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Abstract—WiFi sensing using Channel State Information (CSI)
offers a device-free and non-intrusive method for human activ-
ity monitoring. However, the data-hungry and location-specific
training process hinders its scalable deployment at large sizes.
In this work, we propose WiFederated, a federated learning (FL)
approach to train machine learning models for WiFi sensing
tasks. Using WiFederated, client devices can not only perform
training in parallel at the edge instead of sequentially at a
central server but can also collaboratively learn and share
generalizable location-independent traits about physical actions
being monitored. We demonstrate that an FL model trained on as
few as 2-3 locations can provide high prediction accuracy in new
locations even without any data available from them. We also
demonstrate how new locations can achieve higher prediction
accuracy even with a small number of available samples when
using the pretrained FL model rather than training from scratch.
The results show that the FL model can save local training epochs
and reduce the need for large data collection at each new location.
Thus, the proposed WiFederated system scales as more locations
are added. We show that WiFederated provides a more accurate
and time efficient solution compared to existing transfer learning
and adversarial learning solutions thanks to the parallel training
ability at multiple clients. By introducing new client selection
methods during the FL process, we also show that accuracy can
further increase. Finally, we evaluate the feasibility of training
models at the edge and introduce continuous annotation to allow
for continuous learning over time.

Index Terms—WiFi sensing, federated learning, channel state
information (CSI), device-free sensing.

I. INTRODUCTION

W IFI sensing [1]–[3] aims to capture and analyze ambi-
ent WiFi signals to understand physical characteristics

of a given environment. New applications of WiFi sensing
have quickly gained popularity as it allows for low-cost (by
leveraging existing WiFi infrastructure), device-free, and non-
intrusive sensing of human presence and physical activities
compared to sensor-based systems which typically require
dedicated devices to be placed on the body. By leveraging
existing infrastructure, it also adds more value for the owners
of WiFi devices in several ways such as by providing physical
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occupancy analytics in retail shopping areas or other public
buildings [4]–[6], reinforcing security through intrusion de-
tection [7] and monitoring patients [8], [9] to protect from
falls or other serious injuries.

Leveraging existing WiFi access points (AP) for sensing
purposes provides a remarkable advantage compared to sensor-
based methods by reducing costs associated with both hard-
ware and labor for deploying the new sensors. However,
typical WiFi sensing systems require large amounts of data
to train their deep learning models [10]–[13], thus it is
very cumbersome to build such systems. As the number of
actions to be recognized increases for the model, the required
amount of training data also increases. Moreover, the models
produced in most existing works are specialized to a single
given physical location. Thus, the physical actions must be
performed over many repetitions for each individual location
to train a model for it. This is time-consuming and impractical
especially in cases where the locations are already occupied
such as in the case of patient monitoring in hospital settings.

Consider the three physical environments illustrated in
Fig. 1a-c for a typical office building. Each location has unique
environmental properties (e.g., size, environmental clutter such
as furniture), thus the characteristics of the signals received in
one location will vary from that of each of the other locations.
For example, in a less cluttered hallway environment such as
in Fig. 1a, very few physical obstructions block the transmis-
sion path between WiFi devices. In some environments, the
WiFi devices can only receive signals through the wall when
performing sensing tasks such as in the private office rooms
shown in Fig. 1b. Additionally, some other environments may
have very dynamic physical features such as meeting rooms
as shown in Fig. 1c where furniture like chairs and tables
are constantly shifted around. As such, the core issue with
deploying WiFi sensing systems is to develop generalizable
models that can be used in new locations without requiring
complete and extensive data recording and annotation steps for
each new environment. Fig. 1d shows a typical WiFi sensing
system diagram where for each environment, a technician must
repeat many trials of each physical action before sending the
manually labelled data to a server. Once at the server, the data
must be run through data cleaning and preprocessing steps
followed by extensive hyperparameter selection steps to de-
termine the best model parameters for the given environment.
After fully training, the location-specific model can finally be
shared back to the edge for model inference.

There are some recent studies [14]–[18] looking into the
creation of generalizable models that can also be used in new
environments, however these studies mostly focus on creating
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Fig. 1: (a)-(c) WiFi sensing environments in an office building.
(a) Less cluttered environment. (b) Highly cluttered environ-
ment with through-wall sensing. (c) Highly cluttered dynamic
environment. (d) Typical WiFi sensing system diagram.

a single model upfront rather than in designing a system which
allows collaboration between new environments. Additionally,
these studies still require a long duration of data collection and
training from a large number of different locations. Instead,
our goal here is to develop a collaborative training framework
for WiFi sensing that shares knowledge learned from one set
of locations to improve the prediction capability of models
at other new locations. To account for this goal, we propose
WiFederated, a system for collaboratively training machine
learning models for WiFi sensing tasks at multiple unique
environments using federated learning (FL) [19]. Through
WiFederated, WiFi sensing tasks can scale to multi-location
settings by (i) reducing the overall amount of annotated
training data required per location; (ii) reducing the duration
of training required for each new location; (iii) allowing
for parallel edge training across multiple locations; and (iv)
reducing the amount of data to be transmitted to a central
server. Our contributions through this work are the following:

1) We perform human activity recognition experiments in
ten locations and demonstrate that a model trained on
data from one set of locations will not necessarily be
generalized to new locations.

2) We propose WiFederated, a framework which introduces
federated learning for the first time with WiFi sensing
allowing for distributed model training across client
devices within the network.

3) We evaluate WiFederated through extensive experiments
and show that it outperforms the existing solutions.

4) We propose and evaluate client selection methods which
select a subset of candidate locations based on local
training-loss, resulting in a further increase in accuracy.

5) Lastly, we evaluate the feasibility of running WiFed-
erated on real edge devices for inference and training
and also introduce continuous annotation which allows
clients to continue to capture representative CSI data and

annotation labels for further model training over time.
The rest of the paper is organized as follows. Section II

describes related work in WiFi sensing and reviews state of the
art methods proposed for scalable multi-location WiFi sensing.
In Section III, we provide the preliminaries of the proposed
work including an introduction to Channel State Information
(CSI), preprocessing steps used on the collected CSI data and
the description of the underlying machine learning models
used in this work. In Section IV, we demonstrate through
experimental results the issues related to WiFi sensing across
multiple locations to provide motivation for this study. Then, in
Section V, we detail the design of our FL framework for WiFi
sensing and provide its evaluation and comparison with exist-
ing works in Section VI. Section VII details some additional
feasibility considerations for deploying our proposed system
in real world scenarios. Finally, we provide our concluding
remarks in Section VIII.

II. RELATED WORKS

Due to the non-intrusive and low-cost nature of WiFi
sensing, it has been used in several applications including
human activity recognition [14], [20], human body pose pre-
diction [21], [22] and patient monitoring [9]. For example in
patient monitoring, hospitals and elderly care facilities use
WiFi sensing to detect falls without having the burden of
attaching sensors on the body of patients. WiFi sensing is also
used to detect fine-grained patient vital signs such as breathing
rate and heart rate variability [23]. While a wide spectrum of
studies using WiFi sensing can be found in recent surveys [1],
typically these research studies consider only the case where
a single model is pretrained for only one specific location.

In most of the current WiFi sensing research, experiments
are designed such that a single WiFi transmitter (TX) and
a single WiFi receiver (RX) are placed statically in a single
physical location. Once placed, the set of actions to be
detected are then performed over many repetitions to gather
a significant distribution of signal variations per action. There
are two core issues in this commonly adopted approach in
WiFi sensing. The first issue is, because the CSI collecting
devices are typically laptops with an attached Intel 5300
Network Interface Card (NIC) [24], the receivers can only be
placed at limited locations which could be different than real
world deployments of WiFi APs (e.g., ceiling in a hallway).
Thus, some experiments might have been designed with the
placement of TX and RX devices in unrealistic positions
which give the best results, providing an unfair advantage
when making predictions. Moreover, such configurations may
result in models that may not work well when existing WiFi
infrastructure and real world deployments of WiFi APs are
used. The second issue is that the model which is trained with
TX and RX at a single physical location only has knowledge
of that one location. Thus, its predictions may not be of any
use in new locations and we may need to repeat all of the
data collection, annotation and training steps for each new
location from scratch as it is done in [13], [25]. However, this
is ultimately not scalable because each location then requires
a time-consuming and potentially error-prone annotation step.
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Study Recognition Task Learning Type Multiple Rooms Distributed Training Knowledge Sharing
CrossSense [14] Activity Multiple Global Expert Models Yes Possible No
Ma et al. [15] Activity RNN, LSTM, State Machine No No No
EI Framework [16] Activity Adversarial Network Model Yes No No
WiHand [17] Gesture LRSD Decomposition No No No
WiTransfer [18] Activity Global Transfer Learning No No Yes
WiFederated (Ours) Activity Distributed Federated Learning Yes Yes Yes

TABLE I: Comparison of related multi-location WiFi sensing literature.

In some recent works, the problem of developing WiFi sens-
ing solutions that can be generalized to multiple environments
has been studied. For example, in CrossSense [14], first, a set
of expert models are pretrained at some initial locations. For
each new location, the best fitting model out of all of them is
used. However, the number of expert models required could be
large depending on the environments, requiring once again a
large collection of annotated samples and a long training pro-
cess. Moreover, as the expert models do not collaborate, they
cannot gain any information from each other. The work in [15]
similarly looks at location-independent activity recognition
through the use of deep learning techniques such as recurrent
neural networks (RNN) and long short-term memory (LSTM)
networks. However, using such complex models requires a
long training duration (e.g., weeks) and results in relatively
low prediction rates (e.g., 50Hz) even with powerful GPUs. In
this study, we aim towards making predictions at the edge with
devices having limited computation and power capabilities,
thus GPUs cannot be used and much lower prediction rates
are expected. The EI Framework [16] uses an adversarial
network approach which trains three individual sub-networks.
The feature extractor network transforms the raw data which
is then fed into both an activity recognizer network and a
separate domain discriminator network which predicts the
location that a given sample comes from. The goal is to
optimize the weights in the networks such that the features
extracted by the feature extractor increase the accuracy for
the activity recognizer while also decreasing the accuracy of
the domain discriminator. The EI framework is expected to
perform better as more locations are added because more
samples will be available for the feature extractor to learn
from, however because the activity recognizer and domain
discriminator are working against one another, as more lo-
cations are added more training epochs will also be required.
The WiHand [17] hand gesture recognition system suggests
using low rank and sparse decomposition (LRSD) to split
raw CSI data into two distinct parts, namely, a low rank
part containing background information and a sparse part
containing noise due to hand gesture movements. While the
work considers multiple positions, each evaluated position is
located in the same room which does not demonstrate how
the model is applicable in physically unique environments.
Finally, WiTransfer [18] suggests the use of transfer learning
to pretrain a global transfer model which can then be used at
a new location with minor personalization training performed
using data from that location. However, because the model is
trained globally at a central location, increasing the number of
pretraining locations increases the time to fully train the model
as the training must occur sequentially on the aggregated data.

In this study, we address the issues of these centrally trained

methods by training in parallel through an FL based approach.
FL has become a popular topic in the research community
due to the ability to train machine learning models in parallel
at the edge while also preserving data privacy [19]. Details
of the FL process are discussed in Section V. In the past,
FL has most commonly been evaluated on standard ma-
chine learning tasks such as handwriting recognition with the
MNIST dataset and sentiment analysis with the Sentiment140
dataset [26] but has also been used in real-world applications
such as improving next-word suggestions on smartphone key-
boards [27] as well as leveraging electronic medical records
from multiple hospitals to better predict medical conditions
without compromising data privacy [28]. By using FL for
WiFi sensing, we aim for a more scalable method of training
models across disparate devices in unique physical locations
while reducing the number of annotated data samples required
per location and still achieving a higher prediction accuracy.
Table I provides a comparison of the discussed works with
our proposed WiFederated approach.

III. PRELIMINARIES

For the experiments in this work, we use our ESP32-CSI
Toolkit1 [3] to collect CSI from the WiFi-enabled ESP32
microcontroller, which provides a small-size, lightweight and
standalone solution compared to other existing methods (i.e.,
a host laptop with an updated NIC) and can be deployed
anywhere. We transmit frames from an ESP32 transmitter and
then collect WiFi CSI from a separate ESP32 receiver. CSI is a
metric coming from orthogonal frequency-division multiplex-
ing (OFDM) systems which allow multiple streams of data to
be transmitted in parallel to increase the speed of data transfer
by splitting the bitstreams into multiple subcarrier frequencies
at transmission and then reconstructing the bitstreams into one
cohesive message at the receiver. OFDM is used with 802.11
based WiFi systems to achieve high data throughput rate as
well as to reduce multipath fading.

A. CSI Amplitude and Phase

When a TX transmits a signal 𝑥, it is received by the
RX as 𝑦 = 𝐻𝑥 + 𝜂, where 𝜂 is a vector representing en-
vironmental noise and 𝐻 is the CSI matrix. Each element
in 𝐻 is composed of both real and imaginary components.
Given the real component (ℎ (𝑖)𝑟 ) and imaginary component
(ℎ (𝑖)
𝑖𝑚

) for each subcarrier 𝑖 within 𝐻, we can calculate the

amplitude 𝐴(𝑖) =

√︂(
ℎ
(𝑖)
𝑟

)2
+
(
ℎ
(𝑖)
𝑖𝑚

)2
as well as the phase

𝜙 (𝑖) = 𝑎𝑡𝑎𝑛2
(
ℎ
(𝑖)
𝑖𝑚
, ℎ

(𝑖)
𝑟

)
. For our evaluations, we only consider

1https://github.com/StevenMHernandez/ESP32-CSI-Tool
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amplitude because of the noise inherited in the received phase
values as well as the requirement for a synchronized clock
between the two devices.

B. Rolling Mean Filter

CSI amplitude measurements can have spurious noise which
is unrelated to any physical movements in the environment as
a result of variations caused by the physical radio hardware as
well as other environmental noise. Denoising can be used to
filter out such noise in CSI measurements. We apply a rolling
mean denoising approach, which takes a window of size 𝑊

samples, and applies the mean function over the previously
collected 𝑊 − 1 samples along with the currently collected
sample across a single subcarrier. More formally, we calculate

𝐴̂
(𝑖)
(𝑡) =

1
𝑊

𝑊−1∑︁
𝑤=0

𝐴
(𝑖)
(𝑡−𝑤) . (1)

Assuming that we have 64 subcarriers, we then must keep
a record of the previous 𝑊 − 1 values for each of these 64
subcarriers independently in memory on the edge device.

C. Machine Learning Training and Prediction

Using the preprocessed CSI data, we then train a machine
learning model using a Dense Neural Network (DNN) archi-
tecture with three dense layers. Each layer has 100 hidden
units and each unit uses a Rectified Linear Unit (ReLU)
activation function. Each layer uses 𝐿2 regularization for the
kernel weights as well as an 𝐿1 regularization penalty term
for the activation output of each layer. The size of the input
matrix for the model is 100 × 64, where 64 is the number
of subcarriers and 100 is the number of CSI frames which is
approximately one second worth of data since our sampling
rate is set to 100Hz. The network terminates with a softmax
multi-class output layer so that we can make predictions on
multiple class types with a single network architecture. During
training, we use a dropout value 𝑑 ∈ (0, 1) between each
layer to define the probability that a given weight is ignored
during training to help prevent the model from overfitting to
the training data. Dropout is ignored during model evaluation.
We use Stochastic Gradient Descent (SGD) with learning rate
𝜂 = 10−5 to minimize the loss function

L(𝜃, 𝑥, 𝑦) = 1
𝑁

𝑁∑︁
𝑖=1

(F𝜃 (𝑥𝑖) − 𝑦𝑖)2, (2)

where 𝜃 is the set of parameters for the model (F ), F𝜃 (𝑥) is
the prediction output of the model given input 𝑥, and 𝑦 is the
expected output based on the given action class which is a
one-hot encoded vector of size 𝑁 , where 𝑁 is the number of
possible predicted classes. The overall architecture is designed
with edge devices in mind. This is why we do not consider
more complex models such as the popular RNN or LSTM
network architectures which would require more training data
and longer training periods.
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Fig. 2: (a) Illustration of apartment environment where exper-
iments are performed. TX, RX and human target are shown
for each room location. (b) Four distinct actions (i.e., sit, stand
up, stand and sit down) are recorded and annotated in each
location in round-robin order.

IV. MOTIVATION

To demonstrate our motivation for this work, we begin
by explaining the experiments that are performed during
our data collection and annotation process. We then review
initial performance results on the collected data when using
the standard training approach common to many other WiFi
sensing research as illustrated in Fig. 1d.

A. Experimental Setting

In this study, we consider a collaborative network of WiFi
sensing devices in different and disconnected physical lo-
cations. The illustration in Fig. 2a shows the ten distinct
areas that we record experiments at as well as the place-
ment of the TX, RX and the human target. Each location
has different positions for the TX and RX corresponding
to the preexisting power outlets which were built into the
building which provides a natural selection of locations for
TX/RX rather than selecting the most optimal locations for
performing the sensing tasks. The goal here is to demonstrate
that the system can leverage existing infrastructure. The target
performs four actions (sitting, standing up, standing, sitting
down) as illustrated in Fig. 2b. In each location, we perform
50 individual repetitions of each of the four actions in round-
robin order resulting in a total of 2, 000 annotated action-
segments with corresponding CSI samples. For each location,
we designate the first 25 repetitions for training our models
and the final 25 for evaluating. This allows us to check if the
traits learned by the model are generalized by evaluating the
accuracy on these final 25 testing repetitions which are never
seen when training the model.

B. Initial Results

The goal of this work is to demonstrate how collaborative
WiFi sensing devices can achieve better prediction results
compared to devices that work alone. This can be especially
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Fig. 3: (a) Accuracy for each locally trained model when
different numbers of training repetitions of an action are
performed in the location. (b) Training time to perform 100
epochs of training on a Raspberry Pi Edge device.

important when we aim to use preexisting WiFi infrastructure
to build a WiFi sensing system [29]. In a non-collaborative
system of WiFi sensing devices, we will need to record
and annotate multiple new repetitions of each action before
a local model can perform well in the environment. For
example, Fig. 3a shows the accuracy of a non-collaborative
local model with different numbers of training repetitions
(𝑅train). We can see that training this local model on a small
number of training repetitions produces a model which is
overfit onto the training data and is unable to generalize to
achieve high validation accuracy. Given our goal of large-
scale deployments, performing a large number of repetitions at
every location is not viable because it would increase the time
and labor spent at each location. Similarly, this also increases
the time to train the model as shown in Fig. 3b where we
observe mostly a linear relation between the training time and
the number of repetitions of each action when trained on a
Raspberry Pi 4 model B edge device.

Training independent local models at each location without
some collaboration mechanism means that we will not gain
additional knowledge by adding new devices into the network.
To account for this, an initial naïve approach is to collect and
annotate CSI data at a few selected locations (we will denote
this set of training locations as 𝐿̂ throughout the paper) which
we use to globally train a single machine learning model that
will then be shared with all locations (𝐿) including those which
have no collected or annotated CSI data.

In Fig. 4 we show the prediction accuracy of our model
(F𝜃 ) when evaluated on each location 𝐿𝑖 ∈ 𝐿, where 𝐿 =

{Living Room,Dining Room,Office}, after being trained on
CSI data from different sets of 𝐿̂ ⊆ 𝐿. We select these
three locations because they represent different multipath
characteristics from one another. For example, the living room
location provides a large open area with a low amount of
environmental clutter; the dining room location offers a similar
large environment but with higher amounts of environmental
clutter; and finally the office location represents a smaller
enclosed room environment with low clutter. We evaluate
with the number of training repetitions 𝑅train ∈ {10, 25} to
identify how increasing 𝑅train affects the prediction capability
of locations in 𝐿̂ as well as locations not in 𝐿̂ (i.e., 𝐿 − 𝐿̂).

In Fig. 4a, we consider the case when F𝜃 is trained on
the Living Room location only. As we would expect, because
the model is trained directly on data from this location (i.e.,
only first 25 repetitions), we can see that for both 𝑅train = 10
and 𝑅train = 25, the accuracy (on the last 25 repetitions) for
the Living Room is high at 92.82% and 96.30%, respectively.
Interestingly, we can see that increasing 𝑅train from 10 up
to 25 also allows for an increase in prediction accuracy for
two unseen locations, namely Dining Room going up from
76.76% up to 83.90% and Office going from 59.49% up to
65.98%. However, we can still see a noticeable gap between
the accuracy for each of these locations demonstrating that the
model is still better fit to the data at the Living Room location.

Following this, in Fig. 4b we train only on the Dining
Room location. When 𝑅train = 10 both the Living Room
location (seen during training) and Dining Room (unseen
during training) achieve very close accuracy after 100 epochs
of training. This shows that the model trained on the Dining
Room location can also be used in a completely unseen new
location. However, we can see that the accuracy for the Office
location is still low at 65.38% demonstrating that even though
the model is applicable to some locations, it is not necessarily
a generalizable model that can be applied in all new locations.

On this note, we look at the case in Fig. 4c where we train
only on the Office location. While the model is able to achieve
a high evaluation accuracy for the location that it is trained
on (i.e., Office), the model cannot be used in new and unseen
locations. Comparing to Fig. 4a where a slight improvement
is observed in unseen locations, the model trained exclusively
on the Office location dataset is only able to achieve between
48.12% and 58.76% accuracy in the unseen locations with a
gap of approximately 44% difference between the accuracies
in the seen and unseen locations.

Training our model on data from two locations rather than
one produces Fig. 4d-f. The model accuracy in the unseen
locations mostly converge to a static value except in Fig. 4e
when 𝑅train = 25, where the gap in accuracy between seen and
unseen locations grows as training continues. In Fig. 4e, when
𝑅train = 10, the gap is only +10.04%, but when 𝑅train = 25, the
gap increases significantly to +18.05%. Out of each of these
three cases where | 𝐿̂ | = 2, Fig. 4f shows the largest overall gap
of +21.04% when 𝑅train = 10 and +24.53% when 𝑅train = 25.
This again demonstrates that a model with high accuracy on
trained locations may not be generalizable to unseen locations.

As such, we can only be sure that a high accuracy is
achievable across each location when all locations are involved
in training (i.e., 𝐿̂ = 𝐿) as we can also see from the results in
Fig. 4g. However, for global models, annotated data needs to
be shared with a central server for all devices. For example, if
CSI data and annotations are collected continuously over time
such as in [21], [30], [31], the amount of data transmitted to the
server can be large. As the network of locations also increases
in size, the server resources used to handle all of the incoming
data may be too much. Thus, it would be more preferable
to do training on an edge device at the physical location.
However, to accomplish this, we will need a new method for
sharing knowledge between multiple locations which reduces
the amount of data transmitted over the network.
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Fig. 4: Prediction accuracy in three locations (Living Room (L.R.), Dining Room (D.R.), Office (Off.)) when trained with data
from only locations in 𝐿̂. Columns (a-c) train on a single location, (d-f) train on two locations and (g) trains on all locations.

V. FEDERATED LEARNING FRAMEWORK (WiFederated)

In order to develop a system which can collaboratively
train a machine learning model in parallel across many edge
devices (or clients) in disparate physical locations, we pro-
pose a collaborative WiFi sensing framework using federated
learning [19], which we call WiFederated. FL is useful in our
case because we expect that each client will have a different
data distribution corresponding to their unique physical en-
vironment, and we want to benefit from all data while also
reducing the amount of data shared to any central server so as
to reduce network usage. This also has a secondary purpose in
allowing for massively parallel machine learning by enabling
each client to perform machine learning locally rather than at
the central server.

Our overall goal is to find model weights (𝜃) minimizing:

min
𝜃 ∈R𝑑

|𝐿 |∑︁
𝑘=1

1
𝑛𝑘

∑︁
𝑥𝑖 ,𝑦𝑖 ∈𝑃𝑘

L(𝜃, 𝑥𝑖 , 𝑦𝑖), (3)

where 𝐿 is the set of the clients at diverse physical locations,
𝑃𝑘 = {x𝑘 , y𝑘} is the set of annotated data points for a client 𝑘
where x𝑘 is the set of CSI input and y𝑘 is the corresponding
set of annotated labels recorded at the location of client 𝑘 such
that 𝑛𝑘 = |𝑃𝑘 |, and L(·) is a loss function as described in (2).

The issue with this optimization is that |𝐿 |, the total number
of clients, is expected to be large which will result in a high
computation and communication cost and thus slower model
training. Furthermore, some locations may have either small
amount of data or low quality of data which will only poison
the prediction quality for other clients. To combat this, our
proposed FL system selects a subset of clients (𝐿̂ ⊆ 𝐿) to
iteratively update the model weights. For each client (𝑘 ∈ 𝐿̂),
we learn unique model parameters (𝜃𝑘) by optimizing:

min
𝜃𝑘 ∈R𝑑

1
𝑛𝑘

∑︁
𝑖∈𝑃𝑘

L(𝜃𝑘 , 𝑥𝑖 , 𝑦𝑖). (4)

After 𝑁epochs of training per client, each client sends Δ𝜃𝑘 to a
central server to perform Federated Averaging (FedAvg) [19]

to determine new model parameters for the next round (𝑟 +1):

𝜃 (𝑟+1) = 𝜃 (𝑟) +
𝐾∑︁
𝑘=1

𝑛𝑘

𝑛
Δ𝜃𝑘 , (5)

where Δ𝜃𝑘 is gradient change over top of 𝜃 (𝑟) learned from
the data available to client 𝑘 . Whenever new clients join the
network, they can use the pretrained federated model param-
eters (𝜃 (𝑟) ) for the given round as-is if no additional labelled
data points are available for the locations or alternatively
can perform 𝑁post-epochs additional training epochs (i.e., model
personalization) on top of the federated model to better fit to
their own unique data distribution for the client.

Note that the FL approach is different from transfer learn-
ing [32] in which a single parent model is trained over a large
number of training epochs on a large amount of annotated
data, typically on a powerful computation system. The goal of
transfer learning is to create a model which can be reused
in a new somewhat related task by using a small amount
of additional data from the new task. While FL gains from
this same idea, the goal of our FL framework is not to just
reuse a pretrained model for some new task, but instead to
allow many disparate clients to massively train a model in
parallel from scratch so that new clients can gain directly from
this pretrained model upon joining the network. Furthermore,
transfer learning requires all data to be located at a single
central location for training, thus removing the parallel training
capabilities found with FL systems. While some WiFi sensing
studies utilize transfer learning as mentioned in Section II, to
the best of our knowledge, FL based training has not been
proposed for WiFi sensing tasks.

Algorithm 1 shows the steps of the proposed WiFederated
learning model. 𝐿 is the set of locations where we aim to
perform WiFi sensing and 𝐺 is our global federated model
where 𝐺.𝑊 is the set of weights for all layers of the model. 𝐿
can potentially change over time as new locations are added
or as locations are removed due to battery power loss or
disconnection from the network. Note that in the algorithm,
we only perform a predetermined number of rounds (𝑁rounds)
before terminating, however federated training can be per-
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Algorithm 1: WiFederated Learning
Input: Set of all WiFi sensing locations 𝐿.

Global model 𝐺 where 𝐺.𝑊 is the set of
weights for the model.
Local model 𝑀𝑙 ∀𝑙 ∈ 𝐿.

1 𝐺.𝑊 = 𝑅𝑎𝑛𝑑𝑜𝑚𝑊𝑒𝑖𝑔ℎ𝑡𝑠()
2 forall 𝑟 ∈ {1, . . . , 𝑁rounds} do
3 forall 𝑙 ∈ 𝐿 do // Share weights.
4 𝑀𝑙 .𝑊 = 𝐺.𝑊

5 𝐿̂ = 𝑆𝑒𝑙𝑒𝑐𝑡𝐶𝑙𝑖𝑒𝑛𝑡𝑠𝑇𝑟𝑎𝑖𝑛 (𝐿)
6 forall 𝑙 ∈ 𝐿̂ s.t. 𝐿̂ ⊆ 𝐿 do // In parallel.
7 𝑀𝑙 .𝑡𝑟𝑎𝑖𝑛(𝑁epochs, 𝑅train)
8 𝐿̂ ′ = 𝑆𝑒𝑙𝑒𝑐𝑡𝐶𝑙𝑖𝑒𝑛𝑡𝑠𝐹𝑒𝑑𝐴𝑣𝑔 ( 𝐿̂)
9 𝐺.𝑊 = 1

|𝐿̂′ |
∑
𝑙∈𝐿̂′ 𝑀𝑙 .𝑊 // FedAvg.

10 forall 𝑙 ∈ 𝐿 do // Post-Train.
11 𝑀𝑙 .𝑡𝑟𝑎𝑖𝑛(𝑁post-epochs, 𝑅post)

formed continuously to allow the network to recognize newly
annotated data over time. At the beginning of each round, the
weights of the global model are shared with each location so
that they can each begin from a similar starting point. Within
each round, we select our set of clients (𝐿̂) to train locally
for some fixed number of training epochs (𝑁epochs). This step
can be thought of as a model-personalization step because at
the beginning of the round, the model is initially fit on the
global distribution of CSI data and at the end of the round, the
models at each selected client are slightly more personalized
to their own distribution of data. It is important that we do not
perform too many training epochs locally during each round
because then the local models will become more overfit onto
location-specific data. Additionally, high 𝑁epochs will result in
over-utilization of individual devices which will result in a
higher power consumption for these edge devices. Moreover,
as mentioned in [33], [34], if we perform federated averaging
on models which are fit to very different distributions, the
resulting federated averaged weights will not be fit to either of
the distributions of location-specific data but will also not be fit
to the global distribution of CSI data. Thus, as long as 𝑁epochs
is not too large, at the end of each round, the FedAvg step
will help prevent the global federated model from diverging
too far away from fitting onto the global CSI data distribution.
To understand how federated learning behaves with varying
amounts of training samples, we also limit the number of
training-repetitions to 𝑅train for each location. Furthermore,
after the personalization step, we may decide to further refine
our selected clients down to 𝐿̂ ′ ⊆ 𝐿̂ ⊆ 𝐿 before applying
FedAvg. This can be important because we may find that the
weights proposed by the initially selected clients may cause the
federated model to converge in a negative way. Finally, after
training our model over 𝑁rounds, each location in 𝐿 can perform
𝑁post-epochs of post-training using 𝑅post repetitions. While this
step will not produce completely new models per location,
it will be able to take the generalizable features discovered
through the federated learning process and alter the model

L1 L2 L3 Ln

3) Send weights
6) Share new weights

5) FedAvg 

L L ^

2) Train local models 
1) Select L 

 

^

4) Select L'̂

Fig. 5: Illustration of one round of the WiFederated system.

weights slightly to give better location-specific results.
The illustration in Fig. 5 demonstrates the six key steps

taken for performing FL in our WiFederated framework on
multiple locations and a central server. In the illustration, 𝐿1
and 𝐿2 are selected to train locally and then share their weights
to the central server. Each location only transmits the new
model weights rather than sharing the actual CSI data and
annotation labels through the network. This means that we can
keep a constant bound on the amount of data transmitted over
the network by selecting an appropriately designed and sized
machine learning model architecture. If we were to instead
share annotated CSI data, then the size of the data could be
unbounded especially in cases where our devices are able to
self-annotate. Once the server receives the weights from each
client location 𝐿𝑖 ∈ 𝐿̂, the server can perform another round
of client selection to select 𝐿̂ ′ ⊆ 𝐿̂ before performing the
federated averaging step. This second client selection phase
allows the server to filter out the weights received from
locations that are deemed to be lower quality based on some
metric such as loss. After the federated averaging step is
performed, we end the loop by resharing the central model
to each of the locations. After performing these steps over
subsequent rounds, any location can perform a final set of
personalization training epochs on their locally available data.
This step takes the shared federated model and performs a
final number of personalization training epochs which can be
useful for totally new locations or locations with few training
locations. The key here is that this can be performed without
requiring the location to share the results back to the central
server. The goal accomplished by this framework is that new
locations can achieve higher prediction accuracy by using the
federated model as a base rather than starting from scratch.

VI. EVALUATION

In this section, we evaluate the proposed WiFederated learn-
ing framework for use in the setting described in Section IV-A.

A. Impact of Averaging Interval
Two types of clients exist in our system, clients participat-

ing in federated averaging (i.e., the clients in 𝐿̂) and clients
with data that is unseen during the training phases (i.e., the
clients not in 𝐿̂).2 We first look at how the federated averag-
ing process affects the prediction capability of the locations

2For the initial evaluations in this section, we say 𝐿̂′ = 𝐿̂. Client selection
methods for selecting 𝐿̂′ are further evaluated in Section VI-F.
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participating in training the federated model. To evaluate this,
we set 𝐿̂ = 𝐿 = {Living Room,Dining Room,Office}
and evaluate on each of these clients individually. Fig. 6a
shows the prediction accuracy when the number of epochs
per round 𝑁epochs = 50. Initially, for all three locations, the
accuracy remains exactly the same between the local model
and the federated model. This is because, up until epoch 50,
the models are the same; no federated averaging has occurred.
However, after 50 epochs, a sudden dip in accuracy is found
for the federated models. This dip is expected because at
the end of this epoch, the first round of local training has
concluded and the three local models are aggregated together
through the federated averaging step. The key observation
is that the federated averaging step aims to create model
parameters which are generalizable to many locations rather
than specialized to any one location. On the other hand, when
we train a local model solely on the data available at a single
location, the model will be better fit to the distribution of
data at the given location, but it will be too specialized to aid
other new locations when they join the network. The goal for
all of the training clients in 𝐿̂ is to sacrifice some amount
of predictive capability so as to benefit other new locations.
Even so, we can see in Fig. 6a that after the sudden dip caused
by the FedAvg step, the accuracy quickly returns to a similar
accuracy as we would see if we had simply trained the local
model. This shows that the federated averaging step does not
cause the accuracy to deteriorate too much for the participating
locations. Fig. 6b shows the accuracy comparison between
locally trained models and federated models during the final
FedAvg aggregation. We can see that, as 𝑁epochs increases, the
accuracy for the Office location decreases indicating that if
we set 𝑁epochs too large, the FedAvg step has a big impact
on the prediction capability of the model at that location.
On the other hand, because we assume a fixed total budget
of 𝑁budget = 𝑁epochs × 𝑁rounds = 100 epochs, increasing
𝑁epochs decreases the number of rounds and thus consequently
decreases the network communication. This is because at the
end of each round, | 𝐿̂ | locations must first communicate Δ𝜃𝑘
back to the central server for FedAvg aggregation and then the
server must communicate 𝜃 (𝑟+1) back to |𝐿 | clients.

Thus, we must find a balance between communication over-
head and prediction accuracy. To this end, for the following
experiments, we set 𝑁epochs = 10 which gives a minor decrease
in prediction capability when compared to 𝑁epochs ∈ {1, 2} but
greatly reduces the amount of communication required.

B. Impact on Unseen Locations

It is useful to see how FL performs from the perspective
of clients within 𝐿̂. However, our primary goal is to see how
such an FL framework can be helpful for new locations which
are added to the network with zero or only a small number of
available annotated training repetitions. To show this, in the
following results when we evaluate a given client 𝐿𝑖 , we set
𝐿̂ = 𝐿 − {𝐿𝑖} when training our federated model so that we
can show that the parameters learned by the model are learned
generally from all other locations and the model does not have
any beforehand knowledge of the data or distribution of data at
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Fig. 6: (a) Accuracy of federated learning over 100 epochs
when 𝑁epochs = 50 and 𝐿̂ = 𝐿 versus local machine learning.
(b) Accuracy after applying final round of FedAvg for different
values of 𝑁epochs.
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Fig. 7: Accuracy during post-training (personalization) over
100 epochs starting with a randomly initialized local model
versus starting with a federated model trained on 𝐿̂ = 𝐿 − 𝐿𝑖 .

client 𝐿𝑖 . This is important to evaluate because when deployed
into a real world system, we may not have annotated data for
all clients. In those cases, we can select 𝐿̂ based on attributes
such as the availability of annotated data or even in cases of
battery powered units, we can select only those which have
surplus power to complete a given training round. As such, 𝐿̂
can also change for every subsequent round to prevent wasting
networking resources or power at any single location and also
to prevent overfitting on data from the selected locations.

Consider the three subfigures in Fig. 7 where 𝐿𝑖 is set to
a different client for each. The figures show the accuracy
over all 100 training epochs for the two training methods.
We begin by comparing the local training method. For this
method, the models are randomly initialized and then trained
on some number of training repetitions (𝑅post) from location
𝐿𝑖 . For the following evaluations note that a single post-
training repetition (𝑅post = 1) includes a sample for each
class type, as we discussed in Section IV-A. Consider the case
where a new client is added to the network without any post-
training repetitions (i.e., 𝑅post = 0). For this case, the model
cannot be trained for these 100 epochs, which means that the
accuracy of the model remains constant at whatever value it
started at. Since the model was initialized to have random
values for 𝜃, the accuracy when 𝑅post = 0 is approximately
25% for each value of 𝐿𝑖 because there are 4 classes to
predict from. We should next compare this to a model which
is instead initialized on a federated model pretrained on 𝐿̂.
For the federated model, these 100 post-training epochs are
represented in Algorithm 1 as 𝑁post-epochs. We can see that, with
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Fig. 8: Accuracy for federated model versus randomly initial-
ized local model after 100 epochs of post-training (personal-
ization) with different post-training repetitions (𝑅post) at 𝐿𝑖 .

the federated model, the accuracy for 𝑅post = 0 is also constant
over the epochs because we do not have any post-training
repetitions to train the model further. However, because the
model learns generalizable traits from 𝐿̂, the initial accuracy
is much higher than the randomly initialized local model. This
is a very important feature for ensuring that WiFi sensing can
scale without requiring all new client locations to pass through
extensive CSI data collection and annotation steps.

Suppose now that a new client is added to the network, but
we are able to perform very few repetitions of our actions
in the environment (i.e., 𝑅post ∈ {1, 2, 3}). We can see in
Fig. 8 that the addition of these post-training repetitions
allows both models to increase their predictive accuracy by
the end of the 100 post-training epochs. However, with small
values for 𝑅post, the local model is still unable to surpass the
initial accuracy achieved by the federated model. Thus, even
when some number of training samples are available, using
the pretrained federated model can achieve higher prediction
accuracy compared to training from scratch at each location.

C. Impact of the Number of Training Locations

So far, we have evaluated the WiFederated system when the
number of training clients | 𝐿̂ | ∈ {2, 3}, however FL is able to
accommodate larger number of clients especially considering
that the training is processed in parallel across each selected
client. To evaluate larger number of training locations, we col-
lected data at ten total locations. We continue to use the same
three locations (i.e., {Living Room,Dining Room,Office}) to
evaluate our system since they have unique multipath charac-
teristics and also to keep results consistent with our evaluations
in the previous sections. Thus, seven remaining candidate
locations are available for pretraining such that 𝐿̂ ⊆ 𝐿 −
{Living Room,Dining Room,Office}.

Fig. 9 shows the accuracy for each of the evaluation
locations as | 𝐿̂ | increases up to 7 which corresponds to an
increasing trend in the accuracy for the evaluation locations.
When | 𝐿̂ | = 7 all seven candidate locations are selected for
federated averaging. When | 𝐿̂ | < 7, different combinations of
clients could be selected for 𝐿̂. To account for this, we repeated
each experiment 10 times with randomly selected value for
𝐿̂ each time. This ensures that we do not accidently select
values for 𝐿̂ which are consequently overly good or overly bad.
Furthermore, we use a static client-selection process where
the clients in 𝐿̂ are selected randomly at the first round of
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Fig. 9: Accuracy for WiFederated as | 𝐿̂ | increases.

federated training and then reused for all subsequent rounds
without further client selection. This process emulates the case
where CSI data is collected at some random initial set of
| 𝐿̂ | client locations so that future client locations require a
much shorter data collection and annotation period. When
the technician selects these first | 𝐿̂ | clients, they cannot be
sure whether the locations they selected will be useful for
building a generalizable federated model. Even so, we can see
that increasing | 𝐿̂ | from 2 up to 7 clients offers an accuracy
increase of +11.88% for 𝐿𝑖 = Dining Room, +9.21% for 𝐿𝑖 =
Living Room and +10.43% for 𝐿𝑖 = Office when the number
of post-training repetitions 𝑅post = 1 and +5.91% for 𝐿𝑖 =

Dining Room, +1.52% for 𝐿𝑖 = Living Room and +4.77%
for 𝐿𝑖 = Office when 𝑅post = 5. This shows that increasing
the number of locations involved in training the federated
model improves the prediction accuracy of the models for new
locations which are unseen during the FL steps.

D. Comparison with State of the Art Approaches

In some recent studies [18], [20], in order to address
scalability issue of WiFi sensing, a transfer learning based
approach is proposed. However, for transfer learning based
model training, data from 𝐿̂ must be aggregated to a central
location to train the model. Another approach is the EI
framework [16] which uses adversarial networks. EI models
are composed of two separate network branches connected by
a parent feature extraction network. The first branch acts as a
single activity recognizer with loss value L𝑎 while the second
branch acts as a domain discriminator with loss value L𝑑 .
The domain discriminator attempts to recognize the domain or
physical location where the CSI data was collected. The goal is
to minimize L𝐸𝐼 = L𝑎−L𝑑 which can be read as minimizing
the loss of the activity recognizer while maximizing the loss
of the domain discriminator. By training in this method, it
is expected that the model will be generalizable to unseen
locations by learning features that are representative of the
activities being performed but not specific to any domain.

For the remaining evaluations, we look at the average accu-
racy across all three evaluation locations rather than individual
client accuracy values. Fig. 10a-c show a comparison of four
methods: our federated approach, the commonly used transfer
learning approach, the adversarial EI approach and the globally
trained model approach. In Fig. 10a, both Transfer and Global
achieve the same accuracy. This is because when 𝑅post = 0,
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Fig. 10: (a-c) Comparison of four methods when using different numbers of pretraining locations with different post-training
repetitions. (d) Training times required for each method with federated learning being the fastest thanks to parallelism.

there are no training repetitions to personalize the transfer
learning model and as such, the transfer learning method
and the global training method are the exact same. Both
methods train their model on the same | 𝐿̂ | locations at a
global server before sharing the model with the client. Fig. 10b
demonstrates how Transfer is different from Global. Namely,
because 𝑅post = 1, transfer learning allows some additional
post-training or personalization steps over top of the globally
trained model. Even so, we can see that our federated model
consistently achieves higher accuracy than the Transfer model
by +7.69% when 𝑅post = 0, +8.87% when 𝑅post = 1 and
+4.26% when 𝑅post = 5. With EI, we find that when 𝑅post = 0,
and | 𝐿̂ | ∈ {2, 3, 4}, the accuracy is similar to our federated
approach but when | 𝐿̂ | ∈ {5, 6, 7} the accuracy is more similar
to the transfer learning approach. We find that as | 𝐿̂ | increases,
the number of training epochs for the EI framework must also
increase. Thus, because we limit all models to a total budget
of 100 epochs, the accuracy for the EI framework decreases.
However, we find that even increasing the total budget to 500
epochs for EI still achieves a lower accuracy than the FL model
trained with a budget of 100 epochs. When 𝑅post ∈ {1, 5}, EI
exhibits similar accuracy to transfer learning suggesting that
the extracted features are similar between both methods.

All methods have a general trend towards improvement as
| 𝐿̂ | increases. However, it is hugely important to consider the
training time required for each of these methods. The key
important insight is to see that our FL method is able to train
in parallel across clients while the other methods must first
aggregate the data to a central server which must then train
the model sequentially on all of the same data. In Fig. 10d, we
demonstrate how the time to train global and transfer learning
models increases as more locations are used for training while
the time required for FL remains relatively constant as a result
of parallel training. EI method requires twice the amount of
time required by the transfer learning method because it is
essentially training two models, the activity recognizer and the
domain discriminator. Note, unlike Fig. 3b results which are
obtained on a Raspberry Pi, because of the memory overhead
required for global, transfer learning and the EI methods, this
evaluation is completed on a more powerful server.

E. Run Time Complexity Comparison
The training process for all of the discussed methods is

composed of four stages: (i) data collection, (ii) prepro-

cessing, (iii) training the model, and (iv) post-training, after
which evaluation is followed. Out of these steps, the most
time consuming step is the training step followed by the
post-training step, thus they both define the overall duration
for the model development. For the results in Fig. 10a-c,
we allow all models to initially be trained on the datasets
available in 𝐿̂ for a total of 𝑁budget = 100 epochs after
which the federated models, transfer learning models and
adversarial EI Framework models are trained for an additional
𝑁post-epochs = 100 epochs. For simplicity in our notation, we
say that 𝑒 = 𝑁budget = 𝑁post-epochs. The time complexity of
training is related to the product of the number of epochs (𝑒)
and the number of samples (𝑆) used which we can denote as
𝑂 (𝑒 × 𝑆). In the case of FL, the data from each location is
trained independently and distributed in parallel, thus the time
complexity would be 𝑂 (𝑒 × 𝑚𝑎𝑥(𝑆𝑙 ∀ 𝑙 ∈ 𝐿̂)). On the other
hand, transfer learning would have a dataset size 𝑆 =

∑
𝑙∈𝐿̂ 𝑆𝑙 ,

thus the time complexity is 𝑂 (𝑒 × ∑
𝑙∈𝐿̂ 𝑆𝑙), which becomes

𝑂 (𝑒 × 𝑆𝑙 × | 𝐿̂ |) if we assume 𝑆𝑙 = 𝑆𝑘 ∀𝑙, 𝑘 ∈ 𝐿 for simplicity.
The difference between the transfer and EI methods is that EI
essentially trains two model networks, an activity recognizer
and a domain discriminator while transfer learning only trains
a single activity recognizer model. However, this will still keep
the time complexity for EI asymptotically similar to transfer
learning at 𝑂 (𝑒 × 𝑆𝑙 × | 𝐿̂ |). The post training step at a given
location for FL, transfer learning and EI is performed on 𝑆𝑝𝑜𝑠𝑡
number of post training samples, where typically 𝑆𝑝𝑜𝑠𝑡 << 𝑆𝑙 ,
for an additional 𝑒 epochs which results in an added time
complexity of 𝑂 (𝑒×𝑆𝑝𝑜𝑠𝑡 ). Thus, we can conclude that FL has
a time complexity of 𝑂

(
𝑒 ×

(
𝑆𝑙 + 𝑆𝑝𝑜𝑠𝑡

) )
, global learning has

a time complexity of 𝑂 (𝑒×𝑆𝑙 × | 𝐿̂ |), and transfer learning and
EI both have a time complexity of 𝑂

(
𝑒 ×

(
𝑆𝑙 × | 𝐿̂ | + 𝑆𝑝𝑜𝑠𝑡

) )
,

where | 𝐿̂ | is the number of locations from which samples
are aggregated for training at the central server. We can see
that the complexity of global learning, transfer learning and
EI methods all increase as | 𝐿̂ | increases while FL is able to
maintain a consistent time-complexity showing that FL will
be a much better option for scalability as additional locations
are added to the system.

F. Impact of Client Selection

Client selection can be performed at two different times
during the entire FL process as denoted in Algorithm 1. First,
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Fig. 11: Impact of client selection with different number of
training repetitions (𝑅train).

we select 𝐿̂ to be the clients that are used to train in parallel.
After this, we can further reduce this selection to 𝐿̂ ′ ⊆ 𝐿̂ ⊆ 𝐿.
Typically the first client selection step is used to distribute
tasks fairly across the network. For example, it would not be
fair to require any single client to take part in all FL rounds.
This would consume more power and waste time for this
individual client. As such, it can be useful to be selective when
choosing 𝐿̂ so that we do not overburden any single device.
Furthermore for battery powered devices, it is important to
select clients which have a battery level above some threshold
to filter out any devices that may lose power during training.

The second client selection step can further guide the
optimization of the federated model. For example, there may
be clients with poor quality training repetitions or clients (𝑘)
whose Δ𝜃𝑘 will cause some negative impact onto the model
parameters for the federated model as a whole. As such, we
consider some other client selection methods. Specifically, we
use the calculated loss L(·) for all clients in 𝐿̂ to determine
which clients should be used for FedAvg. It was previously
recognized [35] that selecting the client with the highest
loss during client selection will increase the accuracy of the
federated model overall. The idea is that a high loss is directly
related to a high amount of error. If a client has a high error,
then the distribution of the data at the client must have some
amount of novelty which may be applicable to other clients
as well. In Fig. 11 we can see a comparison between client
selection methods. Comparing the Random Selection method
we used for previous evaluations to the Loss Highest method,
we can see that using this loss-based approach to guide the
federated system actually results in lower accuracy overall.
Our intuition here is that if we guide the training with high-
loss clients, then we are selecting clients with the worst fit
to the federated model from the previous round. This means
that the clients are likely to have low-quality data available
for training and thus the federated model as a whole will
suffer. Alternatively, if we use the low-loss clients, then data
available from these clients is similar to what is expected by
the federated model and by extension, the data would also
be similar to the data found in the locations selected for 𝐿̂ ′

in previous rounds. In fact, if we take this opposite approach
and guide the FL process through a Loss Lowest approach,
we achieve a greater accuracy. When | 𝐿̂ | = 2 we achieve
an accuracy of 79.89% with Loss Lowest versus 55.05% for
Random Static. Similarly with 𝑅post = 1, the Loss Lowest

approach achieves 81.74% compared to 73.25%.

VII. FEASIBILITY OF WIFEDERATED AT THE CLIENT

We demonstrated that our proposed WiFederated system
achieves increased predictive accuracy by training local mod-
els across different locations using a federated averaging and
client selection process in comparison to starting from a
randomly initialized model. Moreover, we demonstrated that
our framework reduces the amount of training data that is
required at each location when compared to training a local
model at a single location independently without some form
of collaboration. For the development and deployment of a
full system leveraging this FL framework for WiFi sensing,
we must also consider some additional issues.

A. Training and Inference at the Edge

Training deep learning models at a desktop computer or
at a server benefits from the use of GPUs to speed up the
training time especially as more data is added. However, as we
discussed, sending all data to a central server for processing
may not be feasible and with the use of FL is no longer a
requirement. However, we must consider that local training at
the edge requires special consideration. When designing the
model used throughout this work, special care was placed to
ensure that the complexity of the model will not require GPU-
based training. Thus, we can use less powerful devices to train
our model at each location.

Single-Board Edge Computers: Single board computers such
as the Nvidia Jetson series of boards are designed specifically
for machine learning at the edge with an on-board GPU and
a full Ubuntu operating system. This means that any software
written to run on a standard computer or server can directly
be ported to the Jetson single-board computer, allowing for
fast development time. Alternatively, lower cost single-board
computers such as a Raspberry Pi can also be used in the
same way, however without direct access to an onboard GPU.
In Fig. 12, we show the time required for training a local
model on different values of 𝑅train for both a Raspberry Pi
4 B and an Nvidia Jetson Xavier NX. We can see that the
GPU on the Jetson speeds up the computation considerably,
but at a higher cost compared to the Raspberry Pi. Even
so, the Raspberry Pi can still train the model in under 10
minutes when 𝑅train ≤ 6. This is useful considering that post-
training for most edge devices in the WiFederated system can
still achieve good prediction accuracy even with only a small
number of repetitions.

Using standard ESP32s: To allow for the fewest additional
hardware components in the system at each location, it would
be most beneficial to train on the ESP32 microcontroller used
to collect CSI. Recent research literature shows that training
machine learning models on such low-powered devices is
desirable [36], [37] and code libraries such as MicroMLP [38]
have appeared for training machine learning models on low
resource microcontrollers such as the ESP32. We attempted to
train our federated model using this library, but we find that the
model does not fit in memory due to some inefficient memory



12 IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, XXXX

5 10 15 20 25

R
train

0

20

40

60
T

ra
in

in
g
 T

im
e
 (

m
in

)

Raspberry Pi (CPU)

Jetson (GPU)

Fig. 12: Average training
time for edge devices.

Device Rate (Hz)
ESP32 5.726
Raspberry Pi 2252
Jetson 5359

TABLE II: Average predic-
tion rate for edge devices.

allocation within the library itself. Instead we look at using a
popular model inference library called Tensorflow Lite. Using
this library, with model quantization, we are able to store our
model directly in memory on the ESP32 and we are able to
achieve a prediction rate of 5.726Hz. In Table II, we can see a
comparison of prediction rates possible with each edge device.
Even though both Raspberry Pi and Nvidia Jetson devices
are able to achieve prediction rates of greater than 1, 000Hz,
CSI collection rate is only 100Hz. This shows that the single-
board computers can make predictions for every received CSI
sample. Many applications may not need such high prediction
rate because human activities should not change at such a high
rate, so a standalone ESP32 is still useful for inference due to
its low power consumption and small size.

B. Continuous Annotation

The process of annotating and recording CSI for a single
location can be time consuming, repetitive and error prone.
Luckily, as demonstrated in the previous section, leveraging
a model obtained through FL in multiple different locations
can greatly reduce the number of action repetitions which are
needed to obtain a useful model.

Furthermore, we find that some sensing tasks have the
ability to be continuously annotated over time, thus allowing
for the model to continuously be trained on new data from
the environment. Wearable respiratory monitoring belts have
commonly been used in WiFi sensing research to label ground
truth data for monitoring patient breathing patterns [39].
However, these works assume the belts are used only to train
the initial model, but are never used again afterwards. An
alternative approach is to use the sensor data to train the CSI
based model continuously over time. Fig. 13a illustrates that
CSI can be collected in the background at the same time a
wearable sensor is being worn and Fig. 13b shows a time series
view of the data being collected. While CSI is continuously
collected in the background, there is a span of time where
wearable sensor data is missing. This may happen because the
user removed the wearable for example before going to bed at
nighttime or due to discomfort. However, even when the sensor
is not being worn, it can be important to continue to track
the user. To do this, whenever sensor data is available (i.e.,
sensor is worn), the sensor data can be used to automatically
annotate the collected CSI data to train WiFi sensing model F .
Then, whenever sensor data is unavailable, F can continue to
monitor the user using the available CSI data. This ensures that
the model can continue to learn over time and the person can
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Fig. 13: Example scenario for continuous learning. (a) User
with a wearable sensor while CSI is collected in the back-
ground. (b) When sensor data is available, both CSI and sensor
data can be used to train F . When sensor data is unavailable
(i.e., at nighttime when wearable sensors are removed), CSI
can be used with F to continue monitoring.

be safely monitored even when the sensor data is unavailable.
Continuous data labelling and thus continuous model training
means that the proposed WiFederated system can continue to
learn without requiring time-consuming manual data collection
steps and can also help reduce the effects of data drift [40]
over time due to environmental changes.

VIII. CONCLUSION

In this work, we introduce WiFederated, a federated learning
framework designed for scalable deployment of multi-location
CSI-based WiFi sensing systems. By training local models at
each location in parallel and then performing federated aver-
aging of the model weights at the central server over multiple
FL rounds, we are able to train a federated model which is
generalized to location-independent features. We show that we
can leverage this federated model to reduce the number of
training repetitions required per physical action when training
at new locations. We conclude that this reduction of training
repetitions allows for more rapid deployment of WiFi sensing
devices into new locations without increasing the complexity
or workload for the technician installing any new WiFi hard-
ware for the system. Additionally, in cases where hardware
such as WiFi access points are already deployed throughout a
building, the technician does not need to enter each location to
perform a large number of time-consuming training repetitions
of the actions before seeing useful prediction accuracy. We
also find that using WiFederated can reduce the number of
local training epochs required compared to other methods.
Finally, we evaluate training and evaluation at the edge and
consider possible methods for continuous annotation to ensure
that clients are able to continue to capture accurate annotation
labels over time to further train the federated model.
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