by up to 25%) regardless of the number of

workers, but it is slightly outperformed by the Greedy* algorithm when m is larger

than 70 in the proportional setting, and that the performance of the proposed algo-

rithms mostly degrades as m increases. We observe that all algorithms achieve higher

coverage scores with increasing m values, which is naturally the opposite of what we

95



15 20 25 30 35 39

# of workers (m)

0

20

40

60

80

100

S
ta

b
ili

ty
 s

u
c
c
e
s
s
 r

a
ti
o
 (

%
)

CSTA
G

MCQA*

Greedy*

(a)

15 20 25 30 35 39

# of workers (m)

0

0.1

0.2

0.3

0.4

0.5

0.6

S
ta

b
ili

ty
 (

)

CSTA
G

MCQA*

Greedy*

(b)

15 20 25 30 35 39

# of workers (m)

0

20

40

60

80

100

U
s
e
r 

h
a
p
p
in

e
s
s
 (

%
)

CSTA
G

MCQA*

Greedy*

(c)

15 20 25 30 35 39

# of workers (m)

0

10

20

30

40

A
v
e
ra

g
e
 c

o
v
e
ra

g
e
 q

u
a
lit

y
 (

%
)

CSTA
G

MCQA*

Greedy*

(d)

Fig. 24. General setting: performance comparison against varying number of workers

in the NYC data set (n = 10).

see with increasing n values. This is because if there are more workers per task in

the system, the competition between tasks will be less severe, and each task will be

assigned to a higher number of workers, on average. However, the budget constraints

of the tasks limit the number of workers that can be assigned to them, hence we

start to see a smaller or no increase in coverage after some point, especially in the

proportional setting. We also note that the stability of the matchings produced by

the proposed algorithms is significantly higher than the theoretical upper-bound (0.2)

in the proportional settings (Fig. 19b & 21b). Besides, Fig. 20b & 21b demonstrate
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Fig. 25. Proportional setting: performance comparison against varying number of

workers in the NYC data set (n = 10).

that our algorithms always significantly outperform the MCQA* and Greedy* algo-

rithm in terms of σ. The difference in σ is especially big (up to 0.6) when the ratio

of n to m is larger.

In order to demonstrate that the results provided above are not specific to a

data set, we also examine the performance of the algorithms in the NYC data set in

Fig. 22, 23, 24 & 25. The proposed algorithms in general perform better than the

benchmark algorithm as in the KAIST data set. The results in both data sets are

similar, thus the majority of our comments above for the KAIST data set also apply
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to the results for the NYC data set. However, there are some differences in results

we see in the NYC data set. The first significant difference can be seen between Fig.

21c and Fig. 25c. Here, we see that increasing the number of workers continues to

improve the achieved coverage in the NYC data set, while there is mostly little to

no improvement in the KAIST data set. This is primarily because of the limited

number of workers (39) available in the NYC data set. That is, since the tasks still

have budget for more workers, adding new workers to the system simply expands the

coverage. This can also be partially observed in Fig. 21 up until m = 60. Another

noteworthy difference is in the user happiness results in proportional setting. All

algorithms accomplish better user happiness scores (up to 20%) in the NYC data set

compared to those in KAIST data set (i.e., Fig. 19b vs. Fig. 23b and Fig. 21b vs.

Fig. 25b). This might be because the trajectories of the workers in the NYC data

set are more dispersed than those in the KAIST data set (see Fig. 16 & 17), which,

in turn, reduces the overall competition between the tasks as such a difference in the

trajectories implies that the PoIs covered by the workers differ more in the NYC data

set, and the workers are hence favored by different tasks.

Lastly, we compare the running times of the algorithms in Fig. 26. In order to

show the scalability of the algorithms for large numbers of tasks, workers and PoIs, we

generated a synthetic data set in a 3,000 m × 3,000 m area with k randomly located

PoIs, m workers whose trajectories are created using the random-walk mobility model

(as in [8]) for 2,000 meters (with a direction change at every 200 meters), and n tasks

whose PoI sets and budgets are determined exactly as in the real data sets. Since

the proportional setting allows us to compare the running times of all algorithms, the

rewards are assigned using the proportional reward mechanism (the running times of

the MCQA*, Greedy* and CSTAG algorithms in proportional setting are similar to

their running times in the general setting).
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Recall that in the MCQA* algorithm, the original MCQA algorithm is run sep-

arately for each task t and the set Qt of workers that prefer task t the most, and

the time complexity of each such run is O(k̂m̂5), where k̂ = |P (t)| and m̂ = |Qt|.

Since fewer tasks in the system means that for each task t, there will be more workers

that prefer t the most (i.e., a larger |Qt|), the running time of the MCQA* algorithm

increases when n decreases (Fig. 26a) or m increases (Fig. 26b). The time com-

plexity of the original Greedy algorithm is O(knm2), and its running time decreases

with increasing n values up until n = 25 due to the same reason (i.e., fewer workers

per task). After this point, the second phase of the Greedy* algorithm, which also

has a time complexity of O(knm2) and is where the algorithm tries to match the

workers that could not get matched with any tasks during the first phase as pro-

posed in our adaptation, starts to dominate the running time and we begin to see

a linear growth. In these figures, we also see that the running times of the CSTAG

and CSTAP algorithms are mostly a few orders of magnitude smaller than that of

the MCQA* algorithm. This is simply because of the superior time complexity of

these algorithms: O(knm2 +mn log(n)). They also run significantly faster than the

Greedy* algorithm. Note that while the complexity of proposed algorithms will be

the same as the Greedy* algorithm, because log(n) ≪ km for most values used in

practice, their actual running times are less than that of the Greedy* algorithm. This

is because the preference list of each worker in the proposed algorithms contains only

a limited number of tasks as a rational worker will accept only the tasks that request

data from some of the PoIs on his trajectory (line 3 of Algorithm 1). So, the number

of times workers are pushed onto the stack is generally much smaller than n × m,

making O(knm2) not tight. Finally, we note that the running times of all algorithms

increase linearly with the increasing number of PoIs k as seen in Fig. 26c, which is

in accordance with the influence of k in their asymptotic running times.
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Fig. 26. Running times of the algorithms with varying number of (a) tasks (m = 200,

k = 300); (b) workers (n = 20, k = 300); and (c) PoIs (n = 20, m = 200)

with the proportional reward scheme in the synthetic data set.

4.5 Conclusion

In this chapter, we studied the problem of finding stable multi-task assignments

with weighted coverage-based utility functions in a budget-constrained and oppor-

tunistic mobile crowdsensing scenario. We first defined the stability (or user happi-

ness) conditions within this scenario, and pointed out the hardness of the problem

and nonexistence of optimal solutions in some cases. We then presented two ap-

proximation algorithms and derived their approximation ratios in different settings.
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Finally, we provided an extensive evaluation of the proposed algorithms, and showed

that they largely outperform the considered benchmark algorithms in terms of both

user happiness and coverage quality while having significantly smaller running times

(up to 4 orders of magnitude).
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CHAPTER 5

ONLINE PREFERENCE-AWARE TASK ASSIGNMENT WITH

UNCERTAIN WORKER TRAJECTORIES

5.1 Introduction

In this chapter, we focus on the online task assignment problem in opportunistic

MCS. Here, different from the previous two chapters, we consider uncertain and

uncontrollable worker trajectories, and simple tasks, which do not have coverage

requirements and can be efficiently completed by a single worker. The three key

issues that need to be addressed in this problem are (i) preference-awareness, (ii)

uncertainty in worker trajectories, and (iii) capacity constraints. Below, we explore

each of these issues along with the challenges they present, how they have been so

far addressed in the MCS literature, and the key contributions of this study on each

of these issues.

(i) Preference-awareness: A task assignment strategy is said to be preference-aware

if its primary objective is to make all workers and task requesters in the system

happy with their assignments based on their individual preferences. A preference-

aware mechanism should ensure that the produced assignments are fair and do not

sacrifice the utility of a group of workers and task requesters in favor of some others.

(ii) Uncertainty in worker trajectories: This issue arises in MCS systems, where

workers prefer not to disclose their exact trajectories due to privacy concerns, or their

trajectories change dynamically due to traffic/road conditions or individual factors

(e.g., a taxi driver’s trajectory depends on pick-up and drop-off locations of passen-
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Fig. 27. An MCS instance with three tasks and two workers. Some possible worker

trajectories for w1 and w2 are shown with solid and dashed lines, respectively,

and task regions are enclosed with circles.

gers). This issue is partly investigated in the MCS literature [31, 30], but without

considering the preferences of workers and task requesters.

(iii) Capacity constraints: In order to avoid disruptions to their daily schedule, work-

ers in opportunistic MCS campaigns may choose to bound the number of tasks they

accept to perform for each assignment period. The classic deferred-acceptance mech-

anism proposed by Gale and Shapley [42] can be used to find preference-aware assign-

ments in general matching problems even in presence of capacity constraints, but it

works only in offline settings, where the eligibility of every (worker-task) pair is known

and fixed. This is not the case in our setting, where the trajectories of workers, hence

which tasks they can perform, are uncertain. On the other hand, the studies that

consider capacity (or budget) constraints for workers in the MCS literature [38, 87]

neglect to address the previous two issues.

As summarized above, these three issues have yet to be studied together, de-
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spite being crucial for the success of an opportunistic MCS campaign. To fill this

gap, in this chapter, we study the preference-aware task assignment problem within

an opportunistic MCS model with uncertain worker trajectories and given capacity

constraints. To point out some of the challenges this problem entails, let us analyze

a few different scenarios in the MCS instance illustrated in Fig. 27, which consists

of two workers (w1, w2) and three tasks (t1, t2, t3) scattered in the area. Assume that

w1 can potentially visit all three task regions, while w2 can visit only t3’s region, but

it is not known in advance if they will actually do so. Consider the three (p1, p2, p3)

and two (p4, p5) of possible trajectories and visit scenarios for w1 and w2, respectively,

shown in Fig. 27. If the workers do not have a capacity constraint (i.e., can perform

every task on their way) or have a capacity of at least three, then w1 should always be

matched with tasks t1 and t2 if he visits their regions, as w1 is the only worker that can

perform these tasks. However, since the region of t3 can be visited by both workers,

it is not trivial to decide an assignment for t3 even if there is no capacity constraint

for workers. This is because the preference of t3 based on the worker qualities needs

to be considered along with how likely the workers will be visiting the region of t3.

On the other hand, the preferences of workers become important when they are

constrained by a capacity. For instance, assume that the capacity of w1 is one, and

the probability of p3 is negligible. Then, when worker w1 visits the region of t1 and

a matching decision needs to be made between w1 and t1, we need to consider the

preference of w1 on tasks t1 and t2 based on their rewards as well as the likelihood

of p1 and p2. For example, even if p1 is more probable than p2, it may still be more

profitable to skip t1 if the reward of t2 is significantly larger than that of t1. In such

scenarios, the matching decisions should be made according to the expected utilities

of workers and task requesters to consider their preferences.

Let us consider another scenario, in which worker w1 has a capacity of one and is
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more likely to take path p3, and the reward of t3 is much greater than that of t1 and

t2. Then, in order for the decision of skipping the potential matching opportunities

with t1 and t2 to be justifiable for w1, either the probability of p5 should be low, or

the quality of w1 should be substantially better than that of w2 so that task t3 would

be willing to skip the opportunity to match with w2 if he ended up taking path p5.

Here, the timeliness of the visits also plays a major role. If the quality scores of the

workers are very close to each other, the best strategy for the tasks would be to get

matched with the first worker that visits their regions, because the risk of losing a

matching opportunity at hand to wait for another worker would not be worth the

extra benefit that they may possibly get by waiting. Therefore, the actual number of

scenarios that needs to be examined to make an optimal task assignment gets much

larger when we take the timeliness of worker visits into consideration.

Moreover, in real instances, the uncertainty in worker visits may be even more

severe, in which case the number of possible scenarios is likely to grow exponentially

with the number of participants and the campaign duration. In this study, we address

these issues and provide polynomial-time algorithms that produce task assignments

that maximize the happiness of users with their assignments with respect to their

preferences by considering all possible scenarios in an efficient manner. Our primary

contributions in this study can be summarized as follows:

• We introduce the preference-aware task assignment problem in opportunistic

MCS systems, where task assignments need to be made in an online manner

due to uncertain worker trajectories.

• We formulate the criteria for preference-awareness in this problem after showing

that the existing preference-awareness objectives used in the literature (e.g.,

minimizing the number of unhappy pairs) do not work when worker trajectories
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are uncertain.

• We study the problem in MCS systems with and without capacity constraints,

and propose a polynomial-time online algorithm for each case, which we then

show to be preference-aware by theoretical analysis.

• We perform extensive simulations with both real and synthetic data sets, and

empirically show the superiority of the proposed algorithms over the existing

task assignment algorithms.

5.2 System Model

5.2.1 Assumptions

At the center of our system model is a service provider (SP) that receives the

sensing task inquiries from different requesters and assigns them to appropriate par-

ticipants. Formally, in each (hourly, daily, weekly) assignment period that is di-

vided into discretized time-steps (0, 1, .., T ), the responsibility of SP is to assign a

set of sensing tasks T = {t1, t2, . . . , tm} to a set of workers registered to the system

W = {w1, w2, . . . , wn} in a way that will satisfy both parties (user satisfaction criteria

will be described below).

Each task t has spatio-temporal constraints for successful completion. Let t.r and

[t.b, t.d] denote the geographic region and the time frame (between the beginning time

and deadline) in which task t should be performed, respectively. Tasks are assumed to

require simple sensing activity such as taking pictures [88], recording noise levels [89],

and reporting traffic volume [78] or crowdedness [90]. Thus, they take a few seconds to

complete (thus neglected for simplicity), and they can be completed anytime during

the specified time frame. Each task t is also associated with a monetary reward m(t)

that is paid to the worker who performs it by the task requester upon successful
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delivery of the sensed data.

The workers in our system model perform opportunistic sensing, so they do not

travel to the task locations by interrupting their own schedules. Instead, they get

assigned to a task only when they happen to be in the task region. Therefore, there

is no travel cost associated with the tasks. Each worker w has a capacity c(w),

which indicates the maximum number of tasks worker w is willing to perform in a

single assignment period. This can be a necessary constraint if the tasks require a

certain level of involvement, causing the workers to lose some time. However, we

also investigate task assignments in MCS systems that do not require involvement of

workers and hence have no capacity constraints. Each worker w also has a quality

score q(w), which may refer to the likelihood of completing the assigned tasks as

in [91], the expected quality of the sensed data [44], or the trustworthiness of the

worker [92]. Some real-world mobile crowdsensing/sourcing systems that use a single

numerical value to specify the qualification of workers include Waze [78] and Uber

[93], which, respectively, utilize what is called Waze points and a five-star quality

rating system.

In order to simplify our analysis, we rearrange the worker and task sets in de-

creasing order of the quality scores of workers and rewards of tasks, respectively.

Thus, hereafter we have

q(wi) > q(wi+1), 1 ≤ i < n, (5.1)

and

m(tj) > m(tj+1), 1 ≤ j < m. (5.2)

If there are ties, we assume they are either broken by secondary factors such as

registration time, or in an arbitrary manner so that there is only one possible order

for both sets. Here, we note that the results of this study hold as long as the sets of
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workers and tasks can be ordered as in (5.1) and (5.2). Within this constraint, it is

possible to have non-uniform worker qualities and task rewards. For example, a task

requester can offer a larger reward to workers with a higher quality score, as long

as the rewards offered for a task t are always greater or always smaller than those

offered for another task t′. This makes it possible to form a universal preference list

for workers based on task rewards.

We assume that the trajectories of workers are uncertain but predictable, and

revealed in real-time during the assignment period, so the task assignments have to

be made in an online manner. However, the set of agents (i.e., workers and tasks)

and all other parameters in the system such as task rewards and worker quality scores

are certain and known to SP by the beginning of each assignment period. Let λi,j

be the average inter-visit time of worker wi to the region tj.r. Then, assuming an

exponential distribution (similar to [30, 50, 51, 52]), the probability that worker wi

visits tj.r in a time frame of length L is computed as follows:

Vi,j(L) = 1− e−L/λi,j (5.3)

The results of this study, however, do not depend on the underlying distribution

model, and other probability functions including those produced by machine learning

methods [94], which can integrate any dependency between the visits of a worker to

different regions, can be used as well.

Once the task set for the current assignment period is determined, each worker wi

will be asked to provide SP with λi,j values for the region of each task tj ∈ T . To this

end, workers should be maintaining their visit records with a sufficient geographic

density, as task regions may differ between assignment periods. They can submit

arbitrarily large numbers for regions they have not visited, or for which they do not

feel comfortable disclosing their true visit frequency for privacy-related reasons. Also,
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they can always inform SP of the regions they will definitely visit if certain parts of

their trajectories are (or become) fixed. A legitimate concern here would be the

possibility of receiving fabricated λi,j values from some workers aiming to increase

their gains from the system in a malicious manner. However, workers are required to

inform SP when they enter one of the task regions to be considered for the assignment

of the corresponding task, as a task may be assigned to a worker only when the worker

is in the task region. Thus, SP can easily verify the accuracy of the received λi,j values

based on the visit frequencies of worker wi, and reduce the quality scores of dishonest

workers.

5.2.2 Problem Formulation

We represent the task assignments in our model with a matchingM between the

sets W and T , whereM(w) andM(t) denote the set of tasks assigned to worker w

and the worker assigned to task t, respectively. If user (worker or task) u is unassigned

inM, thenM(u) = ∅. For a matching to be feasible according to our system model,

it should satisfy the following constraints for each w ∈ W and t ∈ T :

• M(t) ∈ W ∪ {∅},

• M(w) ⊆ T ,

• |M(w)| ≤ c(w),

• M(t) = w ⇔ t ∈M(w).

We assume a transparent SP whose decisions are visible to the users so that each

user can see with whom they could be matched, but did not. In such a setting, it is

crucial to produce impartial and satisfactory task assignments that do not sacrifice

the benefit of some users for the others or for maximizing the overall matching utility
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according to some system-level metric such as the number of completed tasks. We

will use the following definitions to refer to the user happiness in a matching.

Definition 13 (Unhappy pair). A worker-task pair (w, t) is said to be unhappy in a

matchingM if

• worker w has visited region t.r between the time frame [t.b, t.d],

• task t is either unmatched or matched to a worker w′ with a smaller QoS score

than worker w (i.e., prefers w to w′),

• worker w has unused capacity (i.e., |M(w)| < c(w)), or the reward of at least

one task t′ inM(w) is smaller than that of task t (i.e., prefers t to t′).

From the perspective of worker w and task t, the first condition in the definition

indicates that there was in fact an opportunity for them to get matched, and the last

two indicate that SP instead matched them with some other users that they rationally

prefer less, or left them unmatched/with an unused capacity.

Definition 14 (Stable matching). A matchingM is stable if it contains no unhappy

pairs.

Although we can always find a stable matching in an offline setting (as it will be

shown in the next section), it may not be possible to do so in an online setting where

we do not know whether and when a worker will visit a region. Consider the instance

in Fig. 28. Given that worker w1 is currently in t2.r, SP should decide whether to

assign him to task t2.

• If it assigns worker w1 to task t2, but then worker w1 visits t1.r, (w1, t1) will be

an unhappy pair because worker w1 prefers task t1 to task t2 as m(t1) > m(t2),

and task t1 prefers being matched to worker w1 to being unmatched.
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Fig. 28. An instance with a worker and two tasks. Let the probability of w1 visiting

t1.r before the deadline of t1 be 0.6, and the probability of w1 revisiting t2.r

before the deadline of t2 be 0. Also, let q(w1) = c(w1) = 1.

• If it does not assign worker w1 to task t2, and worker w1 does not visit t1.r,

then (w1, t2) will be an unhappy pair because worker w1 and task t2 prefer being

matched to each other to being unmatched.

Thus, it is not possible to ensure perfect user happiness without knowing the exact

worker trajectories.

Besides, in an online setting, minimizing the expected number of unhappy pairs

may not actually maximize user happiness. Again, in the instance in Fig. 28, SP

should avoid matching worker w1 to task t2 in order to minimize the expected number

of unhappy pairs, because as shown in Table 8, the expected number of unhappy pairs

is larger when they get matched (w1 ⇒ t2). Yet the expected profit of worker w1 in

case he is not matched to task t2 is m(t1)×0.6 = 0.6, which is smaller than the profit

he would make if he was matched to t2 (m(t2) = 0.8). So, worker w1 would prefer to

be matched to task t2 despite the increase in the expected number of unhappy pairs

he will form.

The example discussed above demonstrates that, in an online setting, user hap-

piness should be measured in an online manner and by considering the impact of
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Decision Scenario # of UPs Expected # of UPs

w1 ⇒ t2
w1 visits t1.r 1

0.6
otherwise 0

w1 ⇏ t2
w1 visits t1.r 0

0.4
otherwise 1

Table 8. Analysis of all possible scenarios in the instance illustrated in Fig. 28. (UP

is short for unhappy pair.)

each matching-related decision of SP on the overall benefit that users will get from

the system. In MCS systems without capacity constraints, there is no competition

among task requesters, because workers would like to and can get matched with all

tasks on their trajectory. Therefore, the stability of the assignments and preference-

awareness in such systems can be ensured by maximizing the expected assignment

quality of each task based on the visit probabilities of the workers, which can formally

be expressed as

maximize
∑
tj∈T

Ej, (5.4)

where Ej is the expected assignment quality of task tj. Then, a task assignment

mechanism is said to be optimal in terms of preference-awareness in these systems

if its all matching decisions for each task t in the system maximizes the expected

assignment quality of t based on the quality score of the readily available worker and

the quality scores of the workers that could probably visit t.r in future.

However, in the presence of capacity constraints, there is a competition among

both workers and task requesters, because the fact that workers are able to perform

only a limited number of tasks transforms the task assignment problem into a limited

resource allocation problem. In this setting, the expected utilities of users become
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interdependent, and get affected by each matching decision of SP. Consequently, the

expected utility of a worker or a task after a certain time-step depends on the decision

mechanism that will be used by SP in that time frame. Besides, the number of possible

visit scenarios increases exponentially with respect to the length of the assignment

period and the number of users. To address these challenges, we map all possible

(exponentially many) visit scenarios that can happen after time-step s to all possible

stable matchings in these scenarios along with their likelihood of occurrence, which

we can analyze in polynomial-time and use to estimate the expected user utilities for

the time period [s, T ].

Suppose that a worker wi with a remaining capacity of csi ≥ 1 is in the region

of a currently unassigned task tj at time-step s : tj.b ≤ s ≤ tj.d, so SP has to

make a matching decision for the pair. Let As = {A1
s, A

2
s, . . . , A

k
s} be the set of all

possible worker visit scenarios that can happen in the time frame [s, T ] given the visit

probabilities of the workers for all task regions. That is,

As = Rs
1 ×Rs

2 × ..×Rs
n, (5.5)

where Rs
i is the set of all possible spatiotemporal trajectories of worker wi after time-

step s. Let p(Al
s) denote the probability that the scenario Al

s ∈ As will occur. Then,

we have
k∑

l=1

p(Al
s) = 1. (5.6)

Let M l
s be the stable matching in the scenario Al

s between the tasks that are unas-

signed and the workers that have a positive remaining capacity at time-step s (since

the visits in Al
s are known, a stable matching can be found using the offline stable

matching algorithm that will be described in Section 5.3.2.1). Also, let M̂ l
s be the

stable matching in the same scenario assuming that wi is matched to tj. Then, as-
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suming SP is making optimal assignments in terms of stability, the expected total

reward worker wi would get in time frame [s, T ] if he was not assigned to task tj at

time-step s can be computed by:

Wi(s) =
k∑

l=1

p(Al
s)×

∑
t∈M l

s(wi)

m(t), (5.7)

and that if he was assigned to task tj by:

W′
i,j(s) = m(tj) +

k∑
l=1

p(Al
s)×

∑
t̂∈M̂ l

s(wi)

m(t̂). (5.8)

Analogously, the expected sensing quality to be received by task tj if it is not

assigned to worker wi at time-step s and otherwise can be, respectively, computed

by:

Tj(s) =
k∑

l=1

p(Al
s)× q(M l

s(tj)), (5.9)

and

T′
j,i(s) = q(wi). (5.10)

Then, we can define a decision-time unhappy pair as follows.

Definition 15 (Decision-time unhappy pair). A worker-task pair (wi, tj) is said to

be a decision-time unhappy pair if the following conditions hold for any time-step s

in [tj.b, tj.d]:

• worker wi has a positive remaining capacity,

• task tj is unassigned,

• worker wi is in region tj.r, and

• either (i) SP matches worker wi to task tj, but at least one of them would be
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better off otherwise, i.e.,

Wi(s) > W′
i,j(s) or Tj(s) > T′

j,i(s), (5.11)

• or (ii) SP does not match worker wi to task tj, but they both would be better off

otherwise, i.e.,

W′
i,j(s) > Wi(s) and T′

j,i(s) > Tj(s). (5.12)

In our example illustrated in Fig. 28, assuming s is the current time-step, we

have two possible trajectories that can be seen after s (i.e., w1 visits t1.r or he does

not; |As| = 2) with the given probabilities. This yields W′
1,2(s) = 0.8 > W1(s) = 0.6

and T′
2,1(s) = 1 > T2(s) = 0. Hence, worker w1 and task t2 will, as desired, form a

decision-time unhappy pair due to (5.12) if SP fails to match them.

Definition 16 (Online stable matching). A matching M is called an online stable

matching if it does not admit any decision-time unhappy pairs.

Consequently, our objective in the MCS systems with capacity constraints is to

find an online stable matching, and we call such a matching optimal in terms of

preference-awareness. It is straightforward to see that the optimal matching strategy

to this end would be to match a worker-task pair if (5.12) holds. However, the

difficult part is to compute the values of Wi(s), W
′
i,j(s) and Tj(s), because As grows

exponentially with the number of workers (n) and length of the assignment period

(T ). In the following section, we will show how to compute these values efficiently

without actually forming the set As.

The key notations used throughout this chapter are summarized in Table 9 for

convenience.
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Notation Description

T , W Set of tasks and workers, respectively

m, n Number of tasks and workers, respectively

M A many-to-one matching between T and W

M(u) Assigned worker (task set) to task (worker) u inM

[0, T ] Current assignment period

t.r Region of task t

[t.b, t.d] Time interval in which t should be performed

m(t) Reward associated with task t

c(w) Capacity of worker w

q(w) Quality score of worker w

λi,j Average time between the visits of wi to tj.r

Vi,j(L) Probability that wi visits tj.r in a time frame of length L

Table 9. Notations used in Chapter 5.

5.3 Proposed Solution

In this section, we begin by considering a simpler, but still practical version of

the problem. Then, we investigate the generic version of the problem, and provide

preference-aware task assignment algorithms and their theoretical analysis for both

versions.

5.3.1 Task Assignment in Systems without Capacity Constraints

In MCS systems with small sensing tasks that require no interaction from the

workers, it is safe to disregard the capacity constraints of workers as carrying out a

task does not put a load on them. Moreover, in the case of uniformly distributed
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tasks in an area or short assignment periods, since workers could visit only a limited

number of task regions, it would still be safe to disregard the capacity constraints.

In other words, even if workers had capacity constraints in any of these cases, they

would be overshadowed by the spatiotemporal constraints and can hence be ignored

during the task assignment process (at least until the point where assigning another

task to a worker would violate his capacity constraint).

An example of an MCS system without capacity constraints would be a traffic

monitoring system such as Waze [78], where the speed of traffic, which can be esti-

mated by the speed of change in the GPS coordinates of workers, can be sensed and

transmitted to SP automatically by workers’ mobile devices without requiring active

involvement of workers.

In this type of MCS systems, workers would like to perform each and every

task that is on their trajectory and does not conflict with their preferences in order

to maximize their profits. However, task requesters would still desire to have their

sensing tasks performed by workers with the highest quality scores. Thus, the problem

transforms into a one-sided matching problem in terms of user preferences. That is, to

find optimal task assignments we just need to maximize the sensing quality received

by task requesters. Moreover, we can consider each task separately, because the

assignment quality of a task tj depends only on which workers will visit the task

region tj.r and the time of their visits, and is independent of the visits of workers to

the other task regions due to the absence of capacity constraints.

To solve this problem, we utilize Optimal Stopping Theory (OST) [95], which

provides a dynamic programming based framework for the decision problems with a

finite horizon (e.g., the secretary hiring problem). This is suitable for our problem,

because for each task tj there will be a number of decision points at the times tj.r

is visited by any worker, and at each of these we should decide whether to wait for
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a higher quality worker or to assign task tj to the worker wi who is currently in the

region tj.r based on the quality of wi and the expected quality to be achieved if we

choose to wait instead.

Let Ej(s) be the expected assignment quality for task tj after the time-step s.

Since task tj can only be performed between [tj.b, tj.d], we have

Ej(s) = Ej(tj.b), s < tj.b, (5.13)

and

Ej(s) = 0, s ≥ tj.d. (5.14)

Since each worker wi will visit the region tj.r in the time frame [s, s + 1) with the

probability Vi,j(1), we have the following recursive relation between Ej(s) and Ej(s+

1):

Ej(s) =
n∑

i=1

(
max

(
q(wi),Ej(s+ 1)

)
× Vi,j(1)× ρj(i)

)
+ Ej(s+ 1)× ρj(n+ 1),

(5.15)

where ρj(i) is the probability that no worker with an index smaller than i visits

tj.r within a time frame of length 1. Since the smallest worker index is 1, we have

ρj(1) = 1, and the value of ρj(i) for 2 ≤ i ≤ n+ 1 can be computed by:

ρj(i) = ρj(i− 1)×
(
1− Vi−1,j(1)

)
(5.16)

Note that although there are 2n possible scenarios (i.e., each worker being within

or outside of the task region) for each time frame of length 1 in terms of worker visits

to a task region, we consider only n of them to calculate (5.15), because if wi is in

the region, whether wi+1, .., wn are within or outside of the region is irrelevant as they

are preferred less than wi. Therefore, using the base cases Ej(t.d) = 0 and ρj(1) = 1,

we can recursively compute all values of Ej(s) for tj.b ≤ s < tj.d in polynomial time
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Algorithm 9: Calculation of Ej(s) for all practical values of time-step s

1 Ej(tj.d)← 0

2 for s← tj.d− 1 down to tj.b do

3 Ej(s)← q(w1)× V1,j(1)

4 ρ← 1− V1,i(1)

5 for i← 2 to n do

6 if q(wi) ≥ Ej(s+ 1) then

7 Ej(s)← Ej(s) + q(wi)× Vi,j(1)× ρ

8 ρ← ρ× (1− Vi,j(1))

9 else

10 break

11 Ej(s)← Ej(s) + Ej(s+ 1)× ρ

as described in Algorithm 9.

In this algorithm, when we calculate Ej(s), we utilize the fact that task tj would

like to match only with workers with a quality score that is greater than or equal to

Ej(s + 1) (line 6) at time-step s because, otherwise, it would be more advantageous

for it to wait for the next time-step. Thus, we consider only these workers in lines

3-10 in decreasing order of their quality scores to compute the expected utility of

task tj based on the visit probabilities of these workers to its region in case it will be

matched with one of these workers at time-step s. Since the expected utility of task

tj at time-step s will be the same as that at time-step s+ 1 if none of these workers

visits the region of task tj between time-steps s and s+1, we finally increase the value

of Ej(s) by Ej(s + 1) × ρ in line 11, where ρ is calculated between lines 4-10 as the

probability that tj.r will not be visited by any of these workers between time-steps s
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Algorithm 10: OST-based Algorithm (OSTA) at time-step s

1 if q(wi) ≥ Ej(s) then

2 match wi to tj

3 terminate the algorithm for tj

and s+ 1.

A summary of the optimal decision mechanism that will be run for each task tj

whenever tj.r is visited by a worker wi is given in Algorithm 10. We assume all Ej(s)

values for s : tj.b ≤ s ≤ tj.d are precomputed and stored in a lookup table, but it is

also possible to compute only Ej(s) for s : ŝ ≤ s ≤ tj.d at the first time (ŝ) a worker

visits tj.r to avoid computing Ej(s) values that will never be used. The algorithm

simply checks whether it is more advantageous to match with the visiting worker or

to skip the opportunity (line 1), and makes a matching decision accordingly. Due

to sparse nature of visits in mobile networks, we assume that there will be a single

matching decision to make at each time-step. However, if there are multiple workers

that visit the region of a task at a certain time-step, it suffices to run Algorithm 10

for the worker with the highest quality score. For each task tj, the algorithm will

be run until either task tj gets matched, or it expires. Since we are able to compute

the expected utilities of task requesters precisely, and make decisions in a way to

maximize their utilities during the matching process, we have the following result.

Corollary 10.1. Algorithm 10 always makes the optimal matching decisions for task

requesters when workers do not have capacity constraints (i.e., maximizes the expected

assignment quality q(M(t)) for each task t).

Running time. Algorithm 10 obviously has a time complexity of O(1), however

Ej(s) needs to be precomputed for all feasible j and s values by running Algorithm 9.
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For each task tj, we precompute Ej(s) values for all s : tj.b ≤ s ≤ tj.d, and computing

each Ej(s) value takes O(n) time. Thus, the total time complexity becomes O(nτ),

where τ =
∑

t∈T (t.d− t.b).

5.3.2 Task Assignment in Systems with Capacity Constraints

In this section, we first describe an optimal algorithm to find stable matchings

in offline settings where the trajectory of each worker is known in advance. Then,

exploiting the ideas behind the offline algorithm, we provide our algorithm for the

online settings. We begin with the following definition.

Definition 17 (Pair priority). The priority of a worker-task pair (wi, tj) refers to the

relative importance of the pair in terms of stability, and can be defined as

ϕ(wi, tj) = max(m,n)×min(i, j) + max(i, j) (5.17)

where a smaller value indicates a higher priority.

If the worker and task indices were to start at 0 in the sets W and T , the

priority of a worker-task pair p would be equal to the number of worker-task pairs

with a higher priority than p.

5.3.2.1 Offline Algorithm

In Algorithm 11, we present a pseudo-code description of the offline algorithm.

In line 1, it finds the set A of all eligible worker-task pairs that can be matched to

each other (i.e., the task region visited by the worker). Then, in each step, it finds

(line 3) and matches (lines 4-5) the worker-task pair with the highest priority in A,

which is followed by removing all pairs that become infeasible due to the most recent

pair assignment (lines 6-8). This continues until the set A becomes empty. In the

following theorem, we prove the optimality of this algorithm.
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Algorithm 11: Offline SM Algorithm

1 A ← {(w, t) : w visits t.r in [t.b, t.d]}

2 while A ≠ ∅ do

3 (wi, tj)← argmin(w,t)∈A ϕ(w, t)

4 M(wi)←M(wi) ∪ tj

5 M(tj) = wi

6 if |M(wi)| = c(wi) then

7 A ← A \ {(w, t) : w = wi}

8 A ← A \ {(w, t) : t = tj}

9 returnM

Theorem 11. Algorithm 11 always produces a stable matching in offline settings.

Proof. We prove this by contradiction. Assume that there is an unhappy pair (wi, tj)

in the final matching M produced by the algorithm. According to Definition 13,

worker wi has visited tj.r within the time frame of task tj, so (wi, tj) is in A in the

beginning.

• If |M(wi)| < c(wi) andM(tj) = ∅, then the pair (wi, tj) should still be in A,

which indicates that A is non-empty, contradicting the termination condition

of the algorithm.

• If |M(wi)| < c(wi) and M(tj) = wk, then for (wi, tj) to be an unhappy pair,

we should have q(wi) > q(wk), hence

i < k and ϕ(wi, tj) < ϕ(wk, tj). (5.18)

Since at the time the pair (wk, tj) was selected by the algorithm, the pair (wi, tj)

was still in A (as |M(wi)| < c(wi)) and has a higher priority than (wk, tj), the
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algorithm should have selected (wi, tj), which is a contradiction.

• If |M(wi)| = c(wi) andM(tj) = ∅, then for (wi, tj) to be an unhappy pair, we

should have m(tk) < m(tj) for at least one task tk ∈M(wi). Thus,

j < k and ϕ(wi, tj) < ϕ(wi, tk). (5.19)

As in the previous scenario, this indicates that the pair (wi, tj) should have been

selected prior to (wi, tk), which is a contradiction.

• If |M(wi)| = c(wi) and M(tj) = wk, then for (wi, tj) to be an unhappy pair,

we should have

q(wi) > q(wk) and m(tj) > m(tl) (5.20)

for at least one task tl ∈M(wi). This yields

i < k and j < l, (5.21)

and hence

ϕ(wi, tj) < ϕ(wk, tj) and ϕ(wi, tj) < ϕ(wi, tl). (5.22)

This means the pair (wi, tj) should have been selected prior to both (wi, tl) and

(wk, tj), which is also a contradiction and completes the proof.

5.3.2.2 Online Algorithm

Theorem 11 shows that in the presence of capacity constraints, a worker-task pair

dominates the pairs with lower priority scores if it is in the set A, which implies that

the highest priority pair will be matched with the same probability of being in the

set A. Likewise, the next highest priority pair will be matched with the probability

of being in the set A in case it is not eliminated by the higher priority pair, and so
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on. We utilize this observation to find the matching probability of a worker-task pair

in the stable matchings for all possible scenarios (As) that can occur after a certain

time-step (s), and use it to make decisions in online setting.

Lemma 1. Given a worker-task pair (wi, tj) and time-step s at which wi has a re-

maining capacity of csi and tj is unmatched, the probability of wi and tj being matched

in a stable matching in any of the possible scenarios that can occur between time-steps

s < tj.d and T can be computed by

Ps(i, j) =

csi∑
k=1

Qs
i,j[k]×

ηsi,j︷ ︸︸ ︷
i−1∏
k=1

(
1− Ps(k, j)

)
× Vi,j(tj.d− s),

(5.23)

where

Qs
i,j[k] =



1, if j = 1, k = csi

0, if j = 1, k ̸= csi

Qs
i,j−1[k] +Qs

i,j−1[k + 1]× ηsi,j−1, if j > 1, k = 0

Qs
i,j−1[k]× ηsi,j−1, if j > 1, k = csi

Qs
i,j−1[k + 1]× ηsi,j−1 +Qs

i,j−1[k]× ηsi,j−1, otherwise

(5.24)

and ηsi,j = 1− ηsi,j. If tj was matched before time-step s, or s ≥ tj.d, Ps(i, j) = 0.

Proof. In order for worker wi and task tj to be matched in a stable matchingM in

a given scenario (e.g., Al
s ∈ As), the following three conditions should be satisfied:

• at most csi − 1 of the higher priority pairs in the set

Fi,j = {(wi, tk) : ϕ(wi, tk) < ϕ(wi, tj)}

= {(wi, tk) : k < j}
(5.25)

should be matched inM (i.e., wi should be matched with at most csi − 1 of the
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tasks that he prefers more than tj), because, otherwise, the pair (wi, tj) will be

eliminated. In (5.23), the probability of this is given by

csi∑
k=1

Qs
i,j[k], (5.26)

where Qs
i,j[k] is the probability that worker i will be matched to exactly csi − k

of the tasks in Fi,j, and thus will have a remaining capacity of k. Thus, (5.26)

is the probability that worker wi will have a positive remaining capacity and

be able to match with task tj. The calculation of the Qs
i,j[k] values is realized

in a recursive manner as described in (5.24). Since Fi,1 = ∅, we initially have

Qs
i,1[c

s
i ] = 1 and Qs

i,1[k < csi ] = 0. We can then calculate Qs
i,j+1 from Qs

i,j based

on the probability (ηsi,j) that worker wi matches with task tj. An illustration of

this recursive procedure is given in Fig. 29.

• none of the higher priority pairs in

Gi,j = {(wk, tj) : ϕ(wk, tj) < ϕ(wi, tj)}

= {(wk, tj) : k < i}
(5.27)

should be matched in M, because, otherwise, task tj will already be matched

with a more favorable worker, hence the pair (wi, tj) will be eliminated. In

(5.23), this is given in a recursive fashion as follows:

i−1∏
k=1

1− Ps(k, j). (5.28)

• worker wi should visit the region of task tj between [s, tj.d]. That is, the pair

(wi, tj) should be in the set A of Algorithm 11. This occurs with the probability

of Vi,j(tj.d− s), which is the last term in (5.23).
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Fig. 29. Illustration of the update procedure for the remaining capacity probabilities

defined in (5.24). Each of the dashed and solid edges indicates a contribution

with a factor of 1−ηsi,j and ηsi,j, respectively, while the rightmost, dotted edge

indicates a direct addition.

Algorithm 12 summarizes the procedure to calculate Ps(i, j) values for all 1 ≤

i ≤ n, 1 ≤ j ≤ m values. In this algorithm, we maintain a variable uj for each task tj,

which refers to the probability of task tj not being matched to any of the workers that

considered so far in the algorithm, hence initialized to be 0 in line 1 if tj is already

matched before time-step s, and 1 otherwise. Note that once Ps(i, j) is calculated,

the values of Ps(k, j) for k > i and Ps(i, l) for l > j are independent of each other.

Thus, we can first compute Ps(1, j) starting from j = 1 to j = m, then Ps(2, j) for all

j values in the same order, and so on. This ensures that the matching probabilities

of all interdependent worker-task pairs will be calculated following the priority order.

According to Lemma 1, we can express Ps(i, j) as the ratio of the number of

stable matchings that worker wi and task tj are matched to each other to the total

number of stable matchings in all possible scenarios after time-step s. Thus, given

the Ps(i, j) values for all i, j pairs, we can compute Wi(s) and Tj(s) as follows:

Wi(s) =
m∑
k=1

Ps(i, k)×m(tk), (5.29)

Tj(s) =
n∑

k=1

Ps(k, j)× q(wk). (5.30)
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Algorithm 12: Calculation of Ps(i, j) for all i, j

1 for j ← 1 to m do uj ← 1− |M(tj)|

2 for i← 1 to n do

3 compute Qs
i,1 according to (5.24)

4 for j ← 1 to m do

5 vp ← Vi,j(tj.d− s)

6 ηsi,j ← vp× uj

7 Ps(i, j)← ηsi,j ×
∑csi

k=1Q
s
i,j[k]

8 compute Qs
i,j+1 from Qs

i,j according to (5.24)

9 uj ← uj − Ps(i, j)

On the other hand, the value of W
′
i,j(s) depends on the probability of worker wi being

matched with each task tk in the stable matchings that can be seen after time-step

s assuming worker wi and task tj will be matched at s. This probability is denoted

by P̂s(i, k), and can simply be calculated by assuming task tj is already matched and

replacing csi with csi − 1 in (5.23) and (5.24) (and running Algorithm 12 accordingly).

Then, we can compute W
′
i,j(s) as:

W′
i,j(s) = m(tj) +

∑
k∈{1..m}\{j}

(
P̂s(i, k)×m(tk)

)
. (5.31)

Lastly, we have T′
j,i(s) = q(wi). Using these values, we can make an optimal matching

decision for the worker-task pair (wi, tj) in terms of online stable matchings at any

time-step s worker wi is in the region of task tj.

A summary of the decision process is described in Algorithm 13. In line 1, we

compute the matching probabilities for all worker-task pairs by calling Algorithm 12,

and then, based on these probabilities, we compute the expected utilities of worker
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Algorithm 13: PRobabilistic Stable Task Assignment (PRSTA)α(wi, tj)

at time-step s

1 Compute Ps(k, l) and P̂s(k, l), ∀k, l, via Algorithm 12

2 Compute Wi(s) according to (5.29)

3 Compute Tj(s) according to (5.30)

4 Compute W′
i,j(s) according to (5.31)

5 T′
j,i(s)← q(wi)

6 if W′
i,j(s) > α×Wi(s) then

7 if T′
j,i(s) > α×Tj(s) then

8 match wi to tj

wi and task tj at time-step s for the scenarios they do and do not get matched with

each other in lines 2-5. If getting matched with each other is more preferable for both

worker wi (line 6) and task tj (line 7) by a constant factor α (which will be discussed

below), then a positive matching decision is made in line 8. As earlier, we assume at

most one matching decision is being made at each time-step, but multiple worker-task

pairs can be processed in the order of pair priority if needed. Given Definition 15 &

16, since the proposed algorithm makes a positive matching decision for a worker-task

pair if (5.12) holds when α = 1, we have the following result.

Corollary 11.1. PRSTA1.0 algorithm always produces online stable matchings.

It should, however, be noted that the proposed method to compute expected

user utilities does not consider the order of visits of workers to the task regions.

Let us consider the instance given in Fig. 30 to explain this issue and why it is

necessary to incorporate a constant α factor in the matching decisions of Algorithm

13 as a heuristic to address it. In this example, we assume that the visit probability
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Fig. 30. Four of the possible visit orders of two workers (w1, w2) to the region of task

t in an MCS instance with an assignment period of length two. For example,

in scenario (c), the task region is visited by w2 in time-step 1, and by w1 in

time-step 2.

of worker w1 to the region of task t is quite high, and his quality score is significantly

larger than that of worker w2 so that even if worker w2 visits the task region in time-

step 1, it is advantageous for task t to wait for worker w1. Thus, in all four scenarios,

the decision at time-step 1 when worker w2 visits the task region should be not to

assign him to the task.

However, when we compute the expected utilities of users considering all possible

stable matchings and their probability of occurrence, worker w2 should be assigned to

task t in scenarios (a) and (b) given that worker w1 does not visit the task region in

either time-step in these scenarios. Therefore, Algorithm 13 considers the matching

(w2, t) for scenarios (a) and (b) during computation of expected user utilities, and the

matching (w1, t) for the other scenarios. Yet when we see a similar visit pattern for

time-step 1 in the online setting, since we do not in advance know the visit pattern

for time-step 2, we need to either assign worker w2 to task t or not. Consequently,

the utility of the task will inevitably be overestimated, because if it gets assigned

to worker w2, its actual utility will also be q(w2) in scenarios (c) and (d), which is

smaller than its expected utility q(w1) based on the stable matching (w1, t) of these

scenarios. On the other hand, if it does not get assigned to worker w2, then it will
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be left unmatched in scenario (a), and its actual utility (0) will be worse than its

expected utility q(w2) based on the stable matching (w2, t) of this scenario.

To alleviate the impact of these overestimations on the performance of the al-

gorithm, we require (in lines 6-7 of Algorithm 13) that the expected utility of a user

after the current time-step s is at least 1/α times better than the utility he can get at

time-step s to skip the existing matching opportunity. Here, we note that using such

a constant factor does not favor any groups of users in the system, and hence does not

invalidate its preference-awareness, in general, as long as a single, universal α factor

is used for all decisions to ensure fairness towards different users. We empirically

examine the algorithm’s performance with various α values in the next section.

Running time. The time complexity of Algorithm 12 is O(mncmax), where

cmax = maxw∈W c(w). Since the most expensive operation in Algorithm 13 is to

run Algorithm 12 to find the matching probabilities, the worst-case running time of

Algorithm 13 is also O(mncmax). This can also be expressed as O(nm2), as the largest

feasible cmax = m.

5.4 Evaluation

In this section, we present the empirical evaluation of the proposed algorithms.

5.4.1 Simulation Settings

We perform simulations utilizing both a real data set and a synthetic data set.

The latter is performed to understand the impact of the accuracy of the distribution

model used to estimate the visit probabilities of workers on the performance of the

proposed algorithms.

The synthetic data set is generated using 60 workers and 100 tasks in a 4 hours

long assignment period. We randomly set the quality scores of the workers and the
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task rewards from the range (0, 1), and assign a capacity to each worker between 1

and 10 (we also look at the case without capacity constraints). For each worker-

task pair (wi, tj), we randomly set the value of λi,j between 8 to 24 hours. This

generates instances where each worker visits, on average, 23% of all task regions in

an assignment period. We examine the performance of the algorithms in instances

with different worker/task counts, capacity constraints, and inter-visit times as well.

For the real data set, we utilize the San Francisco taxi data set [96], which

contains the traces of 536 yellow cabs during May of 2018. For each instance, we

randomly select a day as the assignment period, and then pick 60 taxis and use their

traces on that day as worker trajectories. We divide the SF city into 121×100 regions

of approximately 102×102 square meters, and create a task on randomly selected 100

regions that have at least 1000 traces in the whole data set. The average daily travel

by the cabs is approximately 280 km, and the cabs visit about 20% of all regions at

least once, on average. The other parameters are assigned similarly with the synthetic

data set, and for each worker-task pair (wi, tj), the value of λi,j is extracted from the

traces.

To avoid introducing arbitrary random values for parameters that do not affect

the performance of the algorithms in a notable way, we let the time frame of each

task be the same as the duration of the assignment period in both data sets. Also,

the assignment period is divided into a minute long time-steps in both data sets.

Following the procedures described above, we generate 100 different instances of both

synthetic and real data sets, and present the averaged results.

5.4.1.1 Benchmark Algorithms

We compare the performance of the proposed algorithms with a greedy algorithm

and the well-known Gale-Shapley (GS ) algorithm [42] by adapting it to our setting.
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The former simply matches a task greedily with the first worker that visits its re-

gion with a positive remaining capacity. The latter is normally used to find stable

matchings when the preference lists of individuals are static and known in advance.

In our setting, however, it is neither possible nor desirable to match a worker-task

pair if the worker does not visit the task region even if they happen to prefer each

other the most. Since worker visits are uncertain in our setting, user preferences

change dynamically based on worker trajectories, thus the GS algorithm cannot be

used directly. We adapt it to our setting as follows. When a matching decision needs

to be made at a time-step s for a worker-task pair, we form the preference lists of all

workers with a positive remaining capacity and all unmatched tasks based on how

likely they will have a chance to match and how beneficial they are to each other.

Specifically, the preference list of each worker wi is formed as tσ1 , tσ2 , .., tσk
in order

of non-increasing preference such that

m(tσj
)× Vi,σj

(tσj
.d− s) ≥ m(tσj+1

)× Vi,σj+1
(tσj+1

.d− s) (5.32)

for all j : 1 ≤ j < k. The preference lists of tasks are formed similarly using the quality

scores of the workers. Then, the GS algorithm is run to find a stable matching for

these preference lists. If the currently examined worker-task pair is matched in this

stable matching, we also match them in the real matching problem, otherwise we

leave them unmatched for that time-step. For the PRSTAα algorithm, we present

the results for α = 1.0 and α = 0.9 in general as PRSTA1.0 guarantees to produce

online stable matchings, and PRSTA0.9 is empirically shown to produce high quality

final assignments with respect to the other performance metrics. However, we also

examine the performance of the PRSTAα algorithm with different values of α.
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5.4.1.2 Performance Metrics

In order to evaluate and compare the performance of the algorithms, we uti-

lize the following metrics, which capture different aspects of user satisfaction and

efficiency.

• Pairwise user happiness (%): This is calculated as

100× b− a

b
, (5.33)

where a is the number of unhappy pairs, and b is the number of worker-task

pairs (w, t) that had at least one matching opportunity during the assignment

period, i.e., w visits t.r between [t.b, t.d], and at the time of the visit, w has a

non-zero remaining capacity and t is unmatched.

• Average user happiness (%): Given a matching M, let Su be the set of tasks

(workers) with whom worker (task) u forms an unhappy pair. Then, we can

define the happiness ratio of user u as follows:

θu =



1, if Su = ∅

0, if Su ̸= ∅,M(u) = ∅

min
v∈Su

{
f̂(u)
f(v)

}
, otherwise

(5.34)

where

f̂(u) =


q(M(u)), if u ∈ T

min
t∈M(u)

{
m(t)

}
, if u ∈ W

(5.35)

and f(v) = m(v) if v is a task, and f(v) = q(v) if it is a worker. Here, θu = 1 if

user u does not form any unhappy pairs, and θu = 0 if he forms unhappy pairs
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and is unmatched (i.e., since his current utility is 0, he is infinitely unhappy).

Otherwise, its happiness is computed as the ratio of his current utility to the

maximum utility he could achieve if he was matched to one of the users in the

unhappy pairs he forms. Accordingly, the average user happiness is computed

by

100

m+ n
×

∑
u∈W∪T

θu. (5.36)

• Average quality of sensing: This is the average quality of sensing/service pro-

vided to the task requesters, and is computed by

1

m
×
∑
t∈T

q(M(t)), (5.37)

where q(M(t)) = 0 ifM(t) = ∅.

• Online user happiness: To show the optimality of the PRSTA1.0 algorithm

empirically, we look at the happiness of the users with the matching decisions

in capacity-constrained settings. This is computed similarly to pairwise user

happiness, but a and b in (5.33) are set, respectively, as the number of decision-

time unhappy pairs and the number of times the algorithm is run to make a

matching decision, which can be different for each algorithm.

• Running time: We also look at the running times of the algorithms to analyze

how quickly they make the matching decisions, which is particularly important

in MCS systems with high mobility.

5.4.2 Results

We first look at the results in the synthetic data set without capacity constraints.

Fig. 31 shows the impact of the number of workers on the performance of the al-

134



20 40 60 80 100 120

# of workers (n)

40

50

60

70

80

90

100

P
a
ir
w

is
e
 u

s
e
r 

h
a
p
p
in

e
s
s
 (

%
)

OSTA

PRSTA
0.9

PRSTA
1.0

GS

Greedy

(a)

20 40 60 80 100 120

# of workers (n)

0

20

40

60

80

100

A
v
e
ra

g
e
 u

s
e
r 

h
a
p
p
in

e
s
s
 (

%
)

OSTA

PRSTA
0.9

PRSTA
1.0

GS

Greedy

(b)

20 40 60 80 100 120

# of workers (n)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
v
e
ra

g
e
 q

u
a
lit

y
 o

f 
s
e
n
s
in

g

OSTA

PRSTA
0.9

PRSTA
1.0

GS

Greedy

(c)

Fig. 31. Performance comparison of the algorithms against varying number of workers

in systems without capacity constraints in the synthetic data set (m = 100).

gorithms. We see that the proposed algorithms substantially outperform the others,

and the OSTA algorithm has the best performance for the most part, as expected.

In fact, it is only slightly outperformed by the PRSTA0.9 algorithm in terms of aver-

age user happiness. This indicates that despite producing matchings with marginally

worse pairwise user happiness, the PRSTA0.9 algorithm can produce more balanced

matchings, in which the degree of unhappiness of the users that form at least one

unhappy pair is lower. This is simply because of reducing the risk levels by setting

α = 0.9, and seeking to match users with possibly not perfect, but good enough

candidates.
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Fig. 32. Performance comparison of the algorithms against varying number of tasks in

systems without capacity constraints in the synthetic data set (n = 60).

In Fig. 31c, we see that the proposed algorithms achieve better average qual-

ity of sensing scores with increasing number of workers, because as the number of

workers increases, there will also be more high-quality workers. However, the GS and

Greedy algorithms do not benefit much from this significantly as the former uses an

inaccurate approximation for the expected user utilities, and the latter simply ignores

the matching opportunities that may come in the future.

In Fig. 32, we examine the performance of the algorithms with various task

counts in the systems without capacity constraints. Since the workers do not have a

capacity constraint, increasing the number of tasks does not escalate the competition

136



5 10 15 20 25 30 35

Mobility (%)

30

40

50

60

70

80

90

100

P
a
ir
w

is
e
 u

s
e
r 

h
a
p
p
in

e
s
s
 (

%
)

OSTA

PRSTA
0.9

PRSTA
1.0

GS

Greedy

(a)

5 10 15 20 25 30 35

Mobility (%)

20

40

60

80

100

A
v
e
ra

g
e
 u

s
e
r 

h
a
p
p
in

e
s
s
 (

%
)

OSTA

PRSTA
0.9

PRSTA
1.0

GS

Greedy

(b)

5 10 15 20 25 30 35

Mobility (%)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
v
e
ra

g
e
 q

u
a
lit

y
 o

f 
s
e
n
s
in

g

OSTA

PRSTA
0.9

PRSTA
1.0

GS

Greedy

(c)

Fig. 33. Performance comparison of the algorithms against varying degree of mo-

bility in systems without capacity constraints in the synthetic data set

(m = 100, n = 60).

between tasks (unlike what we will see in the presence of capacity constraints), thus

we do not see big differences in the performance of the algorithms with the exception

that the proposed algorithms perform slightly worse, and the others slightly better in

terms of average user happiness.

Next, in Fig. 33, we look at the performance of the algorithms against varying

degree of mobility, which is defined as the average percentage of the task regions

visited by each worker. We generate instances with different mobility levels (i.e.,

percentage of all task regions visited by each worker, on average) by adjusting the
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Fig. 34. Performance comparison of the algorithms against varying number of workers

in systems with capacity constraints in the synthetic data set (m = 100).

range of the λi,j values for worker-task pairs (e.g., increasing the average value of λi,j

results in lower mobility). As expected, with higher mobility, the high-quality workers

visit more task regions, hence we see a profound increase in the average quality of

sensing scores of the proposed algorithms. A remarkable point is that the GS and

Greedy algorithms produce matchings with worse pairwise/average user happiness

scores with increasing mobility, because the amount of better matching opportunities

to be seen in the future, which are mostly neglected by these algorithms, becomes

larger with increasing mobility.

In Fig. 34, 35, and 36, we present the performance comparison of the algorithms
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Fig. 35. Performance comparison of the algorithms against varying number of tasks in

systems with capacity constraints in the synthetic data set (n = 60).

in the MCS systems with capacity constraints (note that there is no result for the

OSTA algorithm, as it can only be run in the systems without capacity constraints).

Fig. 34 shows the performance of the algorithms with various worker counts. Al-

though the relative performance of the algorithms is similar to the case without

capacity constraints (Fig. 31), the quality of the produced matchings is generally

slightly worse in terms of all performance metrics. This is because the high-quality

workers will not be able to perform as many tasks as possible in this scenario, and the

propriety of each matching decision becomes more important as there will be only a

limited number of opportunities to make up for the previous decisions.
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Fig. 36. Performance comparison of the algorithms against varying ranges of worker

capacities in the synthetic data set (m = 100, n = 60).

We inspect how the algorithms perform with varying number of tasks in presence

of capacity constraints in Fig. 35. Different from the case without capacity constraints

(Fig. 32), the user happiness and average quality of sensing achieved by the proposed

algorithms get worse with increasing task counts, because, in this case, there is a

competition between tasks as the high-quality workers can be matched to only a

small number of tasks.

Another noteworthy point is that increasing the number of tasks has a different

impact on the performance of the proposed algorithms and the others in terms of
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Fig. 37. The impact of α on the performance of the PRSTAα algorithm in the synthetic

data set without capacity constraints (m = 100, n = 60).

average user happiness. That is, the proposed algorithms perform slightly worse,

while the GS and Greedy algorithms perform slightly better. This is due to the fact

that the tasks will be, on average, matched to the workers with low quality scores

or will be even unmatched when the number of tasks is large. This makes the cost

of missing a present matching opportunity in terms of user happiness bigger, and

the proposed algorithms consequently suffer as they frequently disregard the present

matching opportunities to wait for better ones.

In Fig. 36, we analyze the effect of extending the worker capacity ranges on

the performance of the algorithms. We observe that the proposed algorithms always

outperform the others in terms of pairwise user happiness, and the performance dif-

ference becomes more significant with increasing worker capacities. However, when

each worker can be matched with only a single worker, the GS algorithm has a similar

performance with the PRSTA0.9 algorithm in terms of average user happiness. Be-

sides, the GS and Greedy algorithms achieve comparable average quality of sensing

scores with the proposed algorithms when each worker has a capacity of one. This is

because they have a lower risk of leaving the workers completely unmatched by skip-

ping the existing matching opportunities, and this compensates for the loss of quality
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Fig. 38. Performance comparison of the algorithms in the SF taxi data set without

capacity constraints (m = 100, n = 60).

of sensing caused by the poor matching decisions they otherwise tend to make (as we

see with larger worker capacities).

In the synthetic data set, we lastly look at the performance of the PRSTAα

algorithm with various values of α parameter as shown in Fig. 37. We see that the

algorithm produces optimal task assignments in terms of online user happiness when

α = 1 (as proven in Corollary 11.1), and that it achieves the best performance in

terms of all other metrics when α is between 0.8 and 1. When we further decrease

the value of α, the algorithm starts to match the worker-task pairs greedily (when

α = 0, it is in fact practically the same with the Greedy algorithm), while it misses
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Fig. 39. Performance comparison of the algorithms in the SF taxi data set with ca-

pacity constraints (m = 100, n = 60).

too many existing matching opportunities to wait for substantially better ones when

we use an α value greater than 1.

In Fig. 38, 39, & 40, we present the performance of the algorithms in terms of

pairwise user happiness in the real data set without and with capacity constraints,

respectively. In both figures, the performance of the proposed algorithms and GS

algorithm mostly improve with the extended campaign duration, yet that of the

Greedy algorithm gets consistently worse as it makes almost all of the assignments

right in the beginning of the campaign without considering potential opportunities

that may come later. In Fig. 38a & 39a, we see a slight fluctuation in the performance
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Fig. 40. Performance comparison of the algorithms with varying capacity ranges in

the SF taxi data set (m = 100, n = 60).

of the PRSTA1.0 algorithm when the campaign duration is between 20-30 hours. This

is mostly because of the changes in the movement patterns of the taxis between two

consecutive days. For instance, the taxis are likely to have different visit patterns on

Friday and Saturday as the former is a business day and the latter is not.

In Fig. 38, we observe that the relative performance of the algorithms and the

impact of worker/task counts on the performance of all algorithms are quite similar

to what we have seen in the synthetic data set (Fig. 31 & 32). In fact, the only major

difference is that the GS algorithm achieves notably higher pairwise user happiness

scores (by about 10%) in the real data set. Moreover, its performance is also signifi-

cantly better with capacity constraints (Fig. 39) so that it even slightly outperforms

the PRSTA1.0 algorithm when the ratio of the number of tasks to the number of

workers is larger than 2. Yet it should be noted that it is always outperformed by

the PRSTA0.9 algorithm.

Finally, in Fig. 41, we look at the running times of the algorithms with varying

worker/task counts and capacity ranges on an Intel core i7 processor with a memory
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Fig. 41. Running times of the algorithms with varying worker (a) and task (b) counts;

and varying ranges [1,cmax] of worker capacities with m = 100, n = 60 (c) .

The total and average running times refer to the total time spent in making

matching decisions throughout the campaign, and the average time spent per

matching decision, respectively.

of 16 GB and a speed of 2.5 GHz7. We only present the running times for the synthetic

data set as the comparison of running times of algorithms in the real data set does

not exhibit any remarkable difference (except for the naturally larger total running

7Since the OSTA and Greedy algorithms make the matching decisions in constant
time, we do not present their running times. One-time cost of obtaining Ej(s) values
for the OSTA algorithm is also very small (e.g., 32 ms, which is about 10% of the
total running time of the GS algorithm, when m = 150 and n = 60) in the setting
without capacity constraints.
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times due to the longer campaign duration). Recall that the worst-case running time

of the PRSTAα algorithm is O(nmcmax) (or O(nm2)), and that of the GS algorithm

is O(mn). We first note that in all cases the total running time of the GS algorithm

is lower than the PRSTAα algorithms, while its average running time per decision is

higher. This is because the GS algorithm makes the matching decisions more greedily

compared to the PRSTAα algorithms, thus it matches most of the workers and tasks

in the beginning of the campaign, which means that it will not be run again for these

users, reducing the number of times it will be run in total. On the other hand, the

PRSTAα algorithms have smaller average running times per decision, because they

are run much more frequently after the first part of the campaign where there are

generally fewer worker-task pairs that can still get matched.

Moreover, the PRSTA1.0 algorithm has a significantly larger total running time

than the PRSTA0.9 algorithm as the former has a stronger requirement to match a

pair, and consequently will be run considerably more times compared to the latter.

This is also the reason behind why we see an almost quadratic increase in the total

running time of the PRSTA1.0 algorithm with increasing worker and task counts. That

is, when the number of workers/tasks increases, there will be more visits, and the

PRSTA1.0 algorithm will need to be run even more frequently. Lastly, since workers

will be less selective when they have higher capacities, and accordingly tasks will end

up getting matched earlier, the total/average running times of the algorithms do not

get significantly larger with increasing capacities as seen in Fig. 41c, even though the

worst-case running time of the PRSTAα algorithm (i.e., O(nmcmax)) hints at a linear

grow with increasing worker capacities.
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5.5 Conclusion

In this chapter, we studied the task assignment problem in opportunistic MCS.

First, we presented a complete system model considering the uncertainty in worker

trajectories and capacity constraints of workers, and formally defined the preference-

aware/stable task assignment problem. We then demonstrated how to efficiently

examine all practical scenarios for assignment opportunities, which arise when the

workers visit the task regions, to compute the expected utilities of the task requesters

and workers with and without capacity constraints. Finally, we proposed polynomial-

time task assignment algorithms that are proven to be preference-aware, and showed

via extensive simulations that they significantly outperform the existing solutions in

terms of worker/task requester happiness and quality of sensing.
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CHAPTER 6

THREE-DIMENSIONAL TASK ASSIGNMENT IN

SEMI-OPPORTUNISTIC MOBILE CROWDSENSING

6.1 Introduction

As we have seen in the previous chapters, the key issue in the participatory

sensing is that the paths assigned to workers are likely to disturb their daily schedules

and to introduce significant additional travel costs, whereas the opportunistic sensing

mainly suffers from the issue of poor coverage, as a task cannot be carried out if its

region will not be visited in time by any worker in the system during their self-defined

trips.

To address these issues and find a middle ground between the participatory

and opportunistic sensing, a new sensing mode, namely semi-opportunistic, has been

proposed recently [38]. In this novel mode, workers provide the matching platform

with alternative paths they would be willing to take within their comfort zones in

addition to the path they would normally take (e.g., dashed lines in Fig. 42). This

yields a wider range of task assignment options for both workers and tasks, and hence

not only improves the task coverage, but also expands the set of tasks workers can

carry out, allowing them to increase their profits by performing more tasks.

In this chapter, we study the preference-aware task assignment problem in a

semi-opportunistic mobile crowdsensing (SO-MCS) setting. The key challenge in this

problem is to satisfy the preferences of all users in a three-dimensional matching

setting, where each worker is to be matched with one of his acceptable paths, and

then with a set of tasks on this path. Thus, the path and task assignments are
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Fig. 42. Example paths of a user for different sensing modes.

strongly interdependent, and must be compatible with each other. Besides, various

factors such as task rewards, worker qualities and the number of tasks that workers

can carry out on each of their paths (i.e., a worker may choose to perform fewer tasks

on a longer path) need to be considered together to achieve a preference-aware task

assignment. Our main contributions in this chapter can be summarized as follows:

• We provide a formal definition of the preference-aware task assignment problem

in an SO-MCS system, and show that a task assignment that satisfies all user

preferences does not exist in some instances.

• We design two different task assignment algorithms, and prove their (near)

optimality for different settings.

• We carry out extensive simulations, and demonstrate the superiority of our

algorithms over the existing solutions.

6.2 System Model

6.2.1 Assumptions

We assume a system model with a set of location-dependent sensing tasks T =

{t1, t2, . . . , tn} and a set of workers W = {w1, w2, . . . , wm} that accept to perform

tasks in a semi-opportunistic setting. Each worker wi provides the service provider
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(SP) with a set of paths Pi = {pi,1, pi,2, . . . , pi,ai} that he finds acceptable from his

current location to his destination. In each assignment period, it is the responsibility

of SP to find a satisfactory assignment between workers and tasks by matching workers

to one of their acceptable paths, and assigning a subset of tasks on their selected paths.

Each path pi,j has a capacity ci,j associated with it, which indicates the maximum

number of tasks that worker wi is willing to perform if he is assigned to path pi,j. The

ability to specify a capacity for each path enables workers to avoid any unacceptable

delays in their daily schedule by controlling their sensing activity. Since acceptable

paths of a worker may have different conditions (e.g., traffic, security) that can affect

the comfort level of the worker for sensing, or may be of different lengths, it is crucial

to allow workers to assign different capacities to their paths. For simplicity, we let

the path set Pi of each worker wi be in non-increasing order of path capacities. That

is, we have ci,j ≥ ci,j+1 for all j values between 1 and ai − 1. Besides, if the region of

task tk resides on path pi,j (i.e., worker wi can perform task tk if he takes path pi,j),

we say tk is on pi,j and let

Ti,j = {tk : tk ∈ T and tk is on pi,j}. (6.1)

Our system model is also QoS-aware. That is, each worker wi has a QoS score

qi,j for each task tj, which specifies the level of competence of worker wi for task

tj, and can be determined based on various factors such as quality of the sensing

equipment and trustworthiness or seniority of the worker. Moreover, we look at the

task assignment problem in both uniform and general QoS settings. In the uniform

QoS setting, each worker has a universal QoS score that applies for all tasks, i.e.,

qi,j = qi,k for all 1 ≤ j, k ≤ n. On the other hand, in the general QoS setting, a

worker may have different QoS scores for different tasks. For convenience, we simply

call MCS instances with uniform and general QoS settings as uniform and general
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MCS instances, respectively.

Another important feature of our system model is that the task assignments are

optimized with respect to the preferences of workers and tasks. Each task (requester)

tj would like to be matched with a worker with a high QoS score, thus prefers worker

wi to all workers with a QoS score smaller than qi,j. Then, we can define the preference

list Lt
j of task tj for the general QoS setting as follows:

Lt
j = wσ1 , wσ2 , . . . , wσk

where qσi,j ≥ qσi+1,j. (6.2)

Note that Lt
j may not contain all workers if tj finds some workers unacceptable (e.g.,

workers with a QoS score smaller than a certain value). In the uniform QoS setting,

assuming L̂t
j is the preference list formed for task tj according to (6.2) without leaving

out any worker (i.e., |L̂t
j| = m), we can define a global preference list LT for tasks as

follows:

LT = L̂t
1 = L̂t

2 = · · · = L̂t
n. (6.3)

On the other hand, the requester of each task tj offers a monetary reward of

rj,i to each worker wi to encourage worker participation. As rational individuals, the

workers in our system aim to maximize their profits. Thus, the preference list Lw
i of

worker wi can be formed as:

Lw
i = tσ1 , tσ2 , . . . , tσk

where rσi,i ≥ rσi+1,i. (6.4)

The preference list of a worker also does not need to contain all tasks in the system.

Given a worker-task pair (wi, tj), if wi ̸∈ Lt
j and tj ∈ Lw

i , we remove tj from Lw
i as

worker wi is not an acceptable partner for task tj. Similarly, if tj ̸∈ Lw
i and wi ∈ Lt

j,

we remove wi from Lt
j.

We let M denote a feasible three-dimensional matching (task assignment) in
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our system model. For each worker wi,M(wi) = (A, pi,j) denotes the assignment of

worker wi in this matching, where pi,j is the path selected for worker wi and A is

the set of tasks that are assigned to worker wi through path pi,j. To be a feasible

assignment, A and pi,j must satisfy the following conditions:

• capacity constraint : |A| ≤ ci,j,

• acceptability constraint : A ⊆ Lw
i ,

• regional constraint : A ⊆ Ti,j.

On the other hand, the assignment of each task tk in this matching is denoted by

M(tk) = (wi, pi,j), where wi is the worker that is assigned to perform task tk and pi,j

is the path that is selected for worker wi. The following conditions must be satisfied

for feasibility:

• acceptability constraint : wi ∈ Lt
k.

• regional constraint : tk ∈ Ti,j,

If a user (worker or task) v is left unmatched in M, we let M(v) = (∅,−). Also,

given the assignmentM(v) = (X, Y ) of user v, we letMu(v) andMp(v) denote X

and Y , respectively.

6.2.2 Problem Statement

Our main objective in this chapter is to find a preference-aware, feasible matching

according to our system model where the users are happy with their assignments

according to their preferences. Below, we give the necessary definitions to formally

evaluate the happiness of the users with a matching.

Definition 18 (Unhappy triad). Given a matching M, worker wi, path pi,j and a

set S of tasks form an unhappy triad denoted by ⟨wi, pi,j, S⟩ if
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• S is an acceptable assignment for wi, i.e.,

1 ≤ |S| ≤ ci,j, S ⊆ Lw
i , and S ⊆ Ti,j, (6.5)

• wi is an acceptable assignment for each tk ∈ S, i.e.,

wi ∈ Lk and tk ∈ Ti,j, (6.6)

• each task tk ∈ S either prefers worker wi to their current assignment wh inM,

i.e.,

qi,k > qh,k where qh,k = 0 if wh = ∅, (6.7)

or is already assigned to worker wi, i.e.,Mu(tk) = wi.

• worker wi prefers the task set S to his current assignment inM, i.e.,

∑
th∈S

rh,i >
∑

tk∈Mu(wi)

rk,i, (6.8)

Thus, given an unhappy triad ⟨wi, pi,j, S⟩, we see from the first two conditions

that it is possible to assign the tasks in the set S to worker wi through path pi,j

without violating any feasibility constraints, and see from the last two conditions

that this would make at least one task in S and worker wi strictly better off without

making any task in S worse off.

Definition 19 (3D-Stable matching). A matching is said to be stable if it does not

contain any unhappy triads.

In order for a matching to be perfect in terms of preference-awareness, it should

be stable. However, as we prove in the following theorem, it is not possible to construct

a stable matching in all MCS instances.
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Fig. 43. An MCS instance for which no stable matching exists. There is an edge from

a path pi,j to a task tk if tk ∈ Ti,j.

Theorem 12. There exist MCS instances with a general QoS setting, in which all

feasible matchings are unstable (i.e., contain at least one unhappy triad).

Proof. We prove it by showing such an instance, which is illustrated in Fig. 43. There

are 11 possible task assignments in this instance, and, as shown in Fig. 44, every one

of them contains at least one unhappy triad. Thus, no stable matching exists for this

instance, which completes our proof.

On the other hand, a stable matching always exists in the uniformMCS instances,

which we will prove in the following section by giving an algorithm that produces a

stable matching for such instances.

Due to the nonexistence of stable matchings in general MCS systems, we formu-

late our objective function as:

maximize min
x∈U(M)

1

δx
, (6.9)

where U(M) denotes the set of unhappy triads in the produced matchingM, and δx

denotes the dissatisfaction ratio of a given unhappy triad x = ⟨wi, pi,j, S⟩, which is
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Fig. 44. Proof of Theorem 12. All possible matchings for the instance in Fig. 43 are

shown with boxes. There is an edge k from matching (box) m to matching

m′, if k is an unhappy triad in m due to a more favorable assignment in m′.

computed by

δx =

∑
th∈S rh,i∑

tk∈Mu(wi)
rk,i

, (6.10)

if Mu(wi) ̸= ∅, otherwise δx = ∞. So, the dissatisfaction ratio of x quantifies the

utility difference between the current matching and the matching, in which worker w

and the unhappy tasks in S are matched with each other, and do not form an unhappy

triad. Consequently, our goal is to optimize the worst-case performance by minimizing

the maximum dissatisfaction ratio in the final matching. Note that the value of (6.9)

ranges between 0 and 1, where it is 1 when the matching is perfect/stable (i.e.,

U(M) = ∅), and decreases as the unhappiness of the users in the matching grows.

Definition 20 (α-stable matching). A matchingM is said to be α-stable if

max
x∈U(M)

δx ≤ α. (6.11)

A summary of the notations used throughout this chapter is presented in Table

6.2.2.
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Notation Description

W , T Set of workers and tasks, respectively

m, n Number of workers and tasks, respectively

Pi Set of acceptable paths of worker wi

ai Number of acceptable paths of worker wi

ci,j Capacity of path pi,j

Ti,j Set of tasks that reside on path pi,j

qi,j QoS of worker wi for task tj

rj,i Reward offered to worker wi for task tj

Lt
j Preference list of task tj

LT Global preference list of tasks in uniform systems

Lw
i Preference list of worker wi

M A feasible matching (task assignment)

M(v) Assignment of worker/task v inM

Mu(wi) Set of tasks assigned to worker wi inM

Mp(wi) Path selected for worker wi inM

Mu(tj) Worker assigned to task tj inM

Mp(tj) Path selected for the partner of task tj inM

δx Dissatisfaction ratio of unhappy triad x

U(M) Set of unhappy triads inM

Table 10. Notations used in Chapter 6.
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6.3 Proposed Solution

In this section, we first present an algorithm that finds stable matchings in uni-

form MCS instances. Then, we consider general MCS instances where stable match-

ings may not exist, and propose an approximation algorithm that finds near-optimal

matchings in terms of stability.

6.3.1 Stable Task Assignment in Uniform MCS Systems

In Algorithm 14, we describe our algorithm that finds stable matchings in uniform

systems. In line 1, we initialize the matchingM. Then, we form the global preference

list of tasks according to (6.3) in line 2. In the for loop starting at line 3, we iterate

the workers in LT from beginning to end, and find an assignment for the ith worker

(wh) in LT in the ith iteration. To this end, we first form the preference list Lw
h of

worker wh in line 5. Then, in the for loop starting at line 7, we find the best feasible

task set A′ for each of his acceptable paths ph,j among the tasks that have not been

matched yet. To find the best task set for ph,j, we iterate the preference list of worker

wh in the for loop in lines 9-15, and add the tasks that are on path ph,j and currently

unmatched (line 11) to A′ until we reach the capacity limit ch,j of path ph,j (line 14).

We keep the best task set found so far in A, the index of the corresponding path in

r, and the sum of the rewards offered to worker wh by the tasks in A in s (line 17).

Finally, we match the tasks in A and worker wh with each other (lines 18-20).

Theorem 13. Algorithm 14 always produces a stable matching for uniform MCS

instances.

Proof. We prove this by contradiction. Assume the final matching contains an un-

happy triad ⟨wh, ph,j, S⟩. Let T ′
i denote the set of tasks that are unmatched in the

beginning of the ith iteration of the for loop starting at line 3, so we have T ′
1 = T .
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Algorithm 14: UniformSTA

1 letM(u) = (∅,−) for all u ∈ W ∪ T

2 form LT by (6.3)

3 for i← 1 to m do

4 let wh be the ith worker in LT

5 form Lw
h by (6.4)

6 A← {}, s← 0, r ← 0

7 for j ← 1 to ah do

8 A′ ← {}, s′ ← 0

9 for l← 1 to |Lw
h | do

10 let tk be the lth task in Lw
h

11 if tk ∈ Th,j andMu(tk) = ∅ then

12 append tk to A′

13 s′ ← s′ + rk,h

14 if |A′| = ch,j then

15 break

16 if s′ > s then

17 A← A′, s← s′, r ← j

18 M(wh)← (A, ph,r)

19 foreach t ∈ A do

20 M(t)← (wh, ph,r)

21 returnM
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Also, let wh be the kth worker in LT , i.e., the worker that is considered in the kth

iteration. We first note that T \ T ′
k is the set of tasks that have been matched before

the kth iteration, and

S ∩ (T \ T ′
k) = ∅. (6.12)

That is, S cannot contain any task that was matched before the kth iteration, because

all tasks that were matched before the kth iteration were matched to a worker that

precedes the worker wh in LT . Therefore, the QoS scores of their partners must be

equal to or greater than the QoS score of wh due to (6.2) and (6.3), which contradicts

the unhappy triad definition due to (6.7). Then, by (6.12), we have S ⊆ T ′
k, i.e., all

tasks in S were unmatched in the beginning of the kth iteration. However, we match

worker wh with the best feasible task set in T ′
k, thus we have

∑
tx∈Mu(wh)

rx,h ≥
∑
ty∈S

ry,h. (6.13)

This also contradicts the unhappy triad definition due to (6.8), hence we conclude that

such an unhappy triad cannot exist in the matching produced by Algorithm 14.

As a result of Theorem 13, we obtain the following corollary.

Corollary 13.1. A stable matching always exists in all MCS instances with a uniform

QoS setting.

Running time. Forming the global preference list of tasks LT in line 2 takes

O(m logm) time. In each iteration of the for loop starting at line 3, we form the

preference list of a worker (line 5) and iterate it once for each of his acceptable paths

(lines 7-17), which respectively take O(n log n) and O(namax) time, where amax =

max1≤i≤m ai. Thus, the overall time complexity of Algorithm 14 is O(mnamax +

mn log n+m logm).
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6.3.2 Stable Task Assignment in General MCS Systems

In Algorithm 15, we present a pseudo-code description of our approximation

algorithm for general MCS systems. In this algorithm, we attempt to match the

tasks with their best preferences, but when we need to choose between the tasks that

want to be matched with a worker due to the capacity or regional constraint (i.e.,

when we reach the capacity limit, or have tasks that are on different acceptable paths

of the worker and hence cannot be matched to the worker at the same time), we

choose a subset of these tasks that, though may not be optimal locally, have the best

potential to yield the maximum total reward for the worker in the end based on the

rewards they individually provide to the worker and the capacity of the corresponding

path of the worker. Below, we first describe the steps of the algorithm, and then prove

that it produces near-optimal matchings in terms of stability.

The algorithm begins by initializing the matching M in line 1, and three key

variables xi, σi and indexk for each worker wi and task tk in line 2. The variable

σi keeps the value of the total reward to be obtained by worker wi in the current

matching, and xi keeps the value of rk,i × ci,j for each worker wi, where rk,i is the

reward offered to worker wi by the task (tk) that has the maximum reward among

the tasks that are currently matched to worker wi, and ci,j is the capacity of the path

pi,j currently selected for worker wi. Thus, both xi and σi are initialized to 0 in line

2. The variable indexk keeps the index of the first worker in Lt
k that was not yet

attempted to be matched to task tk, so it is initially set to 1 for all tasks.

During the execution of the algorithm, all tasks that are currently unmatched

and are not yet attempted to be matched to each worker in their preference lists, i.e.,

∀tk ∈ T :Mu(tk) = ∅ and indexk ≤ |Lt
k|, (6.14)
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Algorithm 15: GeneralSTA (W , T )

1 letM(u) = (∅,−) for all u ∈ W ∪ T

2 let xi = σi = 0 for all 1 ≤ i ≤ m, and indexk = 1 for all 1 ≤ k ≤ n

3 Stack.push(T )

4 while Stack is not empty do

5 tk ← Stack.pop()

6 if indexk ≤ |Lt
k| then

7 let wi be the (indexk)th worker in Lk

8 indexk ← indexk + 1

9 A← {}, R← {}, r ← 0

10 for j ← 1 to ai do

11 if tk ̸∈ Ti,j then continue;

12 A′, R′, σ′ ← FindPathOptimal(i, j, k,M)

13 let th be the first task in A′

14 if rh,i × ci,j > xi or (rh,i × ci,j = xi and σ′ > σi) then

15 xi ← rh,i × ci,j, A← A′, R← R′, σi ← σ′, r ← j

16 if |A| > 0 then

17 letM(wi) = (A, pi,r), andM(t) = (wi, pi,r) for all t ∈ A

18 letM(t) = (∅,−) for all t ∈ R

19 Stack.push(R)

20 else

21 Stack.push(tk)

22 returnM
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Algorithm 16: FindPathOptimal (i, j, k,M)

1 A′ ← {}, R′ ← {}, σ′ ← 0

2 for l← 1 to |Mu(wi)| do

3 let th be the lth task inMu(wi)

4 if th ∈ Ti,j and |A′| < ci,j then

5 append th to A′

6 σ′ ← σ′ + rh,i

7 else

8 append th to R′

9 insert tk into A′ by maintaining non-increasing order of task rewards

10 σ′ ← σ′ + rk,i

11 if |A′| > ci,j then

12 let th be the last task in A

13 remove th from A′

14 append th to R′

15 σ′ ← σ′ − rh,i

16 return (A′, R′, σ′)

reside in a stack that is initialized in line 3. In the while loop starting in line 4,

we attempt to match one (tk) of the tasks in the stack with the next worker (wi) in

its preference list (Lt
k) until there is no task left in the stack. When we attempt to

match task tk to worker wi, we check each of the acceptable paths of worker wi in

non-increasing order of path capacities (i.e., pi,1, pi,2, .., pi,ai) in the for loop starting in

line 10. During this process, we respectively maintain the task set and the path that

we would like to assign to worker wi after checking each path in the variables A and
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r, and maintain the set of tasks that are currently matched to worker wi, but need to

be removed from his assignment set for worker wi to be able to match with A in the

variable R. For each path pi,j : tk ∈ Ti,j (lines 10-11), we first find the best task set A′

among the tasks inMu(wi)∪{tk} within the capacity constraint of pi,j by running an

algorithm called FindPathOptimal (line 12), which is described in Algorithm 16. We

then choose the task set A′ over the task set A, and update the variables A,R, xi, σi,

and r accordingly (lines 14-15) if one of the following two conditions is satisfied:

• xi increases (regardless of the change in the total reward σi to be collected by

worker wi),

• xi remains unchanged, but σi increases.

Finally, in lines 16-21, if A is non-empty, we match worker wi and the tasks in A with

each other, set the tasks in R free, and push them back onto the stack. Otherwise,

we only push task tk onto the stack.

Theorem 14. Algorithm 15 always produces a κ-stable matching for a general MCS

instance, where κ is the maximum path capacity in the instance, i.e.,

κ = max
1≤i≤m
1≤j≤ai

ci,j. (6.15)

Proof. We prove this by contradiction as well. Assume that there is a unhappy triad

⟨wi, pi,j, S⟩ in the final matching M produced by the algorithm, which breaks the

κ-stability of the matching. Thus, we must have

∑
tx∈Mu(wi)

rx,i × κ <
∑
ty∈S

ry,i. (6.16)

We first note that all tasks in S must have been attempted to be matched to worker

wi at some point during the execution of the algorithm, because, by definition of
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unhappy triad (6.7), they must either currently be matched to worker wi, or prefer

worker wi to their current assignments inM. The latter case indicates that worker

wi precedes their current assignments in their preference lists (line 7), thus they have

been attempted to matched worker wi before they ended up getting matched with

their current assignments.

We then note that every time a task that would increase the value of xi (line

14) is being attempted to match to worker wi, it will certainly be matched to worker

wi in that iteration, and increase xi (line 15), which will have the maximum value

possible in the end. Thus, we have

∀te ∈ E : xi ≥ re,i × max
1≤h≤ai

ci,h, (6.17)

where E is the set of tasks that were attempted to matched to worker wi during the

execution of the algorithm. Since S ⊆ E, we have

∀ts ∈ S : xi ≥ rs,i × max
1≤h≤ai

ci,h,

≥ rs,i × ci,j.

(6.18)

Recall that xi = rm,i × ci,g, where (i) rm,i is the reward of task tm ∈ Mu(wi),

which has the highest reward among the tasks inMu(wi), and ci,g is the capacity of

pi,g =Mp(wi). Then, by (6.18), we get

∀ts ∈ S : rm,i × ci,g ≥ rs,i × ci,j. (6.19)

For the condition in (6.16) to hold, we must have

∑
tx∈Mu(wi)

rx,i ×max{ci,g, ci,j} <
∑
ty∈S

ry,i, (6.20)
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because max{ci,g, ci,j} ≤ κ. If ci,g > ci,j, we would have

∑
tx∈Mu(wi)

rx,i × ci,g <
∑
ty∈S

ry,i (6.21a)

rm,i × ci,g <
∑
ty∈S

ry,i (by (i)) (6.21b)

∀ts ∈ S : rs,i × ci,j <
∑
ty∈S

ry,i (by (6.19)). (6.21c)

For the task ts′ with the highest reward in S, (6.21c) yields

rs′,i × ci,j <
∑
ty∈S

ry,i, (6.22)

which is a contradiction, because S cannot contain more than ci,j tasks due to the

capacity constraint of path pi,j.

On the other hand, if (ii) ci,g ≤ ci,j, we would have

∑
tx∈Mu(wi)

rx,i × ci,j <
∑
ty∈S

ry,i (6.23a)

rm,i × ci,j <
∑
ty∈S

ry,i (by (i)) (6.23b)

rm,i × ci,g <
∑
ty∈S

ry,i (by (ii)) (6.23c)

which also leads to a contradiction, as (6.23c) is identical to (6.21b). Therefore, we

conclude that there cannot exist any unhappy triad that violates κ-stability in the

matching produced by Algorithm 15, and it is always κ-stable.

Running time. Algorithm 15 requires to form only the preference lists of the

tasks, which takes O(nm logm) time. During the execution of the algorithm, each

task tk can be pushed on the stack at most |Lt
k| ≤ m times, so the while loop starting

in line 4 will iterate O(mn) times. The for loop starting in line 10 will iterate at

most amax = max1≤i≤m ai times, and the most expensive operation in it is running
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Algorithm 16, which has a cost of O(cmax), where cmax = max1≤i≤m ai, as the size of

the assignment setMu(wi) iterated in line 2 of this algorithm cannot be larger than

the maximum path capacity cmax in the given instance. Thus, the worst-case running

time of Algorithm 15 is O(nm logm+ nmcmaxamax).

6.4 Evaluation

In this section, we present the empirical evaluation of the proposed algorithms.

6.4.1 Simulation Settings

For our simulations, we generate an SO-MCS instance in a real environment as

follows. We randomly select n places of interest (PoI) in Lower Manhattan from the

PoI list [97] provided by the City of New York, and create a task at each of these

places. For each (wi) of m workers in the instance, we randomly select two PoIs that

are [2-4] kilometers away from each other from the same PoI set, and use these as their

starting points and destinations. We then get ai ∼ U{4, 6} different routes between

these two PoIs using the Google’s Directions API [98]. We obtain the best (shortest)

path of wi, which has the maximum capacity ci,1 ∼ U{3, 5}, by requesting a direct

route, and obtain the remaining paths by requesting a route with a waypoint at one

of the PoIs located in the smallest circle that encloses the bird-eye route between the

starting point and destination. The capacity of each pi,j of the latter paths is set

as ci,1 − ⌊d/300⌋, where d is the route length difference (in meters) between pi,1 and

pi,j. For each task-path pair (tk, pi,j), we add tk to Ti,j if and only if tk is within 50

meters of any point on pi,j. Lastly, to create a uniform instance, we assign a global

QoS score qi ∼ U{50, 100} to each worker, and let qi,j = qi, ∀tj ∈ T . On the other

hand, to create a general (non-uniform) instance, we simply let qi,j ∼ U{50, 100}

for all worker-task pairs (wi, tj). Task requesters are assumed to be offering rewards
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Fig. 45. Performance of algorithms with varying task counts in uniform MCS instances

(m=30).

proportional to the QoS they will get from each worker, thus we let rj,i = qi,j × bj,

where bj ∼ U(0.2, 1) is the reward to QoS ratio of task tj.

6.4.1.1 Benchmark Algorithms

We compare the proposed algorithms (i.e., UniformSTA and GeneralSTA) with

the following algorithms.

• OprtSTA: This algorithm finds the optimal solution in terms of stability in

opportunistic MCS systems. We transform our semi-opportunistic instances to

opportunistic ones by only considering the shortest path of each worker (which

has the largest capacity). In the resulting instance, a stable matching can be

found by the classic Gale-Shapley [42] algorithm in O(mn) time.
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Fig. 46. Performance of algorithms with varying worker counts in uniform MCS in-

stances (n=100).

• LPR-QoS [38]: This algorithm uses the linear programming relaxation (LPR)

technique, and finds a task assignment for SO-MCS systems based on the solu-

tion of the relaxed version of the integer program that maximizes the total QoS

of the workers assigned to the tasks. We use Google OR-Tools [99] to implement

this algorithm.

6.4.1.2 Performance Metrics

• User happiness ratio: The ratio of the number of unhappy triads to the total

number of triads that can be matched in any feasible matching.

• Worst-case user happiness: This is the value of the objective function defined
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Fig. 47. Performance of algorithms with varying task counts in general MCS instances

(m=30).

in (6.9), i.e., the α-stability of the produced matching.

• Average-case user happiness: This is computed by
∑

wi∈W(1/δimax)/m, where

δimax is the dissatisfaction ratio of the unhappy triad that causes the largest

utility loss for worker wi (δ
i
max = 1 if wi does not form any unhappy triads).

We also analyze the average QoS provided to task requesters and the running times

of the algorithms.

6.4.2 Results

We first look at the performance of the algorithms in the uniform instances

with varying numbers of tasks (Fig. 45) and workers (Fig. 46). As expected (due
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to Theorem 13), our UniformSTA algorithm always achieves perfect user happiness

scores, and greatly outperforms the benchmark algorithms. Moreover, it achieves to

deliver a comparable average QoS score with the LPR-QoS algorithm. On the other

hand, the OprtSTA algorithm mostly produces task assignments with the lowest

user happiness scores, despite considering the user preferences during the matching

process. This is because it disregards the alternative paths of workers along with

the additional matching options they provide, and thus demonstrates the advantage

of semi-opportunistic sensing over opportunistic sensing. However, with increasing

task counts, we observe a notable decrease in the ratio of unhappy triads in the

matchings produced by the OprtSTA algorithm, as each worker is likely to have

more assignment opportunities on their optimal path (i.e., only path considered in

opportunistic sensing), hence is less likely to form unhappy triads with the tasks

on their alternative paths. We observe the exact opposite of this for the LPR-QoS

algorithm, because this algorithm does not consider worker preferences whatsoever,

and consequently produces task assignments with more unhappy worker-task pairs

as the number of tasks in the instance increases, and it ends up disregarding worker

preferences over a larger set of tasks.

In Fig. 47 & 48, we look at the results on the general (non-uniform) MCS in-

stances, which clearly show the superiority of our GeneralSTA algorithm over the

other algorithms in terms of user happiness, particularly in terms of worst-case user

happiness. On the other hand, in this setting, our algorithm provides slightly lower

average quality of sensing than LPR-QoS algorithm. Also, in both uniform and gen-

eral MCS instances, the QoS scores achieved by all algorithms generally grow with

increasing worker density, as tasks are more likely to get assigned to a worker when

there is a larger number of workers in the instance.

Next, we analyze the performance of the algorithms with varying ranges of al-
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Fig. 48. Performance of algorithms with varying worker counts in general MCS in-

stances (n=100).

ternative path counts (ai − 1) and path capacities (ci,1) in Fig. 49. We observe that

our GeneralSTA algorithm generally has a stable performance, and maintains its su-

periority in terms of user happiness regardless of the changes in these parameters.

The performance of the OprtSTA algorithm is usually worse when workers have more

alternative paths (and a higher task performing capacity on these paths), because, in

these scenarios, the OprtSTA algorithm ends up failing to take advantage of a larger

number of assignment possibilities created by alternative paths.

Finally, in Fig. 50, we present the running times of the algorithms on uniform

instances (this is to show the results for all four algorithms) with different worker-

task counts. We note that the LPR-QoS algorithm has an excessive running time,

which is a few orders of magnitude larger than that of the other algorithms. On the
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Fig. 49. User happiness (n=80, m=30) with varying path counts and capacities.
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Fig. 50. Running times of algorithms with varying worker/task counts.

other hand, the OprtSTA algorithm has the shortest running time despite its poor

performance in terms of user happiness and average QoS in most settings. Lastly, our

algorithms have a comparable running time, with the GeneralSTA algorithm being

slightly faster.

6.5 Conclusion

In this chapter, we have introduced the preference-aware task assignment prob-

lem in a semi-opportunistic mobile crowdsensing setting. We have formally defined

the requirements for preference-awareness (or user happiness), and shown that it is

not possible to generate a perfectly preference-aware task assignment that satisfies all
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users in some instances. We have studied the problem in a system model with uniform

worker qualities as well as in a non-restricted model, and presented an exact and an

approximation task assignment algorithm, both with a polynomial-time complexity,

for these models, respectively. Results of the simulations, which are performed on

instances using real routes from Google Maps, have shown that the proposed algo-

rithms achieve to produce task assignments with significantly larger user happiness

scores compared to the benchmark algorithms.
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CHAPTER 7

PREFERENCE-AWARE MAXIMUM SYSTEM UTILITY TASK

ASSIGNMENT

7.1 Introduction

In most of the studies in the MCS literature, the objective in the task alloca-

tion process is set as finding a maximum system utility (e.g., number of completed

tasks, quality of completed tasks, time needed to complete given tasks) assignment,

and user preferences are overlooked. However, users may not want to sacrifice their

individual convenience for the system utility, and thus such task assignments may not

be appealing to users (i.e., both task requesters and workers) and impair their future

participation. On the other hand, satisfying user preferences perfectly may make

it impossible to achieve a maximum system utility assignment (e.g., the number of

matched users may decrease in preference-aware task assignments).

We illustrate this trade-off between user happiness and system utility through

an example MCS scenario with 5 tasks and 5 workers shown in Fig.51a, which will be

referenced throughout this chapter to describe the problem and proposed solutions

for convenience. We assume that workers have some serving region and they are only

eligible for the tasks in that region. The preference orders of the workers and the

task requesters are also provided in Fig.51b (we will talk about how users define their

preferences in Section 7.2). A matching that satisfies all users based on their prefer-

ences in the sense that they cannot claim to have deserved a better assignment than

their assigned partners can be found via the well-known Gale-Shapley algorithm [42].

There can be many such stable matchings in a single matching instance with the same
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Fig. 51. An MCS scenario with 5 workers and 5 tasks, which are respectively denoted

by numbers and letters. (a) Task and worker locations on the map (work-

ers eligible to perform a task is connected with an edge to that task); (b)

corresponding bipartite graph with the preference lists (from left to right)

of workers and tasks; (c) a stable matching that leaves 4 and b unassigned,

yielding a lower system utility; and (d) a task assignment that maximizes the

system utility but yielding unhappy users (shown with dashed edges).
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size, but there is only one in our example which is shown in Fig.51c. Thus, any other

matching will make at least two users unhappy. On the other hand, the issue with this

matching is that it leaves a worker (4) and a task (b) unassigned and hence diminishes

the system utility. However, the foremost objective of a reasonable platform would

be to maximize its own utility by assigning as many tasks as possible (as in Fig.51d),

since it is typically paid a brokerage fee for each assignment it makes. Yet it is for the

platform’s own benefit to also take the preferences of users into consideration and aim

to decrease the number of unhappy users with their assignments, because a user that

continuously gets unhappy with his assignments is likely to abandon the platform at

some point, which might have a more significant and permanent detrimental effect

on the system utility.

Therefore, the platform should aim to find the matching with the minimum

number of unhappy pairs (i.e., a worker-task pair preferring each other more than their

current partners) without sacrificing from its own utility. For example, a matching

that also achieves the maximum system utility, but with only one unhappy pair is

possible in the given scenario; thus, the platform should try to produce this matching

instead of the one given in Fig.51d, which contains 4 unhappy pairs. In this chapter,

we address this problem of finding a maximum size task assignment with as few

unhappy pairs as possible, which turns out to be NP-complete, and propose two

polynomial time heuristic algorithms. Our key contributions are listed below:

• We formulate the user satisfaction aware maximum utility task assignment prob-

lem, and describe an Integer Linear Programming (ILP) model to solve it opti-

mally.

• We propose a method that reduces the user unhappiness in a given task assign-

ment without affecting the system utility (or the size of the assignment), and
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another method that improves the system utility in a given task assignment

in a way that causes as little increase in user unhappiness as possible. Then,

we present two different polynomial-time task assignment algorithms based on

these two new methods.

• We perform extensive simulations using a real data set, and show that our

algorithms provide near-optimal results, and complement each other in different

scenarios.

7.2 System Model

7.2.1 Assumptions

LetW = {w1, w2, . . . ,wn} denote the set of |W| = n workers and T = {t1, t2, . . . ,tm}

denote the set of |T | = m tasks in the system. Also, let cij denote the cost8 of as-

signing worker wi to task tj and rj denote the reward of completing the task tj. We

assume that workers are rational, hence they do not perform a task if its cost is higher

than the reward of the task. The set of eligible tasks that worker wi can perform are

defined as:

E(wi) = {tj|rj ≥ cij, ∀j ∈ [1, . . . ,m]} (7.1)

As workers aim to increase the profit from the tasks they complete, they prefer the

tasks with higher rj − cij value. We use tj ≻wi
tj′ notation to express that wi prefers

tj to tj′ , which happens when rj − cij > rj′ − cij′ .

8Note that cost can be defined with a complicated function that considers the
worker’s traveling and task completion duration due to spatiotemporal constraints,
energy consumption on the worker’s device due to sensing, and privacy risks to the
worker. Similarly, reward can be defined based on several factors such as the quality
of sensed data and the trustworthiness of the users.
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The task requesters cannot also hire a worker if the cost of hiring that worker is

more than the reward the requester can provide (which could also be considered as

the budget of the requester). The set of eligible workers that can perform the task tj

is then similarly defined as:

E(tj) = {wi|rj ≥ cij, ∀i ∈ [1, . . . ,n]} (7.2)

Similarly, the task requester can have preferences on the eligible set of workers. For

example, if the cost of assigning a worker to a task is dependent on the traveling

distance from the worker location to the task location [100, 101], the task requester

may prefer the workers who have less cost, as they indicate quicker arrival of the

worker to the task location and early completion of the task. It could also be a

totally location-independent cost function and the preference of the task requester

can be determined by other factors such as the quality of the sensed data the worker

can provide. Given the eligibility relations, the corresponding undirected bipartite

graph G = (V,E) can be defined as

G.V =W ∪ T

G.E = {(u, v)|u, v ∈ G.V, u ∈ E(v), v ∈ E(u)}
(7.3)

Lastly, we use wi ≻tj wi′ notation to express that tj prefers wi to wi′ , and we assume

that the preference list of a user u is the ordered list of E(u) in which a more favorable

candidate precedes the less favorable ones, and is denoted by Pu. The notations used

throughout this chapter are summarized in Table 11.

7.2.2 Problem Formulation

Given the set of eligible workers for each task and eligible tasks for each worker,

the platform can assign the tasks to the workers with some optimization goal. An as-
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Notation Description

W , T Set of workers and tasks, respectively.

n, m Number of workers and tasks, respectively.

N max{m,n}.

M Matching between workers and tasks.

M(u) Task/worker assigned for user (worker/task) u.

U(M) The set of unhappy pairs in matchingM.

|U(M)| Unhappiness Index (UI).

E(u) Eligible tasks/workers for worker/task u.

|E| Average eligible task/worker size.

Pu Preference list of user u.

cij Cost for worker wi to perform task tj.

rj Reward of completing task tj.

wi ≻tj wi′ Task tj prefers worker wi to worker wi′ .

G = (V,E) Bipartite graph between workers and tasks.

Table 11. Notations used in Chapter 7.

signment aiming to maximize the system utility9 can be obtained by constructing the

corresponding maximum bipartite matching instance between workers and tasks, and

solving it using the Hungarian [102] algorithm or the Ford-Fulkerson [103] method.

Similarly, an assignment aiming to satisfy users with their assignments can be ob-

tained using the deferred acceptance mechanism in the Gale-Shapley algorithm [42].

However, achieving both may not be possible at the same time, and there is a trade-off

9Since we assume that the platform is paid a brokerage fee for each assignment it
makes, this refers to the number of worker-task pairs assigned.
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between system utility and user satisfaction.

Let M = {(wi1 , tj1), . . . ,(wik , tjk)}, k ≤ min{m,n} denote the set of (worker,

task) pairs assigned to each other depending on the task requirements and worker

skills. We denote the task assigned to a worker w in a matching M by M(w). We

sayM(w) = ∅, if w is not matched inM. Analogously, we denote the user assigned

to a task t byM(t).

In order for a matchingM to be stable it should not admit any unhappy (i.e.,

blocking) pair ⟨w, t⟩ such that t ∈ E(w), w ∈ E(t), and

• t ≻w M(w) and w ≻tM(t), or

• t ≻w M(w) andM(t) = ∅, or

• w ≻tM(t) andM(w) = ∅, or

• M(w) = ∅ andM(t) = ∅.

If M, however, contains such pairs, we say that M is unstable and denote the set

of unhappy pairs in M by U(M). The number of unhappy pairs, |U(M)|, (which

we also call as unhappiness index (UI)) in a matching has been a recognized way of

measuring the instability of the matching [62].

In Section 7.1, the instance in Fig. 51 is used to show that there can be a trade-

off between system utility and user satisfaction, which are respectively measured by

the number of assigned users and UI. In order to quantify the loss in system utility

and user satisfaction, respectively, in stable matchings and maximum system utility

matchings in general, we run a series of experiments with 50 workers and 50 tasks

randomly deployed in a 1 km by 1 km region. Eligibility conditions for workers and

tasks are defined in two ways. In the local case, we assume that each worker can only

travel up to a distance with travel cost less than the task reward and a worker prefers
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Fig. 52. Percentage of decrease in the number of assigned workers/tasks in stable

matching compared to maximum system utility matching (upper) and un-

happiness index in maximum system utility matching (lower) with varying

size of eligible worker/task sets in the local and random settings.

the task closer to the worker’s location and vice versa. In the random case, since each

user may have a distinct and unique set of criteria to determine the eligibility, we

randomly decide the eligible user sets. We then obtained the task assignments with

maximum system utility and stable matching procedures for eligibility sets of different

density (obtained by adjusting the rewards in the local case and the probability of
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eligibility in the random case).

Fig. 52 shows the unhappiness index obtained with maximum system utility

matching and the percentage of decrease in the number of assigned workers and tasks

in stable matching (MSM) compared to maximum system utility matching (MMM),

which can formally be defined as

100× |MMM | − |MSM |
|MMM |

. (7.4)

For all results in this and the following sections, we take the average of 100 differ-

ent runs for statistical significance. We observe that up to 17% more users are left

unassigned with stable matching, while maximum system utility matching yields a

massively larger unhappiness index (i.e., by definition, the unhappiness index is 0 in

stable matching). Although one can carefully use the appropriate algorithm in the

extreme cases (e.g., stable matching when all workers are eligible for all tasks, and

maximum system utility matching when only a few workers are eligible for each task

provided that small number of unhappy pairs is acceptable), neither algorithm pro-

vides efficient results for most scenarios. In Fig. 53, the same trade-off is also obtained

for different ratios of worker and task ratios with an average eligible worker/task size

of 3. The highest decrease in the number of unassigned workers/tasks by stable

matching is observed when the ratio is 1, where we see the minimum unhappiness

index obtained by maximum system utility matching.

In this study, we aim to address this trade-off and develop a task assignment

algorithm that reaches the maximum possible system utility (i.e., number of matched

workers/tasks) while satisfying the users as much as possible, thus minimizing the

unhappiness index. A brute force method to solve this problem would be to enumerate

all maximum cardinality matchings, and pick the one with the smallest unhappiness

index. However, this would be too costly since the number of maximum cardinality
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Fig. 53. Percentage of decrease in the number of assigned workers/tasks in stable

matching compared to maximum system utility matching (upper) and un-

happiness index in maximum system utility matching (lower) with different

ratios of worker and task set sizes. We use an average eligible worker/task set

size of 3 with the total number of tasks and workers fixed at 100.

matchings grows exponentially with the number of nodes. Moreover, this problem can

be reduced to the problem of finding a maximum cardinality matching with minimum

number of blocking pairs, which is proven to be NP-complete [62], even when the size

of eligible worker/task sets is 3.
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7.3 Proposed Solution

In this section, we first model the problem using Integer Linear Programming

(ILP) to find the optimal solution for a given set of tasks and workers with their

restrictions and eligibility. Then, we present two different heuristic-based cost-efficient

solutions.

7.3.1 ILP Model

Our objective is to find a maximum size matching between workers and tasks

with as few unhappy pairs as possible, which can be formally defined as follows:

max
∑
∀i,j

(
mnXij − Uij

)
(7.5)

with the constraints:

∑
∀i

Xij ≤ 1 ∀j (7.6)

∑
∀j

Xij ≤ 1 ∀i (7.7)

Xij ≤ eij ∀i, j (7.8)

where,

eij =


1, if wi is eligible to perform tj

0, otherwise

(7.9)

Xij =


1, if wi is assigned to tj

0, otherwise

(7.10)
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Uij =


1, if (wi, tj) is an unhappy pair

0, otherwise

(7.11)

Note that the number of unhappy pairs can be at most mn. Increasing the

assigned pair count by one will increase the value of objective function (7.5) more

than removing all unhappy pairs. Thus, it produces an assignment with maximum

system utility, then reduces the unhappiness index as much as possible.

7.3.2 Maximum to Stable Reduction Algorithm

Our first algorithm initially finds a maximum system utility matching, and then

attempts to decrease the number of unhappy pairs in it one by one without altering

the total utility of the matching. Before elaborating on the algorithm steps, we first

describe happify procedure, which constitutes the core part of the algorithm.

7.3.2.1 Happify Procedure

The purpose of the happify procedure is to get rid of a specific unhappy pair

by re-matching the worker and the task that form it with each other. Consider the

example in Fig. 54a, in which worker 1 and task a form an unhappy pair, denoted by

⟨1, a⟩. We happify ⟨1, a⟩ by matching 1 with a. In order to maintain the utility of the

matching, we also attempt to match their former partners, b and 2, with each other

(and form the matching M′). Yet this is not always feasible, because b and 2 may

be considering each other unacceptable (i.e., 2 ̸∈ E(b) and b ̸∈ E(2)). In this case,

since leaving b and 2 unmatched would decrease the utility of the matching, we avoid

performing the happify procedure on such pairs.

On the other hand, even if b and 2 consider each other as acceptable, happifying

⟨1, a⟩ would not always yield a matching that contains fewer unhappy pairs. In fact,
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Fig. 54. An instance of happify procedure. (a) the initial matchingM; (b) the match-

ingM′ after happifying the unhappy pair ⟨1, a⟩ inM; (c) 1’s preference list,

P1; (d) 2’s possible preference list, P ′
2; (e) 2’s alternative preference list, P ′′

2 .

Ri’s are defined in (7.12).

the number of unhappy pairs can decrease, remain unchanged, or even increase. To

figure that out, we need to check the preference lists of these four nodes, and identify

the nodes in their preference lists, which can be potentially affected by partner change.

To illustrate this, we will analyze the possible scenarios that can arise after happifying

⟨1, a⟩. Since the relationship between the tasks and workers is symmetric as seen in

Fig. 54a, 1 and a will have similar scenarios, as do 2 and b. Therefore, the examination

of scenarios for nodes 1 and 2 should be sufficiently descriptive.

First of all, since ⟨1, a⟩ is given as an unhappy pair, we can deduce that a ≻1

(M(1) = b). Then, we divide P1 (i.e., preference list of worker 1 on eligible tasks in

E(1)) into regions as R1 ∪ {a} ∪ R2 ∪ {b} ∪ R3 such that

(∀x ∈ R1) ≻1 a ≻1 (∀x ∈ R2) ≻1 b ≻1 (∀x ∈ R3) (7.12)

as illustrated in Fig. 54c. Note that the partner change of 1, from M(1) = b to

M′(1) = a, will result in clearing all unhappy pairs in

{⟨1, x⟩ | x ∈ R2, ⟨1, x⟩ ∈ U(M)}, (7.13)
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if any, because for all x ∈ R2, a ≻1 x. The set of other unhappy pairs formed as

{⟨1, x⟩ | x ∈ R1, ⟨1, x⟩ ∈ U(M)} (7.14)

will remain unchanged inM′, as ∀x ∈ R1, x ≻1 (a =M′(1)). Lastly, there cannot

exist any unhappy pairs

{⟨1, x⟩ | x ∈ R3} (7.15)

in neitherM norM′, since (b =M(1)) ≻1 x and (a =M′(1)) ≻1 x, for all x ∈ R3.

Although we know how a and b are ranked in P1, we do not have any data to infer

that for P2. Therefore, we must consider both possibilities, namely P ′
2 if a ≻2 b and

P ′′
2 if b ≻2 a, which are also partitioned into regions as shown in Fig. 54d and Fig. 54e.

Note that, regardless of P ′
2 or P ′′

2 , happifying ⟨1, a⟩ will not affect the unhappy pairs

in

{⟨2, x⟩ | x ∈ R1, ⟨2, x⟩ ∈ U(M)}, (7.16)

so that they will still be present inM′, and

{⟨2, x⟩ | x ∈ R3, ⟨2, x⟩ ∈ U(M) ∪ U(M′)} = ∅, (7.17)

due to the same reasons pointed out above. As for R2, we face two different scenarios.

Considering P2 = P ′
2, since happifying ⟨1, a⟩ forces 2 to match with b, which it prefers

less than its former partner a, a new set of unhappy pairs

{⟨2, x⟩ | x ∈ R2, 2 ≻xM′(x)} (7.18)

will arise inM′. Contrary to this, matching 2 with b is for the benefit of 2 if P2 = P ′′
2
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and will indirectly happify all the unhappy pairs, if any, in

{⟨2, x⟩ | x ∈ R2, ⟨2, x⟩ ∈ U(M)}. (7.19)

We next show how the set of unhappy pairs in M and M′ are related. Let

U denote the subset of unhappy pairs in M that will be happified and M′ be the

resulting matching. The set of unhappy pairs, which were not present inM, however

will arise inM′ is

UN =

{
⟨x, y⟩ ̸∈ U(M) | y ≻xM′(x), x ≻y M′(y)

}
, (7.20)

and the set of unhappy pairs that were found inM, but will disappear inM′ is

UO =

{
⟨x, y⟩ ∈ U(M) | M′(x) ≻x y orM′(y) ≻y x

}
. (7.21)

Then, the set of unhappy pairs in the new matching becomes

U(M′) =
(
U(M) ∪ UN

) ∖
UO (7.22)

Thus, to find the new set of unhappy pairs, U(M′), we need to identify UN and

UO, for which we just need to check whether the users (i.e., x) whose partners have

changed due to the happify procedure form an unhappy pair with those (i.e., y) who

are betweenM(x) andM′(x) in Px. Note that only the users that are in at least one

of the pairs in U will get matched with a different user. Thus, for each worker w and

task t, for whichM(w) ̸=M′(w) andM(t) ̸=M′(t) (i.e., there are at most 4 of them

within a single round of happify procedure), we need to check at most |T | − 2 and

|W| − 2 worker-task pairs to find U(M′), respectively. Thus, each happify operation

has O(N) complexity, where N = max{m,n}.

The proposed algorithm aims to reduce the number of unhappy pairs greedily

through consecutive happify operations. To this end, in each iteration, we find the
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Fig. 55. Some possible happify attempts that can occur in Phase 2. Unhappy pairs

are shown with red dotted lines.

unhappy pair that reduces the total number of unhappy pairs the most when it gets

happified (if possible), and happify it. However, it is possible that none of the happify

operations at the current iteration is able to reduce the unhappy pair count as the

result of hitting a local minimum. To address this, we introduce a hop-based approach

and give chance to reduction in the unhappy pair count up to k consecutive happify

operations. That is, even though the happify operation that results in the minimum

unhappy pair count increases the current unhappy pair count, the process continues

up to k tries expecting that there will be a decrease.
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Algorithm 17: Maximum to Stable Reduction (W , T , k)
Input: W , T , k: Set of workers, set of tasks, and number of hops

1 M← Find a maximum cardinality matching between W and T .

2 U(M) ← Identify the unhappy pairs inM.

3 Mbest ←M

4 for i← 1 to 2 do

5 if i == 2 then

6 j ← k

7 else

8 j ← 1

9 while j > 0 do

10 M′ ← ∅ ; ▷ |U(M′)| =∞

11 S ← {A ⊆ U(M) : |A| = i}

12 for U ∈ S do

13 forMnew ∈ Happify(M, U) do

14 if |U(Mnew)| < |U(M′)| then M′ ←Mnew

15 if |U(M′)| < |U(Mbest)| then

16 j ← k

17 Mbest ←M′

18 else

19 j ← j − 1

20 M←M′

21 M←Mbest

22 returnMbest
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Algorithm 18: Happify (M, U)

Input:M: A matching between W and T

U : The set of unhappy pairs to be happified

1 LetMS be the set of all matchings that can be obtained by happifying the

unhappy pairs in U (as shown in Fig. 54 & 55).

2 foreach µ ∈MS do

3 Find UN and UO by Eq. 7.20 & 7.21.

4 |U(µ)| = |U(M)|+ |UN | − |UO|

5 returnMS

Another consideration is rather than happifying the unhappy pairs individually,

we can happify them in groups simultaneously. In that case, former partners of

nodes comprising the unhappy pairs will have more options to be matched. For

example, Fig. 55 shows some possible re-matchings of former partners for different

cases observed when two unhappy pairs are happified simultaneously. While this

extension will increase the likelihood of reducing the unhappy pair count without

affecting the matching utility at each iteration, it increases the complexity of the

algorithm due to more permutations to be checked.

In order to address all these points, we propose a phased approach. That is,

we begin by considering unhappy pairs individually in the happify procedure, and

when this fails to provide further improvement, we start to happify them in groups of

two (it can also be extended to groups of three or more). However, with the phased

approach, we consider the hop-based happify operations only for the last phase to

avoid hitting the local minimum earlier. Algorithm 17 shows a two-phase instance

of the proposed solution. The phases are iterated by the for loop in line 4. The

algorithm makes use of a subroutine, happify, that takes a matchingM and a set U
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of unhappy pairs inM as input and returns the set of all possible matchings that can

arise by happifying U . A pseudo-code of the happify procedure is given in Algorithm

18.

Maximum to Stable Reduction algorithm, shown in Algorithm 17, begins with

finding a maximum utility (i.e., cardinality) matchingM. In the first phase (i = 1),

we find the best matching,M′, amongst a set of matchings, each of which is obtained

fromM by happifying a single, different unhappy pair in U(M) (i.e., the set S in line

12 consists of the subsets A of unhappy pairs with size 1). We updateMbest, which

denotes the best matching that is ever reached by the algorithm, ifM′ is better than

Mbest. Note that since all the matchings that are scanned by the algorithm are of

maximum utility, the goodness of a matching depends only on the number of unhappy

pairs it has. The same process is then repeated for the new matchingM′ in the same

manner as long as an improvement in the number of unhappy pairs is observed in at

least one of k consecutive steps. Note that in the first phase, k is set to 1 as explained

above. In the second phase (i = 2), our algorithm tries to relax two unhappy pairs

simultaneously (happify in line 13 returns all possible variations). If no improvement

is achieved in the unhappy pair count in k hops, the algorithm terminates.

Example. We provide a sample run of Algorithm 17 on the instance in Fig. 51 to

demonstrate how it gradually decreases the number of unhappy pairs while preserving

the maximum system utility. Firstly, a maximum matching is found, which, as shown

in Fig. 56a, turns out to have 4 unhappy pairs, namely ⟨1, a⟩, ⟨2, c⟩, ⟨3, d⟩, and ⟨5, c⟩.

We try to happify each of these unhappy pairs individually and find the one that

leads to a better matching when happified. The new set of unhappy pairs that could

be obtained by happifying each unhappy pair is given in Table 12.

Note that we cannot happify ⟨1, a⟩ and ⟨3, d⟩, because their current partners

in the initial matching, (d, 5) for ⟨1, a⟩, and (b, 1) for ⟨3, d⟩, consider each other
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Fig. 56. Steps of running Algorithm 17 on the instance given in Fig. 51. (a) the ini-

tial maximum matching; (b) the best matching reached by the end of the

first phase; (c) the best matching ever found by the algorithm, also an op-

timal solution; (d) happifying ⟨2, c⟩ on the matching in (a); (e) happifying

{⟨1, a⟩, ⟨3, d⟩} on the matching in (b).

Table 12. Matchings to be obtained by happifying each unhappy pair in Fig. 56a.

Unhappy pair U(Mnew)

⟨1, a⟩ cannot be happified

⟨2, c⟩ ⟨1, a⟩, ⟨3, d⟩

⟨3, d⟩ cannot be happified

⟨5, c⟩ ⟨1, a⟩, ⟨2, c⟩, ⟨3, a⟩, ⟨3, d⟩
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unacceptable, therefore, we skip these unhappy pairs. Since the matching obtained

by happifying ⟨2, c⟩ has the minimum number of unhappy pairs among all, we proceed

with it (Fig. 56b) to the second phase (any further attempt in phase 1 would not

decrease the unhappy pair count, as neither ⟨1, a⟩ nor ⟨3, d⟩ can be happified due

to partner incompatibility as above). In the second phase, since there are only two

unhappy pairs in the matching, we will have only one subset of unhappy pairs of size

2 that we will, if possible, happify simultaneously, which is {⟨1, a⟩, ⟨3, d⟩}. Indeed,

these two unhappy pairs, which could not be happified separately, can be jointly

happified as in Fig. 56e. Besides, this yields a matching with just one unhappy pair,

⟨5, e⟩, as shown in Fig. 56c, which, having less than 2 unhappy pairs, cannot be

improved furthermore by the second phase. Even if we run the first phase again on

this final matching, it would make no difference since ⟨5, e⟩ cannot be happified due

to partner incompatibility. Actually, this final matching is identical to the optimal

solution found via ILP, and is the only optimal solution possible.

Running time. Let E be the number of eligible pairs in a given matching instance,

and N = max(m,n). In line 1, we can find a maximum size matching in O(NE) time

using the Ford-Fulkerson method [103]. Then, for the first phase, since the loop

starting in line 12 may iterate at most E times, as the number of unhappy pairs in

any matching is at most E, and the computation of the benefit that can be obtained

by happifying each unhappy pair takes O(N) time (see Section 7.3.2.1), the time

complexity of the first phase of our algorithm is O(NE2) or O(N5). Similarly, the

time complexity of the second phase is O(B3N), where B is the number of unhappy

pairs in the final matching produced by the first phase. By using an extra O(N2) space

to store the benefits of happifying each unhappy pair and updating these benefits after

each happify procedure in constant time for N2−4N pairs that are indirectly affected

by the last happify procedure and in O(N) time for 4N pairs that are directly affected
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by the last happify procedure (i.e., the pairs whose partners have changed), we can

reduce10 the time complexity of the first phase to O(N4). Using the same strategy,

we can also reduce the time complexity of the second phase to O(B2N) by using an

extra O(B4) space (to store the benefit of happifying every pair of unhappy pairs).

However, this may not be practical for large MCS instances, as B can be as large as

N2.

7.3.3 Stable to Maximum Convergence Algorithm

In our second algorithm, we propose a reversed approach. That is, we first obtain

a stable matching, where every user is perfectly happy. Then, we update it iteratively

to obtain an assignment with maximum system utility while keeping the number of

unhappy pairs as low as possible. We find paths with certain properties in the given

bipartite graph (7.3) at every step that will increase the number of assigned pairs

with respect to the current assignment. We simply call these paths beneficial paths.

Given a matching M in a given bipartite graph G, a path p = {p1, p2, . . . p2j+2} is

considered a beneficial path if its both endpoints are not matched with any node in

M, and its edges alternate between the edges inM and the other edges not included

M. More formally,

M(p1) = ∅, i.e., (p1, p2) ∈ G.E \M,

M(p2j+2) = ∅, i.e., (p2j+1, p2j+2) ∈ G.E \M,

M(p2i) = p2i+1, i.e., (p2i, p2i+1) ∈M, ∀i ∈ [1, . . . , j]

M(p2i−1) ̸= p2i, i.e., (p2i−1, p2i) ∈ G.E \M. ∀i ∈ [1, . . . , j]

(7.23)

10I would like to thank Dr. Preetam Ghosh for suggesting this method to improve
the time complexity of the proposed algorithm.
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Algorithm 19: Stable To Maximum Convergence (W , T )
Input: W : The set of workers

T : The set of tasks

1 M← Find a stable matching via Gale-Shapley algorithm between W and T .

2 while true do

3 set all t ∈ T as unvisited

4 foreach unmatched w ∈ W do

5 p = {w}

6 p← FindBeneficialPath(p)

7 if p.isBeneficialPath then

8 break

9 if a beneficial path p = {p1, p2, .., p2j+2} is found then

10 for i← 1 to j + 1 do

11 M(p2i−1) ← p2i

12 M(p2i) ← p2i−1

13 else

14 break

15 returnM

By definition, note that there cannot be a beneficial path of even length, and for a

path p = {p1, p2} of length 1 to be beneficial, both p1 and p2 should be unmatched

inM.

The proposed algorithm is given in Algorithm 19. We first find a stable matching

M between the given workers and tasks using the deferred acceptance mechanism in

Gale-Shapley algorithm [42]. Then, in each iteration of the while loop in line 2, we
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Algorithm 20: FindBeneficialPath(p)

Input: p: Current path

1 w ← p.last() ; ▷ last node on current path

2 foreach t ∈ Pw in the preference order do

3 if M(t) = ∅ then

4 p← p ∪ {t}

5 p.isBeneficialPath ← true

6 return p

7 foreach t ∈ Pw in the preference order do

8 if t is unvisited then

9 set t as visited

10 p′ ← FindBeneficialPath(p ∪ {t,M(t)})

11 if p′.FindBeneficialPath then

12 return p′

try to find a beneficial path p inM. If we find one, we updateM as follows

M← (M\ E(p)) ∪ (E(p) \M), (7.24)

where E(p) is the set of edges in p. Note that in a beneficial path p of length 2j + 1

(with 2j + 2 nodes), there are j edges that are inM, and j + 1 edges that are not.

Thus, replacing the former j edges inM with the latter j + 1 edges will increase the

system utility by 1, which is performed between lines 9-12. However, if we cannot find

a beneficial path, it means M has reached the maximum possible assignment [103]

and will be returned as the final matching.

The procedure of finding a beneficial path is shown in Algorithm 20. Starting
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Fig. 57. Two example beneficial paths (shown with dotted lines) in the initial stable

matching (shown with solid lines) generated in the first line of Algorithm 19

when it is run on the example illustrated in Fig. 51. (a) Beneficial path

(4 → e → 5 → b) found by Algorithm 19; (b) An alternative beneficial path

(4 → c → 2 → e → 5 → a → 1 → d → 3 → b) that could be found if the

search was done without considering preference orders; (c) Matching obtained

by Algorithm 19 using the beneficial path shown in (a). The only remaining

unhappy pair is shown with a dashed line.

from each worker w not matched currently inM, we attempt to find a beneficial path

(lines 4-8 in Algorithm 19). If w can be matched directly with an unmatched task in

Pw, a beneficial path of length 1 is obtained immediately (lines 2-6 in Algorithm 20).

Otherwise, the tasks that are currently matched inM are processed in their preference

order. For each such task t, a new potential path is created by extending the current

path with task t and its partnerM(t), and the same process is repeated recursively

(lines 7-12 in Algorithm 20).

We run Algorithm 19 on the same toy example given in Fig. 51. We first obtain

the stable matching given in Fig. 57a. Then, we look for a beneficial path in this

matching. The process in Algorithm 20 finds the beneficial path 4 → e → 5 → b

(of length 3). Executing the lines 10-12 in Algorithm 19 will result in the opti-
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mal solution (with an unhappiness index of 1 caused by (5,e)) shown in Fig. 57c.

Since this matching is maximum, Algorithm 19 will return it as the final match-

ing. However, note that there can be multiple beneficial paths in the initial stable

matching, as illustrated in Fig. 57, and any of them might be returned first based on

the implementation. For example, assume this time that we find the beneficial path

4 → c → 2 → e → 5 → a → 1 → d → 3 → b. It gives us an assignment with an

unhappiness index of 4, and hence is not an optimal solution. In our implementation,

we visit the neighbors greedily in their preference order to find a beneficial path that

causes as little increase in the unhappiness index as possible.

Running time. Gale-Shapley algorithm that is executed in the first line of Algo-

rithm 19 runs in O(E) time, where E is the number of eligible pairs in the matching

instance. There can be at most O(N) cardinality difference between a stable matching

and a maximum matching in a bipartite graph, where N = max(m,n). Since find-

ing a beneficial path, as well as updating the matching accordingly, has O(N + E)

complexity (as we need to visit every edge at most once), the total running time of

Algorithm 19 becomes O(N2 +NE) or O(N3).

7.4 Evaluation

In this section, we evaluate the performance of the proposed algorithms using a

real world dataset.

7.4.1 Simulation Settings

In order to have a realistic set of user locations, we have used a taxi trip

dataset [81] in a city (i.e., New York City (NYC)) similar to previous work [29,

80, 104]. Previous work mostly consider taxi driver locations as workers and assign

task locations randomly. In order to have more realistic task locations as well, we
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have used the pick up locations of passengers as task locations. Specifically, we gen-

erate the user set for each of the 100 runs of an experiment by selecting the taxis that

dropped off their passengers between 1-2 pm on a randomly selected day in 2015 as

workers at the corresponding drop-off locations, and by creating a task at the pick

up location of each passenger who requested a taxi in the next hour of the same

day. Then, from this set we randomly sample a certain number of workers and tasks

according to the experiment specifications.

In the first part of the simulations, we use 50 workers and 50 tasks as smaller

and equal set sizes represent the hardest scenario. This is because, as it is shown

in Fig. 53, the largest difference in the matching cardinality between stable and

maximum system utility matching happens when |W|/|T |=1. That is, the trade-

off between user satisfaction and system utility becomes more important and harder

to handle when the size of the worker and task sets are equal. Nonetheless, in the

following simulations, we also examine the scenarios with different |W|/|T | ratios.

Moreover, we provide results regarding the scalability of proposed algorithms with up

to 1000 workers/tasks. The preference lists of workers and tasks are defined either

locally (i.e., based on the ascending order of distances) or randomly, as described in

Section 7.2.

7.4.2 Results

We first look at the effectiveness of the proposed approaches by comparing them

with ILP results in terms of unhappiness index. Throughout the section, we use the

notation Phx-Hopk to denote the Maximum to Stable reduction algorithm with x

phases in which the first (x−1) phases run only 1 hop and the xth phase runs up to k

hops. Fig. 58 shows the performance comparison of Ph1-Hop1, Ph2-Hop1, Stable to

200



0 10 20 30 40 50

Average number of eligible workers

0

100

200

300

400

500

600

700

800

U
n
h
a
p
p
in

e
s
s
 i
n
d
e
x

ILP

Ph2-Hop1

Stable to max

Max System Utility

0 10 20 30 40 50
0

10

20

30

40

50

0 10 20 30 40 50

Average number of eligible workers

0

100

200

300

400

500

600

700

800

U
n

h
a

p
p

in
e

s
s
 i
n

d
e

x

ILP

Ph2-Hop1

Stable to max

Max System Utility

0 10 20 30 40 50
0

20

40

60

Fig. 58. Performance comparison of the heuristic algorithms with optimal results (ILP)

and maximum system utility matching in terms of unhappiness index (UI) in

the local (upper) and random (lower) settings, respectively.

Max and Max System Utility11 algorithms with ILP results in the local and random

settings, respectively. First of all, note that, as expected, the unhappiness index in the

initial maximum matching grows linearly with increasing average eligible worker/task

set size (simply denoted as |E|). Ph1-Hop1 algorithm gives a very close result to ILP,

and Ph2-Hop1 can further improve the result. The improvement is, however, more in

the random setting. Stable to Max algorithm also performs differently. It performs

better (i.e., fewer unhappy pairs) than other algorithms in the random setting, while

it results in a greater unhappiness index in the local setting. With larger |E|, it

11It refers to the solution found by the Ford-Fulkerson method [103].
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Fig. 59. The impact of number of hops and different phases on the performance of the

Maximum to Stable Reduction algorithm in the local (upper) and random

(lower) settings, respectively.

also performs better in the local setting and always reaches complete perfect user

satisfaction and stability (an unhappiness index of 0). The maximum gap between

the proposed algorithms and the ILP results occurs with |E| around 10-20 and gets

smaller as it increases or decreases.

Next, in Fig. 59, we look at the impact of the number of hops and different phases

on the performance of the Maximum to Stable reduction algorithm variants in both

local and random settings. Note that, in the local setting, the unhappiness index in

the optimal assignment increases until |E| is 15 and then starts to decline, while it

peaks at around 4-5 in the random setting. Besides, a sharper decrease is observed

after the peak in the random setting compared to the local setting. The results of
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Fig. 60. The change in the unhappiness index (in Ph1-Hop#) with different number

of hops in the local (upper) and random (lower) settings, respectively, for

different eligible worker/task sizes (|E|).
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Fig. 61. Running times of the proposed algorithms.

our algorithms are also in accordance with these trends in both settings.

As for the usefulness of Phase 2 or 3, we observe that more phases offer more
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Fig. 62. The difference in the unhappiness index between ILP and Ph2-Hop1 for dif-

ferent number of workers/tasks ratios.

benefit in the random setting compared to the local setting. However, there is not

much benefit in running Phase 2 (or Phase 3) before the peak in neither setting.

This is because the likelihood of finding a set of unhappy pairs that can be happified

simultaneously is quite low when |E| is small given that happifying multiple unhappy

pairs at the same time necessitates that the current partners of the nodes forming

those unhappy pairs have each other in their eligibility lists.

Note that we also run a special version called Only Ph2-Hop5 in which Phase 2

is directly run by skipping Phase 1. This was to show the benefit of phased approach

as it can provide results as good as Only Ph2-Hop5 with a much less running time

than it (as it is shown in Fig. 61). Another point is that the difference between the

performance of same phases with different number of hops is more profound in the

random setting than it is in the local setting. In fact, as it is shown in Fig. 60, running

the algorithm with higher number of hops reduces the unhappiness index by 1.12 per

hop in the random setting and by only 0.52 per hop in the local setting, on average.

Nonetheless, increasing the number of hops does not seem to be very beneficial after
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Fig. 63. The ratio of the unhappiness index (UI) to N = |W| = |T | in Ph1-Hop1 and

Stable to Max algorithms, respectively, for different number of workers and

tasks (in the local and random settings, respectively). The inner graphs show

the difference of UI/N in Max System Utility matching from the compared

algorithms when N = 1024.

a certain point (around 5-10 hops) in either setting.

In Fig. 61, we compare the running time of the proposed algorithms in the local

setting (since the results are almost identical in the random setting, the corresponding

figure is not shown here for brevity). Unsurprisingly, ILP has a very long running time

(e.g., approximately an hour when |E| = 50), which makes it infeasible to find the

optimal solutions for applications that demand timely response. The running time

of Only Ph2-Hop5 also increases substantially as the average eligible worker/task set

size, |E|, grows, which actually confirms the idea behind phased approach. Indeed,

all the other variations of Maximum to Stable reduction algorithm and the Stable
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Fig. 64. The percentage of the unhappiness index in the Ph1-Hop1 and Stable to Max

algorithms, respectively, to the unhappiness index in the maximum system

utility based assignment for different number of workers and tasks (in the

local and random settings, respectively).

to Max algorithm take less than 4 seconds even when all workers are eligible for all

tasks. It should also be noted that the running time is not much affected by number

of phases and hops. For example, Ph1-Hop1 and Ph2-Hop1 take almost equal time

despite the fact that Ph2-Hop1 involves Ph1-Hop1 in it and additionally runs Phase

2 of the algorithm. This is due to the fact that the large part of the reduction in the

number of unhappy pairs occurs during Phase 1. For instance, in Fig. 58, when the

average number of eligible workers is 10 in the local setting, Phase 1 decreases the

number of unhappy pairs by around 155 (from 185 to 30), while Phase 2 decreases it
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by only about 2 and hence takes a lot less.

In Fig. 62, we analyze the performance of the proposed algorithms when there

are unequal number of workers and tasks in the system. Specifically, we calculate

the difference between the unhappiness index in the optimal (i.e., ILP) matching and

in the final matching produced by Ph2-Hop1 (others perform similar). We observe

that the difference in the unhappiness index gets smaller as the disparity between

the number of workers and tasks grows12. This is also consistent with the results

in Fig. 53, since the decrease in system utility is maximum when there are similar

number of workers and tasks, which indicates that a larger number of users’ happiness

will have to be sacrificed in order to reach the maximum system utility, in general.

Next, we look at the scalability results using both a Maximum to Stable algo-

rithm and Stable to Maximum algorithm. More specifically, we have used Ph1-Hop1

algorithm in local case (as it performs better than Stable to Maximum as shown

in Fig. 58) and Stable to Maximum algorithm in random case. Fig. 63 shows the

ratio of the unhappiness index to the total number of workers/tasks (N) for differ-

ent but equal number of workers and tasks with Ph1-Hop1 and Stable to Maximum

algorithms. The results show that the proposed algorithms scale very well and pro-

duce only a few additional unhappy pairs per user for larger networks, and that they

greatly outperform the Max System Utility matching by achieving up to more than

300 less unhappy pairs per user. Moreover, as shown in Fig. 64 when we calculate the

percentage of the unhappiness index compared to the unhappiness index in the Max

System Utility matching, we obtain a similar percentage regardless of the number of

workers and tasks with Stable to Maximum algorithm. With Ph1-Hop1 algorithm,

the percentage shifts a bit with increasing user count, however the peak stays similar.

12For unequal number of tasks and workers, there is a limit on the maximum average
eligible worker/task set size achievable. Thus, data is available up to this maximum.
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It is also worth noting that as the average eligible worker/task set size, |E|, increases,

we achieve a better performance in both scenarios.

7.5 Conclusion

In this chapter, we studied the problem of finding a maximum size task assign-

ment that satisfies workers and task requesters as much as possible based on their

preferences. Since it is an NP-hard problem, we proposed two different heuristic algo-

rithms. In the first one, we initially find a maximum size (or system utility) matching,

and then reduce the unhappy pairs in it through a novel method called happify. In

the second algorithm, however, we first obtain a stable matching, and then transform

it into a maximum system utility matching by finding what we call beneficial paths

and reassigning the workers and tasks on these paths accordingly. The results have

shown that the proposed algorithms run very fast compared to the ILP-based fully

optimal solution, produce near-optimal task assignments, and complement each other

in different settings. Note that the findings of this study can be applied to any match-

ing problem, in which the goal is to maximize both system utility and happiness of

the users, but the former has a higher priority than the latter.
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CHAPTER 8

CONCLUDING REMARKS

In this dissertation, we have studied the preference-aware task assignment problem in

various MCS settings, and explored how the conditions for preference-awareness (or

user happiness) are affected by the characteristics of the underlying system model.

Due to the nonexistence of optimal solutions and/or hardness of the problem, we have

proposed efficient approximation and heuristic algorithms, which we have shown to

produce near-optimal solutions through theoretical and empirical analysis.

Empirical results have shown that compared to the preference-aware solutions,

task assignments that are obtained by disregarding user preferences make a larger

number of users unhappy with their assignments even if they maximize a system-

level utility function, and that satisfying user preferences does not necessarily yield

a task assignment with a poor system-level utility score. In fact, as we have seen in

Chapter 4, our algorithms, which are designed to maximize user happiness, achieved

better coverage quality scores in most cases than the benchmark algorithms, which

were exclusively designed to maximize coverage quality. This was partly because

of the fact that our algorithms, by satisfying the coverage-based preferences of task

requesters, implicitly maximize the overall coverage quality as well.

We note that the results of this dissertation, especially those presented in Chap-

ter 3 & 4, are of vital importance for various theoretical preference-aware matching

problems in the economics literature as well. For instance, despite the nonexistence

results in general settings, this dissertation is the first to show that, in many-to-one

matching problems with additive utility functions, a pairwise stable matching always
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exists and can be found in pseudo-polynomial time when there is a proportional rela-

tionship between the cost and utility functions. This dissertation also provides some

significant theoretical results on coalitional stability for both additive (Chapter 3)

and non-additive (Chapter 4) utility functions.

There are however still many open problems waiting to be solved in the field of

mobile crowdsensing, especially concerning preference-awareness in the task assign-

ment process. For instance, a key aspect that has been overlooked so far is the benefit

of cooperation between workers. In MCS systems with non-trivial tasks, it may be

the case that two workers who cannot carry out a certain task individually can do

so if they are both assigned to the task and work in a cooperative manner. There-

fore, their total utility for the task would be larger than the sum of their individual

utilities. Additional costs, however, may need to be incurred to make them work

cooperatively, which need to be considered in the assignment process, along with the

potential benefits to be reaped. This is similar to the assignment problem with non-

additive utility functions studied in Chapter 4, but a major difference is that the total

(coverage-based) utility of two (or more) workers for a task in the model considered

in Chapter 4 cannot be larger than the sum of their individual utilities.

In the online, preference-aware task assignment problem studied in Chapter 5,

we assume a system model with uniform task rewards and worker qualities. If an

MCS system contains different types of non-trivial tasks, this assumption may lose

its practicality. In future work, we would like to extend the results of this study by

considering a more general system model.

Another interesting problem is to find preference-aware task assignments in an

MCS system that contains both participatory and opportunistic workers. From the

perspective of task requesters, it may be desirable to first hire opportunistic work-

ers to minimize costs, and then to hire participatory workers to maximize coverage.
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However, this would have to be done considering their budget or capacity constraints

as well as the preferences of workers.

In Chapter 7, we have studied the problem of finding maximum size (coverage)

task assignments with minimum user unhappiness. This is a special case of the prob-

lem of finding maximum weight task assignments with minimum unhappiness. The

latter, general version of the problem has the potential to capture a wider range of

MCS applications, as it would enable the platform to assign different priorities to each

worker-task pair. Besides, in this chapter, we have made the simplifying assumption

that the system utility is independent of the happiness of the users. However, con-

tinuous participation of users, which is critical in long-term system utility, naturally

depends on the happiness of the users with the system. Thus, a new metric that

accounts for this interdependency between system utility and user happiness can help

formulate the problem more accurately.

In this dissertation, we have always assumed a system model with rational and

reliable participants. However, there may be, for example, workers who are trying

to spread misinformation by submitting fabricated data. When the possibility of

having such malicious users are taken into consideration, user preferences may become

uncertain. We have also assumed that the sets of workers and tasks were known to

the matching platform before the sensing campaign actually starts. Yet for many

real-world application, a more realistic model would allow users to join and leave the

system, and allow task requesters to publish new tasks and withdraw some of their

existing tasks in real time during the campaign. Lastly, we note that it is possible

to improve the long-term efficiency of the proposed algorithms by forming the task

assignments for an assignment period by modifying the assignments in the previous

task assignment period(s) instead of creating a new task assignment from scratch in

each assignment period. This has a potential to largely reduce the total running time
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of the proposed algorithms, especially in MCS applications, where user preferences

do not change significantly between consecutive assignment periods. We plan to

investigate these issues in our future work.
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