
R

T
m
A
D

A

K
U
T
I
A
E

1

a
(
d
r
i
t

e
d
t
a

h
R

Internet of Things 29 (2025) 101461 

A
2

Contents lists available at ScienceDirect

Internet of Things

journal homepage: www.elsevier.com/locate/iot

esearch article

ime-efficient approximate trajectory planning for AoI-centered
ulti-UAV IoT networks

mirahmad Chapnevis, Eyuphan Bulut ∗

epartment of Computer Science, Virginia Commonwealth University, 401 West Main St. Richmond, VA 23284, USA

 R T I C L E I N F O

eywords:
AV
rajectory planning
oT
ge of information
fficiency

A B S T R A C T

The gathering of data produced by ground Internet of Things (IoT) devices can be facilitated
with the assistance from Unmanned Aerial Vehicles (UAVs) especially in hard-to-reach areas.
However, the limited battery of UAVs requires a careful planning of their trajectories. As the
timely delivery of data can be critical in certain applications, Age of Information (AoI) should
also be integrated during this planning. Most of the existing works that study AoI-centered UAV
trajectory planning focus on the timing of the data gathering by the UAV, without considering
the time UAV needs to deliver it to a specific point. This study broadens the perspective by
incorporating multiple UAVs and Ground Base Stations (GBSs) throughout the region, to be
used for the delivery of data collected by UAVs, defining the AoI. We also allow UAVs to visit
IoT locations only after a data is generated, which can happen during the mission of UAVs.
Our goal is to optimize the UAV trajectories considering multiple prioritized goals, namely,
minimization of maximum AoI, then the minimization of sum of AoI for all collected data and
finally the sum of UAV path lengths. Using Integer Linear Programming (ILP), we first find
out the optimal solution. In order to avoid the long running times and provide a scalable yet
time-efficient solution, we propose a heuristic based method. Extensive simulation results under
various setups show that the heuristic approach provides results with reasonable margins to ILP
results and is also scalable, making the proposed solution more practical.

. Introduction

Unmanned Aerial Vehicles (UAVs) have revolutionized various fields such as wireless communications, disaster management,
griculture and healthcare, thanks to their agility and ability to reach inaccessible areas [1–4]. The recently developed standards
e.g., 3GPP Release 17 [5], IEEE 802.11ah [6] (Wi-Fi HaLow)) also support their usage in various different conditions (e.g., long
urations covering larger areas.) despite their limited energy resources. This study focuses on a scenario where UAVs serve a crucial
ole in data collection from ground sensors or Internet of Things (IoT) networks, acting as a bridge to relay this information to the
ntended destinations. Due to the limited communication range of UAVs and IoT devices, UAVs need to navigate close to each of
he IoT devices along their designated paths to collect the data of IoT devices before concluding their mission.

Since the limited battery life of UAVs restricts their flight duration, it is essential to meticulously plan their routes to ensure
fficient data collection. This planning must also take into account the specific times when data becomes available at each IoT
evice, necessitating visits to these devices only after data generation. However, most of the existing studies (e.g., [7–9]) assume
hat the data is available before the UAVs commence their mission. Contrary to these studies, we consider a more practical scenario
nd allow data generation even during the UAV missions.
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Fig. 1. An example scenario with two UAVs collecting data from seven IoT devices and delivering them to nearby base stations. AoI for a data is defined from
the time IoT device generates the data to its delivery time to a GBS by a UAV.

Fig. 2. Calculation of AoI for each data delivery in Fig. 1.

Once IoT devices generate data, the UAVs need to collect that data and then deliver it to their respective destinations, taking
into consideration the requirements of the application at hand. In this work, we study a broader scenario by including multiple
UAVs and multiple ground base stations (GBS) which are considered as the delivery points of the collected IoT data. As a result
of this flexible delivery, we redefine the Age of Information (AoI) as the period starting from the data creation at IoT device to its
upload to a GBS, ensuring the timeliness and relevance of the information relayed.

Recent studies have delved into UAV path planning within IoT networks with varying aims, such as minimizing energy consump-
tion [10], maximizing coverage [11], reducing connection outage times [12,13], and maximizing data collection efficiency [14]. In
order to take into account the data freshness upon delivery, which can be critical in various application contexts (e.g., healthcare,
logistics), AoI is also considered as a metric during the path planning of UAVs. While previous research has largely focused on AoI
in scenarios where data is delivered to a single endpoint, this study proposes a more practical and broader scenario where a UAV
can upload the collected data to any nearby GBS, thus offering a more flexible and realistic approach to data delivery and finalizing
mission requirements.

In Fig. 1, we illustrate an example scenario with two UAVs and seven ground IoT devices. UAVs are tasked to collect and deliver
the data to a nearby GBS. The AoI for each collected data is computed in Fig. 2. Note that a UAV collects the data of an IoT 𝑖 at
time 𝑑𝑖, which is after its generation time 𝑡𝑖 ≤ 𝑑𝑖, and uploads the data to a GBS at a later time denoted by 𝑢. It is possible that
multiple IoT data can be uploaded at the same time to reduce the UAV path length without increasing maximum AoI.

The contributions of this study1 are as follows:

• We study the multiple UAV trajectory optimization problem with three prioritized goals (i.e., minimizing max AoI, reducing
sum of AoI and the UAV path lengths) considering an AoI definition that covers the duration until UAV delivers the collected
data to a nearby GBS, which is different from current UAV-assisted data collection studies.

• We model the problem and find the optimal UAV paths in a given scenario using Integer Linear Programming (ILP).
• We introduce a computationally efficient but approximate greedy heuristic algorithm for both single and multiple UAV

scenarios.
• We perform extensive simulations considering various scenarios and evaluate the performance of proposed heuristic based

approach, showing its benefits.

1 In the preliminary version of this study [15], we explored only a single UAV scenario with a limited evaluation.
2 
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Table 1
Comparison of the proposed work to the most recent and closest related work in the literature.

Study Year AoI Multiple GBSs Multiple UAVs Path optimization

[28] 2022 IoT to users ✗ ✓ ✓

[29] 2023 IoT to GBS ✗ ✗ ✓

[30] 2024 IoT to UAV ✗ ✓ ✗

[31] 2023 IoT to UAV ✗ ✗ ✗

[32] 2024 IoT to UAV ✗ ✗ ✗

[33] 2024 IoT to UAV ✗ ✓ ✓

[34] 2022 IoT to UAV ✗ ✗ ✗

[35] 2024 IoT to UAV ✗ ✗ ✓

[36] 2024 IoT to GBS ✗ ✓ ✓

[37] 2023 IoT to GBS ✓ ✗ ✗

[38] 2022 IoT to UAV ✓ ✗ ✓

This study 2024 IoT to GBS ✓ ✓ ✓

The rest of the article is outlined as follows. We start with summarizing the existing AoI-centered UAV path planning studies
in Section 2, and discuss how the proposed approach is different from them. In Section 3, we continue with our assumptions and
escribe the problem formally. Next, in Section 4, we first go through the ILP based solution, and elaborate on the proposed greedy

heuristic based approach that aims to reduce the complexity while providing an approximate solution. We then provide an evaluation
f the proposed solutions using simulations in different scenarios in Section 5. At the end, we conclude with summarizing our
ontributions and discussing some potential future directions in Section 6.

2. Related work

UAVs have been considered in various wireless communication applications [16] together with security [17], edge comput-
ing [18] and learning-based components [19]. Since in this work we study the UAV path planning and trajectory optimization
problem, in this section, we cover only the related studies on this specific problem. UAV path planning and trajectory optimization
problem have recently been studied extensively through various constraints and parameters and within different application
scenarios including collection of data from ground IoT devices or sensors [2,20–22]. The objective in these trajectory optimization
studies have varied from minimization of UAV mission time [12], energy consumption [23], and connection outage [24] to
maximization of throughput [25] and coverage [26].

AoI has recently been considered within the context of UAV trajectory planning problems, in particular for obtaining more
fresh data from the ground IoT devices [27]. UAVs are considered as data collecting agents from these ground sensors which are
considered to be deployed in areas that are not covered by cellular infrastructure e.g., rural areas. AoI values the freshness and
timely delivery of the data to their destinations thus many researchers have recently studied AoI-centered UAV trajectory planning
problems. However, even within such studies, various application domains and slightly different objectives are targeted.

In [28], authors consider multiple UAVs that depart from a central location to collect the data of ground sensors and deliver
them to the users in the area before returning to the start location. Thus, the AoI is described within a different context and cellular
connectivity of UAVs (to any of the GBSs in the area) and delivery of data to GBSs is not considered. A single rotary-wing UAV
is considered in [29], and the UAV path is optimized through a careful selection of its hovering points and using a transformer

eighted A-star algorithm. While the AoI defined in this study matches with our description, there is only one base station and
ne UAV considered in the system model, making the problem different. In [30], energy-constraints of the UAVs have also been

taken into account and using a graph theoretical and kernel K-means based method, the trajectory optimization of multiple UAVs
have been studied while aiming both the reduction of the average AoI and UAV energy consumption. A similar work that consider
energy consumption and AoI trade-off is presented in [31]. Besides graph-theory based approaches, some studies also consider
clustering-based approaches to assign UAVs to data collection points [32,33]. Furthermore, there are some studies that consider
wireless charging of the sensor nodes by UAVs [34,35], visits of UAVs to charging stations or charging of UAVs by unmanned
ground vehicles (UGV) [36] while also considering AoI.

Despite several studies that consider AoI in UAV trajectory planning, optimization of AoI mostly considers the time period until
he data is collected by the UAV, without much focus on the time needed by the UAV to upload it to the Internet or cellular
nfrastructure. This is because most of the time there is only one base station or data center considered where UAV just needs to
isit to upload collected data. However, in more practical scenarios, especially in wide-area deployments, there can be multiple GBSs
nd UAVs can potentially deliver the collected data from IoTs to any of these GBSs. Based on our literature coverage, there is only
ne other study [37] that consider multiple GBSs in the environment and allow uploading of the data from a UAV to any of them
uring its mission. However, that study does not consider multiple UAVs and only targets optimization of AoI, without considering
he path optimization jointly. Also, only an optimization solution with very long running times is presented there, while in this
ork, we target a cost-efficient and scalable solution through a heuristic based approach.

Learning based solutions have also been explored in UAV trajectory optimization during IoT data collection applications,
specially when there are unknowns in the environment or in the data generation schedules of the IoT devices. To this end, different

neural networks (e.g., Deep Q Network (DQN) [39], Long short-term memory (LSTM) [40], deep reinforcement learning [38,41])
3 
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Table 2
The descriptions of notations used in this study.

Notation Description

 , ,  The set of UAVs, ground sensors/IoT devices and ground base stations, respectively.
𝑉 𝐷
𝑖 The time the IoT device 𝑖 is visited by a UAV and its data is captured.

𝑉 𝑈
𝑖 The time the IoT device 𝑖’s data is delivered to one of the GBSs by the UAV that collected that data.

𝐿S
𝑢 , 𝐿F

𝑢 The locations where UAV 𝑢 starts and finishes its travel, respectively.
𝐿𝑢, 𝑇𝑢 The set of waypoints and visit times on the UAV 𝑢’s path, respectively.
𝐿𝑢(𝑡) UAV 𝑢’s location at time 𝑡 ∈ 𝑇 .
𝑙𝑖 IoT device 𝑖’s location, which is static.
𝑘𝑖 GBS 𝑖’s location, which is static.
𝑡𝑖 The time that IoT device 𝑖 generates its data.
𝑐𝑢𝑖 (𝑡) A boolean that becomes 1 if the UAV 𝑢 is in the range of IoT 𝑖 at time 𝑡 ∈ 𝑇 .
𝑑𝑢
𝑖 (𝑡) A boolean that becomes 1 if the UAV 𝑢 captures the data of IoT device 𝑖 at time 𝑡 ∈ 𝑇 .

𝑝𝑢𝑖 (𝑡) A boolean that becomes 1 if the UAV 𝑢 delivers IoT 𝑖’s data to a GBS at time 𝑡 ∈ 𝑇 .
𝑔𝑢𝑖 (𝑡) A boolean that becomes 1 if UAV 𝑢 is in the range of GBS 𝑖 at time 𝑡 ∈ 𝑇 .
𝐺𝑢(𝑡) A boolean that becomes 1 if UAV 𝑢 can communicate with at least one of the GBS at time 𝑡 ∈ 𝑇 .
U𝐷(𝑖) The id of the UAV that captures the data of IoT device 𝑖.
U𝑃 (𝑖) The id of the UAV that delivers the data of IoT device 𝑖 to a GBS.
𝑅𝐼 The communication range for an IoT to UAV link with minimum desired SNR.
𝑅𝐺 The communication range for a UAV to GBS link with minimum desired SNR.
𝑇𝑚𝑎𝑥, 𝑉 Total maximum time a UAV can fly and its possible maximum speed.
𝑇 𝐹
𝑢 The first time slot that UAV 𝑢 reaches its final location and completes the mission.

have been utilized depending on the application and uncertainty setting considered. While such studies can potentially help in
nknown scenarios, the training process can potentially take long, making such solutions not scalable as well. However, we plan to
ntegrate learning-based components in our future efforts on this problem.

In Table 1, we provide a comparison of our study to other existing and close works and highlight the differences. In summary,
this study differs from existing studies by considering both multiple UAVs and GBSs (for data delivery) and not only considers AoI
in design but also aims to optimize UAV paths.

3. System model

3.1. Assumptions

Let  , ,  denote the set of UAVs, GBSs and IoT devices, respectively. We assume that each IoT device produces a data based
on the requirements defined by the application it is used for. We denote the location of an IoT device 𝑖 with 𝑙𝑖 and the time it
generates a data by 𝑡𝑖. It is assumed that a UAV 𝑢 starts its mission at location 𝐿𝑢

𝑆 and ends it at 𝐿𝑢
𝐹 . The UAVs are tasked to gather

data from ground IoT devices and deliver them to one of the nearby GBSs, before the allowed time, which is denoted as 𝑇max. We
assume a discrete model to define the time and use unit time slots. The maximum speed each UAV can reach is considered as 𝑉
units per a time slot. The location of a UAV 𝑢 at a time slot 𝑡 is denoted by 𝐿𝑢(𝑡) = (𝑥𝑢(𝑡), 𝑦𝑢(𝑡), 𝐻) and each GBS 𝑖’s location is
enoted by 𝑘𝑖 = (𝑥𝑖, 𝑦𝑖, 𝐻𝐺). Without loss of generality, we consider that the UAVs perform their flights at the same altitude (𝐻),
hich is above the height of the GBSs, i.e., 𝐻 > 𝐻𝐺.

We assume that each UAV, GBS and IoT device has a single omni-directional antenna to be used in communication with others.
Each (UAV, IoT) link or (UAV, GBS) link uses a separate band that is orthogonal to others to avoid the interference. A UAV needs
o be in the vicinity of an IoT device to form a stable Line-of-Sight (LoS) connectivity and download its data. We assume that
his is achieved when the distance between them is less than 𝑅𝐼 . In order to deliver the collected data to a nearby GBS, a UAV
hould be in the GBS’s range, defined by 𝑅𝐺. Here, note that, these range values can be derived from an analysis of the signals
nd considering the bandwidth required by the application [12,42]. For example, the communication range (𝑅𝐺) for a GBS–UAV

link can be computed by
√

𝛾0
𝑆min

− (𝐻 −𝐻𝐺)2, where 𝛾0 = 𝑃 𝛽0
𝜎2

denotes the baseline Signal-to-Noise Ratio (SNR) with 𝑃 denoting
the transmission power of a GBS, 𝜎2 denoting the noise power at the receiver UAV, and 𝛽0 denoting the channel power gain at the
reference distance. The minimum SNR, 𝑆𝑚𝑖𝑛 is used to make sure the communication quality between a UAV and a GBS is at the
evel required by the specific application.

The symbols and their corresponding descriptions used in this work are provided in Table 2 for the convenience of readers.

3.2. Problem statement

Given the sets  , , and , together with the locations of IoT devices (𝑙𝑖), GBS centers (𝑘𝑖), starting and final locations of UAVs
(𝐿𝑆 , 𝐿𝐹 ) and the times that the IoT devices create their data (𝑡 ), our goal is to minimize the maximum AoI (i.e., 𝐴 ) of the data
𝑢 𝑢 𝑖 𝑚𝑎𝑥

4 
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collected from IoT devices by the UAVs. In addition to this primary goal, in order to obtain reasonable and energy-saving UAV
paths in particular between the waypoints that do not affect the overall AoI, we also aim to minimize the sum of AoI (i.e., 𝐴𝑠𝑢𝑚) as
 secondary objective, and the total length of all UAV trajectories (i.e., 𝐷𝑠𝑢𝑚) as the tertiary objective. These prioritized goals are
ntegrated to our joint objective function using the scalarization method as follows:

min
(

(𝐴𝑚𝑎𝑥)𝜆 + 𝐴𝑠𝑢𝑚
)

𝛩 +𝐷𝑠𝑢𝑚 (1)
s.t.

𝐴𝑚𝑎𝑥 = max
{

(𝑉 𝑈
𝑖 − 𝑡𝑖)

}

,∀𝑖 ∈  (2)

𝐴𝑠𝑢𝑚 =
∑

∀𝑖∈
(𝑉 𝑈

𝑖 − 𝑡𝑖) (3)

𝐷𝑠𝑢𝑚 =
∑

𝑢∈
(𝐿𝑆

𝑢 → 𝐿𝐹
𝑢 ) (4)

where 𝑉 𝑈
𝑖 is the upload or delivery time of the IoT device 𝑖’s data to a GBS by the UAV that downloaded its data, and 𝐿𝑆

𝑢 → 𝐿𝐹
𝑢

denotes the trajectory for the UAV 𝑢. We use scalars 𝜆 and 𝜃, to prioritize different goals, where 𝜆 and 𝜃 are selected to be larger
than what 𝐴𝑠𝑢𝑚 and 𝐷𝑠𝑢𝑚 can be, respectively.

4. Proposed solutions

In this section, we first describe the ILP based solution, then discuss the heuristic based more computationally efficient and
pproximate solution.

4.1. ILP solution

The goal of the ILP based approach is to obtain the optimal UAV paths under the aforementioned goals. Each UAV path is defined
etween a starting point and a final location, which can be the same as the starting point. We then try to identify the optimal UAV
aths using waypoints on the route of each UAV 𝑢. Let 𝐿𝑢 = {𝐿0

𝑢 , 𝐿1
𝑢 , 𝐿2

𝑢 ,… , 𝐿2|𝐼|
𝑢 , 𝐿2|𝐼|+1

𝑢 } be the set of these waypoints on the
optimal path of UAV 𝑢, where 𝐿0

𝑢 = 𝐿𝑆
𝑢 and 𝐿2|𝐼|+1

𝑢 = 𝐿𝐹
𝑢 . Each of these waypoints are critical locations where the UAV either

captures the data from an IoT device or uploads the collected data. We also define 𝑇𝑢 = {𝑇 0
𝑢 = 0, 𝑇 1

𝑢 , 𝑇 2
𝑢 ,… , 𝑇 2|𝐼|

𝑢 , 𝑇 2|𝐼|+1
𝑢 = 𝑇 𝐹

𝑢 } as
the visit times of UAV 𝑢 to the locations in 𝐿𝑢, i.e., 𝐿𝑢(𝑇 𝑖

𝑢 ) = 𝐿𝑖
𝑢. Here, 𝑇 𝐹

𝑢 is defined as UAV 𝑢’s mission time or the time it reaches
its destination.

It is essential to ensure that each UAV commences and concludes its mission at specified locations. Furthermore, in order to
ake into account the limited UAV batteries during their mission, we consider a constraint on the maximum flight duration allowed.
hus, we have

𝐿𝑢(0) = 𝐿𝑆
𝑢 (5)

𝐿𝑢(𝑇 𝐹
𝑢 ) = 𝐿𝐹

𝑢 & 𝑇 𝐹
𝑢 ≤ 𝑇𝑚𝑎𝑥,∀𝑢 ∈  . (6)

For each consecutive time moment during the mission of UAVs, we ensure that the distance traveled by the UAVs is equal to or
ess than their maximum speed capability by:

dist𝐿𝑢(𝑖+1)
𝐿𝑢(𝑖)

≤ (𝑇𝑢(𝑖 + 1) − 𝑇𝑢(𝑖)) × 𝑉 ,
∀𝑖 ∈ [0, 2|𝐼|],∀𝑢 ∈  , (7)

where dist𝑙2𝑙1 denotes the distance between two locations 𝑙1 and 𝑙2.
Each IoT device generates data at a specific time.2 A UAV needs to visit an IoT device after its data generation time (i.e., 𝑡𝑖) to

apture its data. Furthermore, the delivery of this data (i.e., 𝑉 𝑈
𝑖 ) to a GBS must occur only after it has been captured (i.e., 𝑉 𝐷

𝑖 ) from
he IoT device. These are ensured by

𝑉 𝐷
𝑖 ≥ 𝑡𝑖,∀𝑖 ∈  (8)

𝑉 𝑈
𝑖 ≥ 𝑉 𝐷

𝑖 ,∀𝑖 ∈ . (9)

Since the UAVs and IoT devices have limited communication ranges, a UAV need to get sufficiently close the IoT device (i.e., in
communication range) to capture its data successfully. Consequently, a variable (i.e., 𝑐𝑢𝑖 (𝑡)) has been established to monitor the
onnectivity status between a UAV and an IoT device. Downloading of data by a UAV (i.e., 𝑑𝑢𝑖 (𝑡)) is permissible only if a connectivity
ink is established. Nevertheless, there may be instances where a UAV is within the range of an IoT device but chooses not to
ownload any data. This may happen when the resulting AoI is better in case any of other UAVs downloads and uploads that IoT’s
ata.

𝑐𝑢𝑖 (𝑡) =
{

1, if dist𝐿𝑢(𝑡)
𝑙𝑖

≤ 𝑅𝐼

0, otherwise.,
(10)

𝑑𝑢𝑖 (𝑡) ≤ 𝑐𝑢𝑖 (𝑡), (11)
∀𝑡 ∈ 𝑇𝑢,∀𝑖 ∈ ,∀𝑢 ∈  .
2 If an IoT device generates data multiple times, we can simply consider as if we have separate IoT devices, each generating one data, at the same location.

5 
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Each IoT device’s data should be captured by one and only one UAV.
∑

∀𝑢∈

∑

∀𝑡∈𝑇𝑢

𝑑𝑢𝑖 (𝑡) = 1,∀𝑖 ∈ . (12)

Next, we need to record the time when a UAV captures the data of an IoT device (i.e., 𝑉 𝐷
𝑖 ). Since the value of 𝑑𝑢𝑖 (𝑡) is set to 1

nly for one UAV throughout the entire timeline of all UAVs, by multiplying this value with the time variable, we obtain the exact
oment when data is downloaded from an IoT device by a UAV.

𝑉 𝐷
𝑖 =

∑

∀𝑢∈

∑

∀𝑡∈𝑇𝑢

(𝑑𝑢𝑖 (𝑡) × 𝑡),∀𝑖 ∈ . (13)

Then, by multiplying the value of 𝑑𝑢𝑖 by 𝑢, we can find out the id of the UAV that captures the IoT device 𝑖’s data.

U𝐷(𝑖) =
∑

𝑢∈

∑

𝑡∈𝑇𝑢

(𝑑𝑢𝑖 × 𝑢),∀𝑖 ∈ . (14)

Similar to the UAV-IoT connection, for a UAV to upload the collected data to a GBS, it must be within the communication
range of that GBS. We monitor the UAV–GBS connection status using another variable, 𝐺𝑢(𝑡), which indicates whether the UAV 𝑢
is connected to at least one GBS at time slot 𝑡. Furthermore, it should be mentioned that when the UAV is in the communication
range of a GBS, it can upload data to that GBS (defined by 𝑝𝑢𝑖 (𝑡)).

𝑔𝑢𝑖 (𝑡) =
{

1, if dist𝐿𝑢(𝑡)
𝑘𝑖

≤ 𝑅𝐺

0, otherwise.,

∀𝑢 ∈  ,∀𝑡 ∈ 𝑇𝑢,∀𝑖 ∈  (15)
𝐺𝑢(𝑡) = 𝑚𝑖𝑛(1,

∑

∀𝑖∈
𝑔𝑢𝑖 (𝑡)),∀𝑢 ∈  ,∀𝑡 ∈ 𝑇𝑢 (16)

𝑝𝑢𝑖 (𝑡) ≤ 𝐺𝑢(𝑡),∀𝑢 ∈  ,∀𝑖 ∈ ,∀𝑡 ∈ 𝑇𝑢. (17)

Additionally, we impose a constraint to ensure that the UAVs upload the captured data. All data captured by the UAVs from the
oT devices must be uploaded to the GBSs.

∑

∀𝑢∈

∑

∀𝑡∈𝑇𝑢

𝑝𝑢𝑖 (𝑡) = 1,∀𝑖 ∈ . (18)

In order to compute the AoI of each data, we need to record its delivery time by UAV to a GBS (i.e., 𝑉 𝑈
𝑖 ). Given that each IoT’s

data is delivered only once, we leverage this condition by first multiplying 𝑢𝑖(𝑡) by 𝑡, and summing this over all critical times.

𝑉 𝑈
𝑖 =

∑

∀𝑢∈

∑

∀𝑡∈𝑇𝑢

(𝑝𝑢𝑖 (𝑡) × 𝑡),∀𝑖 ∈ . (19)

Similarly, by multiplying the value of 𝑝𝑢𝑖 by 𝑢, we obtain the id of the UAV that delivers the data obtained from the IoT device
to a GBS.

U𝑃 (𝑖) =
∑

∀𝑢∈

∑

𝑡∈𝑇𝑢

(𝑝𝑢𝑖 × 𝑢),∀𝑖 ∈ . (20)

This information is needed, as when there are multiple UAVs, we need to verify that the data is uploaded by the UAV that gathered
the data from that IoT device. To this end, we also consider the following constraint.

U𝐷(𝑖) = U𝑃 (𝑖),∀𝑖 ∈ . (21)

Finally, the path lengths of the UAV trajectories can be computed by

𝐷𝑠𝑢𝑚 =
∑

𝑢∈

2|𝐼|
∑

𝑖=0
dist𝐿

𝑖+1
𝑢

𝐿𝑖
𝑢

. (22)

Note that these formulations will apply when there is only one UAV too. However, to speed up the running time of the ILP
based solution for one UAV scenario, some constraints (e.g., (21)) can be removed as they will be always satisfied and will not be
ecessary.

4.2. Greedy heuristic approach

While the ILP based solution can provide the optimal UAV paths, it comes with high computational complexity, thus it is not
practical. To address that, in this section, we present our heuristic based solution. We first start with the scenario where there is
only one UAV, then discuss how it scales to the multi-UAV scenario.
6 
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Fig. 3. Finding the IoT device that a UAV can deliver its data earliest from the current UAV location.

Algorithm 1: EarliestIoTDelivery (𝐿𝑢
𝑐 𝑢𝑟, 𝑇 𝑢

𝑐 𝑢𝑟)
Input : 𝐿𝑢

𝑐 𝑢𝑟: Current location of UAV
𝑇 𝑢
𝑐 𝑢𝑟: Current time passed since start
Output: 𝐵𝑖: Best IoT index
𝐵𝑔 : Best/Nearest GBS to the best IoT
𝑇𝑑 𝑒𝑙: Delivery time to the best IoT

1 𝑇𝑑 𝑒𝑙 = ∞
2 foreach 𝑖 ∈  do

// Find intersection point of UAV’s trajectory with IoT 𝑖’s range
3 𝐼𝑖 ← Lu

cur li ∩ 𝑅𝐼 (𝑖)

// Find time to reach IoT 𝑖’s range
4 𝛥𝑖 ←

dist(𝐿𝑢
𝑐 𝑢𝑟 ,𝐼𝑖)
𝑉 + 𝑇 𝑢

𝑐 𝑢𝑟
// Update download time if arrived before data generation

5 if 𝛥𝑖 ≥ 𝑡𝑖 then
6 𝛥𝑖 ← 𝑡𝑖
7 end

// Closest GBS for IoT 𝑖
8 𝑔∗ ← ar g min𝑔∈ dist(𝐼𝑖, 𝑔)

// Find intersection point with the closest GBS’s range
9 𝐺∗

𝑖 ← Iig∗i ∩ 𝑅𝐺(𝑔∗)

// Delivery time for data of IoT 𝑖

10 𝛥𝑔 ← 𝛥𝑖 +
dist(𝐼𝑖 ,𝑔∗𝑖 )

𝑉

// Keep the best one
11 if 𝛥𝑔 < 𝑇𝑑 𝑒𝑙 then
12 𝐵𝑖 ← 𝑖
13 𝐵𝑔 ← 𝑔∗

14 𝑇𝑑 𝑒𝑙 ← 𝛥𝑔
15 end
16 end
17 return (𝐵𝑖, 𝐵𝑔 , 𝑇𝑑 𝑒𝑙)

4.2.1. Single UAV
Our greedy heuristic based approach relies on sequentially integrating IoT devices and GBSs into the UAV’s trajectory, while

also avoiding exhaustive examination of all permutations. Thus, it enables us to approximate the optimal solution with significantly
reduced computational time.

We start with a path that includes only the UAV’s mission start and end locations. We then select an IoT device and try to place
it in one of the available spots on the current trajectory. The available spots are considered as the positions between the consecutive
elements of the current trajectory. That is, in the initial trajectory, there is only one position possible (i.e., between the starting
7 
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Fig. 4. Overview of heuristic based solution.

and end points of the UAV). In order to select the next IoT device to be added onto the trajectory, we use the strategy described
n Alg. 1 and Fig. 3. That is, we find out the IoT device whose data can be delivered (to the nearest GBS) the earliest based on
he UAV’s current position. This greedy based selection of next IoT device aims to reduce AoI during the UAV’s mission. Once an
oT device is added onto the UAV trajectory, we then consider inserting the GBS that allows that IoT device quickest delivery of its
ata. Here, we only consider the positions (between any consecutive element) after the last added IoT location. For example, once
he first IoT is added, we only consider the one and only one position after this IoT device for a possible GBS insertion. However,
e also consider not even inserting this GBS to the path. This is because it is possible that there may be other GBSs already in the

urrent UAV trajectory which can upload the recently added IoT device’s data without increasing the current AoI.
The process continues similarly until all the IoT devices are added in the UAV trajectory. That is, the next IoT to be added on

he trajectory is determined by finding the IoT device whose data could be delivered the earliest from the current final position
and time) of the UAV on the current trajectory. This current final position is described as the position of the UAV before its final
estination (e.g., 𝐿𝐹

𝑢 ) in the current trajectory. Once the IoT to be added is determined, we try all possible spots to add it on the
rajectory. As the UAV trajectory grows with the addition of new IoT devices and GBSs, the set of possible spots to add the next IoT
evice expands. For example, for the second IoT device insertion, since there will be the first IoT device and a GBS are already in
he trajectory, there are three positions from which we need to find out the one that gives the smallest AoI and insert the second
oT there. Once the second IoT is added on the trajectory, depending on where it is added, there will be one to three different spots
or the GBS (i.e., the closest GBS that would be used to upload the data of that IoT) to be added. Again, we try not only inserting
he GBS to any of the spots after the second IoT on the trajectory but also try not inserting the GBS at all (so give chance to the UAV
o upload this IoT device’s data to an existing GBS on the trajectory) and proceed with the option that provides the best AoI. In the
ases where inserting the GBS to the trajectory provides the same AoI (compared to not adding it), we opt to omit its insertion as
e also want to minimize the travel distance of the UAV.

Upon finishing the insertion of all IoT devices, we calculate the AoI for the UAV’s ultimate trajectory, which must include the
defined start and end points, all IoT devices, and at least one GBS. This entire process is illustrated in Algorithm 2. In line 6, we find
he next IoT to be inserted to the path and in lines 12–27, we try all possible options for both this IoT and its nearby GBS to find
he best spots. In lines 28–34, we update the UAV trajectory with these best spots. If there are two GBSs consecutively, we need to
emove the latter. In line 31, we check this condition to ensure that there are no two consecutive GBSs along the UAV’s path. In
ines 35–36 we update the location and the time for the UAV to be used in the next iteration.3 An overview of this heuristic based
pproach is also illustrated in the flowchart given in Fig. 4.

3 Note that both 𝐿𝑐 𝑢𝑟 and 𝑇𝑐 𝑢𝑟 can be calculated easily (using UAV speed and distances between waypoints) once the visit order in  is known, and thus we
omit the details for the sake of brevity.
8 
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Algorithm 2: GreedySingleUAVPathFormation
Input: 𝐿𝑢

𝑆 , 𝐿𝑢
𝐹 , , , 

Output: UAV trajectory 

1  ← ∅ // Checked IoTs
2  ← [𝐿𝑢

𝑆 , 𝐿𝑢
𝐹 ] // Initialize UAV path with start and finish locations

3 𝐿𝑢
𝑐 𝑢𝑟 ← 𝐿𝑢

𝑆 // Current location of UAV
4 𝑇𝑐 𝑢𝑟 ← 0 // Current time
5 while || ≠ || do
6 (𝐵𝑖, 𝐵𝑔) ← EarliestIoTDelivery(𝐿𝑢

𝑐 𝑢𝑟, 𝑇𝑐 𝑢𝑟)
7  ←  ∪ {𝐵𝑖}
8 𝑃𝐼 𝑜𝑇 ← || − 1 // Max spots for IoT
9 𝑃𝐺 𝐵 𝑆 ← || // Max options for GBS
10 𝐿𝐼 𝑜𝑇 ← −1, 𝐿𝐺 𝐵 𝑆 ← −1
11 𝛥 ← ∞
12 for 𝑖 = 1 to 𝑃𝐼 𝑜𝑇 do
13 for 𝑔 = 0 to 𝑃𝐺 𝐵 𝑆 do

// 𝑔 = 0 is for not inserting the GBS
14 𝑡𝑒𝑚𝑝 ← 
15 Insert 𝐵𝑖 into 𝑡𝑒𝑚𝑝 at spot 𝑖
16 if 𝑔 > 𝑖 then
17 Insert 𝐵𝑔 into 𝑡𝑒𝑚𝑝 at spot 𝑔
18 else
19 𝑔 ← −1 // No GBS insertion
20 end
21 if AoI(𝑡𝑒𝑚𝑝) < 𝛥 then
22 𝛥 ← AoI(𝑡𝑒𝑚𝑝)
23 𝐿𝐼 𝑜𝑇 ← 𝑖
24 𝐿𝐺 𝐵 𝑆 ← 𝑔
25 end
26 end
27 end
28  ← ([1 ∶ 𝐿𝐼 𝑜𝑇 − 1], 𝐵𝑖,[𝐿𝐼 𝑜𝑇 ∶ end]) // Insert 𝐵𝑖 at spot 𝐿𝐼 𝑜𝑇 in 
29 if 𝐿𝐺 𝐵 𝑆 ≠ −1 then
30  ← ([1 ∶ 𝐿𝐺 𝐵 𝑆 − 1], 𝐵𝑔 ,[𝐿𝐺 𝐵 𝑆 ∶ end]) // Insert 𝐵𝑔 at spot 𝐿𝐺 𝐵 𝑆 in 
31 if [𝐿𝐺 𝐵 𝑆 + 1] is GBS then
32 remove 𝐿𝐺 𝐵 𝑆 from 
33 end
34 end
35 𝐿𝑐 𝑢𝑟 ← [length() − 1] // Update current location as the last UAV location before end point in 
36 𝑇𝑐 𝑢𝑟 ← TimeAt(𝐿𝑐 𝑢𝑟) // Update current time as the UAV’s arrival to 𝐿𝑐 𝑢𝑟
37 end

Complexity. In Alg. 1, we check all unvisited IoT devices and the GBSs to find out the IoT device whose data can be delivered
the earliest from the current UAV location. This takes (||||). For each such selected next IoT device and GBS, we then find the
best spot on the current UAV path. Since there is at most one GBS needed per IoT device to upload its collected data (in some cases
the data of multiple IoT devices can even be uploaded to the same GBS), the path length will be (||), and thus each spot finding
search for an IoT device or a GBS will take (||). Overall, the complexity of the entire process is (||2||(|| + ||)).

4.2.2. Multiple UAVs

In this subsection, we discuss how the greedy heuristic developed for a single UAV is adapted for multi-UAV scenarios with the
goal of minimizing the maximum AoI from any of the UAV trajectories. This adaptation mainly depends on the selection of the UAV
that can deliver the next IoT (whose data is not collected yet) the earliest and the rest follows the same procedure as in single UAV
scenario.

In Algorithm 3, we describe a pseudocode of this adaptation for multiple UAV scenarios. Initially, each UAV’s trajectory consists
of its start and end locations (lines 2–5). After finding the IoT devices that can be delivered by each UAV (lines 7–9), we find out
the UAV that can achieve this delivery the earliest among all other UAVs (line 10). Then, we update the trajectory of this UAV by
9 
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Algorithm 3: GreedyMultiUAVPathFormation
Input: 𝐿𝑢

𝑆 , 𝐿𝑢
𝐹 , , , 

Output: Trajectories for each 𝑢 in 

1  ← ∅
2 foreach 𝑢 in  do
3 𝑢 ← [𝐿𝑢

𝑆 , 𝐿𝑢
𝐹 ]

4 𝑇 𝑢
𝑐 𝑢𝑟 ← 0

5 end
6 while || ≠ || do
7 foreach 𝑢 in  do
8 (𝐵𝑢

𝑖 , 𝐵𝑢
𝑔 , 𝑇 𝑢

𝑑 𝑒𝑙) ← EarliestIoTDelivery(𝐿𝑢
𝑐 𝑢𝑟, 𝑇 𝑢

𝑐 𝑢𝑟)
9 end
10 𝑢min ← ar g min𝑢 𝑇 𝑢

𝑑 𝑒𝑙
11 𝐵𝑖 ← 𝐵𝑢min

𝑖 , 𝐵𝑔 ← 𝐵𝑢min
𝑔

12  ←  ∪ {𝐵𝑖}
13 Insert 𝐵𝑖 and 𝐵𝑔 to 𝑢𝑚𝑖𝑛 and update 𝐿𝑢

𝑐 𝑢𝑟, 𝑇 𝑢
𝑐 𝑢𝑟 for 𝑢𝑚𝑖𝑛 as in lines 12-37 in Algorithm 2

14 end
15 foreach 𝑢 in  do
16 𝐴𝑢 = Calculate AoI for 𝑢

17 end
18 return max𝑢∈ 𝐴𝑢

considering all possible spots on its trajectory for both the IoT it can deliver the earliest and its closest GBS similar to the steps
escribed in single UAV scenario. Once the current time and location for this UAV is updated, and this IoT is marked as processed

(line 12), we then repeat the procedure and find out the next UAV who can deliver its IoT the earliest and so on. Here, note that
the current time for each UAV can be different and we take this into account while calculating the time of each UAV’s next earliest
delivery of any of the unmarked IoT devices. This allows us distributing the IoT devices among all UAVs in parallel. At the end,

e calculate the AoI for each UAV’s path and return the maximum (lines 15–18). Note that the flowchart in Fig. 4 can also be
onsidered for multiple UAV scenario once the selection of next IoT device is made considering the delivery possible by any of the
AVs from their last locations. Then, we only update that UAV’s path by finding the best spot for the selected IoT and the GBS that
rovides the earliest delivery.
Complexity. Since we find the earliest delivery time of any unvisited IoT for each UAV and select the minimum one as the next

IoT device to be added on the selected UAV’s path, the complexity of this part will be (||||| |). The remaining process for
inding the best spots for the selected IoT and GBS on the selected UAV’s path will be similar to the single UAV scenario. Thus, the

overall complexity will be (||2||| |(|| + ||)).

4.3. Brute-force approach

For comparison purposes, we also obtain results using a brute-force approach too. To this end, we obtain all the permutations
of the IoT devices to first get a visit order in the UAV trajectories, which always begin at the starting location of the UAV and
completes in the final location of the UAV. In the single UAV scenario, since all IoT devices should be visited by the same UAV, we
consider a permutation that includes all the IoT devices. However, in the multiple UAV scenario, we first distribute the IoT devices
to each UAV. It is possible that some UAVs may not be assigned any IoT devices at all. Once a UAV knows the ordered set of IoT
devices that will be visited, we then consider adding one GBS to be visited before or after each IoT device visited. It is possible
that there may not be a GBS added between some IoT device visits, as this is a possible scenario. Also, note that we do not need
to consider more than one GBS between IoT device visits, as we assume in the first GBS visited, all the data from the visited IoT
evices will be uploaded. For all possible such permutations of IoT devices and potentially visited GBSs in between, we calculate
he AoI for the given scenario and find out the best result. In multiple UAV scenario, we compute the max AoI for each UAV’s path
nd take the max of all.
Complexity. This approach tries all permutations of IoT devices together with all permutations of GBS devices placed in between

IoT devices (with at most one GBS in between two consecutive IoT devices). Thus, it takes (||!||!) for a single UAV scenario. For
ultiple UAV scenario, the complexity will be much more as each IoT will initially be assigned to one of the UAVs. The number

f such groupings can be found with Stirling number of second kind (||, | |), which is usually approximated with | |

||∕| |!.
onsidering that some UAVs may not be assigned any IoT at all, we will have ∑

| |

𝑘=1
𝑘||

𝑘! . For each of these cases, there will be
ermutations for each IoT set assigned to each UAV, thus the complexity will be much higher, which can be upper bounded by

(
∑

| | 𝑘||
||!||!).
𝑘=1 𝑘!

10 
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Table 3
Locations of GBSs.

GBS ID 1 2 3 4

Coordinates (2, 2) (11, 10) (18, 2) (10, 18)

Table 4
Locations of IoT devices and data generation times.

IoT ID 1 2 3 4 5

Coordinates (2, 6) (18, 7) (15, 15) (5, 18) (3, 18)
Data generation times (𝑡𝑖) 5 10 20 10 10

Table 5
Simulation parameters.

Parameters Values

UAV speed (𝑉 ) 2 units/time unit
Map size 20 units × 20 units
GBS range (𝑅𝐺) 2 units
IoT range (𝑅𝐼 ) 1 unit
Number of IoTs 5
Number of GBSs 4
Scale (for ILP) 1,10,100

Fig. 5. Example with a single UAV: UAV trajectory obtained by (a) brute-force approach, (b) the greedy heuristic algorithm, and (c) the ILP based approach
using CPLEX (with scale 10).

5. Simulation results

In this section, we provide our evaluations based on simulations. We start with showing how the proposed algorithm work in
some specific example scenarios. We then look at their general performance using randomly created scenarios.

5.1. Toy examples

We begin with a hands-on example to demonstrate the step by step functionality of the proposed solutions, and how they compare
to other solutions. We consider 5 IoT devices and 4 GBSs deployed on a map of 20 units by 20 units. The positions of GBSs and IoT
devices are given in Tables 3 and 4, respectively.

5.1.1. Single UAV
We start with a single UAV example where the UAV commences its mission from the coordinates (4,4), aiming to complete

its mission at the location (2,12). The other parameter values are given in Table 5. Note that we use unit for the area and length
metrics, and use time unit for time based measurements for the sake of simplicity. Scale for the ILP describes the granularity of the
grid cell used for ILP based possible position descriptions. That is, for example, with scale 10, we consider 10 by 10 grid located
on every 1 unit × 1 unit cell and thus can obtain locations with one decimal point. Similarly, with scale 100, we can get location
information up to 2 decimal points and so on. More scale offers not only a smoother trajectory description but also can help find
better solutions; however, it comes with the expense of much higher running time.

We start with brute-force results presented in Fig. 5(a), wherein all possible permutations of IoTs and GBSs on the trajectory of
the UAV are explored and the one that provides the minimum AoI is obtained. In this scenario, it is observed that the UAV opts not
11 
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Table 6
Steps in the Greedy heuristic algorithm in single UAV scenario.

Step UAV path

0 𝐿𝑆 → 𝐿𝐹

1 𝐿𝑆 → 𝑰 𝒐𝑻 𝟏 → 𝑮 𝑩 𝑺𝟏 → 𝐿𝐹

2 𝐿𝑆 → 𝐼 𝑜𝑇1 → 𝐺 𝐵 𝑆1 → 𝑰 𝒐𝑻 𝟐 → 𝑮 𝑩 𝑺𝟑 → 𝐿𝐹

3 𝐿𝑆 → 𝐼 𝑜𝑇1 → 𝐺 𝐵 𝑆1 → 𝑰 𝒐𝑻 𝟒 → 𝐼 𝑜𝑇2 → 𝐺 𝐵 𝑆3 → 𝐿𝐹

4 𝐿𝑆 → 𝐼 𝑜𝑇1 → 𝐺 𝐵 𝑆1 → 𝑰 𝒐𝑻 𝟓 → 𝐼 𝑜𝑇4 → 𝐼 𝑜𝑇2 → 𝐺 𝐵 𝑆3 → 𝐿𝐹

5 𝐿𝑆 → 𝐼 𝑜𝑇1 → 𝐺 𝐵 𝑆1 → 𝐼 𝑜𝑇5 → 𝐼 𝑜𝑇4 → 𝐼 𝑜𝑇2 → 𝐺 𝐵 𝑆3 → 𝑰 𝒐𝑻 𝟑 → 𝑮 𝑩 𝑺𝟒 → 𝐿𝐹

Table 7
Comparison of AoI for individual IoT devices with all algorithms in single UAV scenario (Maximum AoI is
highlighted in bold).

Algorithms/IoT IDs 1 2 3 4 5

Brute-force 10.60 11.61 8.70 5.60 5.60
Greedy heuristic 0.68 12.91 12.17 12.91 12.91
ILP (Scale = 1) 8 12 10 3 3
ILP (Scale = 10∗) 10.3 10.3 9.8 6 4.8
ILP (Scale = 100∗) 9.96 10.18 8.84 10.18 10.18

to deliver data from 𝐼 𝑜𝑇1 immediately. Instead, it proceeds to 𝐼 𝑜𝑇5, then to 𝐼 𝑜𝑇4, and delivers the data from all three IoT devices
simultaneously at 𝐺 𝐵 𝑆2. The UAV’s path in this method is delineated as follows:

𝐿𝑆 → 𝐼 𝑜𝑇1 → 𝐼 𝑜𝑇5 → 𝐼 𝑜𝑇4 → 𝐺 𝐵 𝑆2 → 𝐼 𝑜𝑇2 → 𝐺 𝐵 𝑆3

→ 𝐼 𝑜𝑇3 → 𝐺 𝐵 𝑆2 → 𝐿𝐹 .

In the greedy heuristic based approach we follow an iterative approach with greedy selections made as described in Algorithm
1. The final result is depicted in Fig. 5(b) with step by step changes made to the UAV path given in Table 6. The UAV path initially
onsists of the start and end locations. After finding out that 𝐼 𝑜𝑇1 is the IoT whose data can be delivered earliest, it is added to the

UAV path together with its closest GBS, i.e., 𝐺 𝐵 𝑆1. The algorithm then selects 𝐼 𝑜𝑇2 as it can be delivered the earliest next, from the
time and location at current final location before destination i.e., 𝐺 𝐵 𝑆1. After trying all possible spots, the algorithm then locates
 𝑜𝑇2 after 𝐺 𝐵 𝑆1 and thus 𝐺 𝐵 𝑆3 is also added after that. At step 3, 𝐼 𝑜𝑇4 is selected as the next IoT to be processed, which is then
dded to the spot between 𝐺 𝐵 𝑆1 and 𝐼 𝑜𝑇2. At this point, the nearby GBS associated with 𝐼 𝑜𝑇4 (i.e., 𝐺 𝐵 𝑆4) is omitted to be added
n the trajectory as adding it to any of the spots does not help reduce the AoI. At step 4, 𝐼 𝑜𝑇5 is selected and added after 𝐺 𝐵 𝑆1 and
gain its nearby GBS is omitted for the same reason. Finally, the algorithm adds 𝐼 𝑜𝑇3 to the path and its associated GBS (i.e., 𝐺 𝐵 𝑆4)
o the end before the final destination.

Finally, we look at results obtained with ILP optimization. Here, we use different scales to obtain location information of the
UAV on the map at different precision levels, as described earlier. As the scale grows, we can obtain more precise UAV location
nformation and improved trajectories, however, the running time increases dramatically. Thus, we stop the CPLEX run after 2 h.
LP results are considered as the lowest AoI possible in a given scenario and are used as the baseline to compare the performance of
ther solutions. The UAV trajectory obtained when we use a scale of 10 is given Fig. 5(c). The path with scale 100 is very similar

but is slightly smoother.
In Table 7, we present a comparative analysis of the AoI for individual IoT devices utilizing the aforementioned solutions. First

f all, the ILP results with different scales show that the AoI decreases with more scale. Note that the ILP solutions for scale 10 and
scale 100 do not reach 100% optimality (thus * is used), as we have constrained the computation time to a maximum of 2 h for
ach scenario. Furthermore, it is evident from the comparison that ILP consistently yields the optimal and better solution relative
o the other algorithms under consideration. Brute force and greedy heuristic methods result in closer but slightly higher AoI than
LP results. While the greedy heuristic result is the highest, as it will be discussed later, it can provide the result within seconds
hile both of the other methods have very long running times.

5.1.2. Multiple UAVs
For the multiple UAV scenario, we consider two UAVs with different starting and ending points. The first UAV begins and

oncludes its mission at a location with coordinates (2,11), while the starting and ending location for the other UAV is (2,12). We
se the same GBSs as in single UAV scenario however, we consider six IoT devices with locations and data generation times given
n Table 8.

In Fig. 6, we demonstrate the UAV paths resulted from each method together with individual AoI values for each IoT device
on these trajectories given in Table 10. First of all, as shown on the map of each solution, the IoT devices end up being in two
roups, with each group being served by one UAV. This is indeed the outcome of the two UAVs working in parallel to minimize the

maximum AoI.
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Fig. 6. Example with two UAVs: The UAV trajectories obtained by (a) brute force approach, (b) the greedy heuristic algorithm, and (c) the ILP based approach
using CPLEX (scale = 10).

Table 8
Locations of IoT devices and data generation times in multi-UAV example.

IoT ID Coordinates Data generation times (𝑡𝑖)
1 (18, 7) 5
2 (15, 15) 10
3 (5, 18) 10
4 (3, 18) 10
5 (5, 5) 5
6 (18, 18) 1

Table 9
Steps in the Greedy heuristic algorithm in multiple UAV scenario.

Step UAV1 ’s path UAV2 ’s path

0 𝐿1
𝑆 → 𝐿1

𝐹 𝐿2
𝑆 → 𝐿2

𝐹

1 𝐿1
𝑆 → 𝑰 𝒐𝑻 𝟓 → 𝑮 𝑩 𝑺𝟏 → 𝐿1

𝐹 𝐿2
𝑆 → 𝐿2

𝐹

2 𝐿1
𝑆 → 𝐼 𝑜𝑇5 → 𝐺 𝐵 𝑆1 → 𝐿1

𝐹 𝐿2
𝑆 → 𝑰 𝒐𝑻 𝟔 → 𝑮 𝑩 𝑺𝟒 → 𝐿2

𝐹

3 𝐿1
𝑆 → 𝐼 𝑜𝑇5 → 𝑰 𝒐𝑻 𝟏 → 𝑮 𝑩 𝑺𝟑 →��𝐺 𝐵 𝑆1 → 𝐿1

𝐹 𝐿2
𝑆 → 𝐼 𝑜𝑇6 → 𝐺 𝐵 𝑆4 → 𝐿2

𝐹

4 𝐿1
𝑆 → 𝐼 𝑜𝑇5 → 𝐼 𝑜𝑇 1 → 𝐺 𝐵 𝑆3 → 𝐿1

𝐹 𝐿2
𝑆 → 𝐼 𝑜𝑇6 → 𝐺 𝐵 𝑆4 → 𝑰 𝒐𝑻 𝟐 → 𝑮 𝑩 𝑺𝟒 → 𝐿2

𝐹

5 𝐿1
𝑆 → 𝐼 𝑜𝑇5 → 𝐼 𝑜𝑇1 → 𝐺 𝐵 𝑆3 → 𝐿1

𝐹 𝐿2
𝑆 → 𝐼 𝑜𝑇6 → 𝐺 𝐵 𝑆4 → 𝐼 𝑜𝑇2 → 𝑰 𝒐𝑻 𝟑 → 𝐺 𝐵 𝑆4 → 𝐿2

𝐹

6 𝐿1
𝑆 → 𝐼 𝑜𝑇5 → 𝐼 𝑜𝑇1 → 𝐺 𝐵 𝑆3 → 𝐿1

𝐹 𝐿2
𝑆 → 𝐼 𝑜𝑇6 → 𝐺 𝐵 𝑆4 → 𝐼 𝑜𝑇2 → 𝐼 𝑜𝑇3 → 𝑰 𝒐𝑻 𝟒 → 𝐺 𝐵 𝑆4 → 𝐿2

𝐹

Table 10
Comparison of AoI for individual IoT devices with all algorithms in multi-UAV scenario (Maximum AoI is
highlighted in bold).

Algos/IoT IDs 1 2 3 4 5 6

Brute force 8.62 8.01 8.89 8.89 8.62 9.58
Greedy heuristic 7.75 10.58 10.58 10.58 7.75 9.58
ILP (Sc = 1∗) 10 10 8 8 3 11
ILP (Sc = 10∗) 8.8 3.6 9.4 9.4 7 9.6
ILP (Sc = 100∗) 7.11 9.31 9.22 9.22 7.11 9.57

In brute-force results given in Fig. 6a, the first UAV collects data from 𝐼 𝑜𝑇5, 𝐼 𝑜𝑇1 and 𝐼 𝑜𝑇2 while the second UAV collects data
from 𝐼 𝑜𝑇6, 𝐼 𝑜𝑇3 and 𝐼 𝑜𝑇4. The 𝐺 𝐵 𝑆2 and 𝐺 𝐵 𝑆4 are also used to upload the collected data. Again, this is obtained by considering
all possible distributions and permutations of IoT devices and GBSs among these two UAVs.

In greedy heuristic result given in Fig. 6b, we see a slight change in the distribution of IoTs among UAVs, with 𝐼 𝑜𝑇2 being
moved to the second UAV. The step by step growth of UAV paths are provided in Table 9. Initially, Algorithm 3 finds that the
data of the 𝐼 𝑜𝑇5 can be delivered the earliest by the first UAV; thus, it is added to the trajectory of the first UAV, together with its
nearest GBS, i.e., 𝐺 𝐵 𝑆1. Then, 𝐼 𝑜𝑇6 is identified as the next to be delivered earliest among the remaining IoT devices and this can
achieved by the second UAV. Thus, it is added to the path of the second UAV. The algorithm then selects 𝐼 𝑜𝑇1 as the next one to be
added to the first UAV’s path, which is added to the best spot (i.e., after 𝐼 𝑜𝑇5). Then, the algorithm checks if adding its nearest GBS
(i.e., 𝐺 𝐵 𝑆3) would help reduce the AoI. Since it does, it adds 𝐺 𝐵 𝑆3 to the best spot (i.e., after 𝐼 𝑜𝑇1). At this moment, our algorithm
also removes 𝐺 𝐵 𝑆1 as it is the second GBS there and unnecessary. In the rest of the steps, the algorithm adds 𝐼 𝑜𝑇2, 𝐼 𝑜𝑇3 and 𝐼 𝑜𝑇4
onto the trajectory of the second UAV, while sometimes skipping the addition of their nearest GBS. In the final paths, the first UAV
akes cares of 𝐼 𝑜𝑇 and 𝐼 𝑜𝑇 , while the other IoT devices are handled by the second UAV.
5 1
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Fig. 7. Single UAV: Impact of varying (a) number of IoT devices (with || = 4), (b) number of GBSs (with || = 4), (c) 𝑅𝐼 , (d) 𝑅𝐺 on maximum AoI. (e)
euristic results with large number of IoT devices on different maps sizes.

In Fig. 6c, we present the output of the ILP approach obtained by CPLEX using scale of 10. It provides very similar result to
the brute-force solution with only a slight difference in the first UAV’s path. However, it takes more time to produce this result.
Looking at the results in Table 10, we see that brute force and ILP results are very close and the heuristic based approach can
also give within around 10% of them. Considering that the running time benefit is huge, this difference however can be considered
acceptable especially for real-time applications.

5.2. Random scenarios

In this part, in order to evaluate and compare the general performance of the heuristic solution with other methods, we consider
00 randomly determined scenarios using different settings.

5.2.1. Single UAV
We first consider the single UAV scenario with four GBSs and with IoT device counts increasing from 3 to 5. We assign a data

eneration time between 0 and 20 time units for each IoT device. As Fig. 7(a) shows, the maximum AoI increases with increasing
number of IoT devices for all algorithms. While the CPLEX results are the best as expected, the permutational brute force approach
gives close to that, and the proposed greedy heuristic can provide slightly larger but similar results. Next, we check how the number
of GBSs affect the maximum AoI while the number of IoT devices is set to 4. Fig. 7(b) shows that as the number of GBSs increases the
maximum AoI reduces. This is because more GBSs offer more coverage and thus faster delivery of data by UAVs. The relationship
between the compared algorithms is also similar to the previous scenario. In Figs. 7(c) and 7(d), we look at the effect of IoT range
𝑅 ) and GBS range (𝑅 ) on maximum AoI, respectively. As expected, maximum AoI decreases with increasing 𝑅 or 𝑅 , as they
𝐼 𝐺 𝐼 𝐺
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Fig. 8. Multi-UAV scenario: Impact of varying number of (a) IoT devices (with || = 4, | | = 2), (b) GBSs (with || = 4, | | = 2), (c) UAVs (with || = 4,
|| = 4) on maximum AoI. (d) Effect of number of IoTs on the maximum AoI with 3 UAVs and when the map size is 80 × 80.

allow earlier capture and delivery of IoT data. The heuristic-based algorithm again follows a similar trend as other algorithms, with
a slight difference in performance. Finally, in Fig. 7(e), we examine the scalability of our algorithm, specifically within the heuristic
approach, as we could not get results with CPLEX and brute force for large number of IoT devices. The results demonstrate that as
the number of IoT devices increases in the same area, maximum AoI increases but the increase in the slope decreases as the results
converge. Note that when the map size gets larger, the AoI increases with the same number of IoT devices, but as new IoT devices
are added to the area the convergence happens there eventually too.

5.2.2. Multiple UAVs
In this part, we obtain results for multiple UAV scenarios using the same randomized approach. To this end, we first consider

| | = 2 UAVs and randomly create 100 different setups using a given number of IoT devices, while having a fixed number of 4
GBSs. We calculate the average maximum AoI. The data generation time for the IoT devices is again randomly set between 0 and
20 time units.

As depicted in Fig. 8(a), the maximum AoI increases as the number of IoT devices increases for both algorithms. We could not
obtain CPLEX results for these scenarios as even after very long running times (e.g., 2 days in a server with an Intel Xeon X5680
CPU running at 3.33 GHz with 12 cores and 96 GB of memory), we could not get a result. Thus, we are presenting brute force
results, for which we expect to be close to CPLEX results based on previous results presented. Heuristic approach provides more AoI
han brute force, but the results are within 20%. We also observe that the gap between brute force and heuristic results increases
ith more number of IoTs, due to greedy design in the solution. Subsequently, we analyze the influence of the number of GBSs on

his scenario, holding the number of IoT devices constant at 4. As the results in Fig. 8(b) show, the AoI decreases with more GBSs,
as the UAVs find more opportunity to upload the collected data, and the gap between brute force and heuristic based approach
gets smaller with more GBSs. Finally, in Fig. 8(c), we show the impact of different number of UAVs on AoI. As expected, with

ore number of UAVs, the data of IoTs are both collected and uploaded to a nearby GBS much faster, yielding a lower AoI. Greedy
euristic based approach can provide close to brute-force results, while running in very short time, which is pivotal for real-time
pplications requiring up-to-date information.

In Fig. 8(d), we also show the maximum AoI obtained with brute force and heuristic approaches with three UAVs and with larger
number of IoTs. As the figure shows, with more number of IoT devices, the maximum AoI will increase but the increase rate will
reduce. This is because the likelihood of getting larger AoI will reduce in a fixed space with a growing number of IoT devices. Note
that it takes very long to get results with brute force, thus we could not obtain brute force results when IoT count is more than 5.
However, as the trend with smaller number of IoTs show, the heuristic approach is inclined to follow the brute force results with
ome margin, while having very small computation cost.

5.2.3. Processing time
Next, we provide a comparison of the running times of different algorithms in different scenarios. We start with results with

ingle UAV as presented in Fig. 9(a). The results clearly show that the processing time required for the ILP approach far exceeds
15 
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Fig. 9. Running time comparison (a) with different number of IoTs in single UAV case, (b) with different number of UAVs, (c) with different number of IoTs
n three UAV scenario ( = 80 × 80).

that of the brute force method, which in turn significantly surpasses the time taken by the heuristic approach with small IoT counts,
ut becomes much higher than heuristic approach with large number of IoTs.

In Fig. 9(b), we show the running times of the heuristic and brute force approaches with increasing number of UAVs. As expected,
the running time for the brute force approach escalates due to the increased number of potential scenarios that need exploration. In
contrast, with the heuristic approach, increasing the number of UAVs leads to the distribution of IoT devices across more UAVs. This
distribution simplifies the analysis by reducing the number of potential combinations that each UAV must evaluate, consequently
decreasing the overall running time.

Next, we consider the scenario with 3 UAVs. As the results in Fig. 9(c) show, the running time increases heavily for brute force
pproach (CPLEX running times are much longer as we could not obtain results with running times significantly more than brute
orce running times), underscoring its impracticality for real-time operations within multi-UAV systems. In contrast, the heuristic
pproach demonstrates a remarkable reduction in processing time (compared to brute force), thereby making its suitability for
cenarios demanding rapid decision-making and execution.

Overall, all these AoI and running time results show the trade-off involved in algorithm selection for multi-UAV scenarios. While
the brute-force (and ILP based) method may offer better results its high computational cost renders it less feasible for dynamic and
practical environments. On the other hand, the heuristic algorithm, by virtue of its design, offers a balanced compromise between
information freshness and computational efficiency, making it a more viable choice for practical multi-UAV operations.

6. Conclusion

In this article, we explored the problem of AoI-centered trajectory planning for UAVs that have the mission of visiting the
location of ground IoT devices and capturing their data in order to carry and deliver them to the nearby GBSs in the area. The main
objective was to optimize the UAV paths that will result in the minimum possible maximum AoI of any collected data by the UAVs,
followed by some additional objectives for the smoothness of trajectories. Since we considered multiple delivery points (i.e., GBSs)
of the data, the definition of AoI was different from existing work, making the problem more challenging. The problem was first
modeled and optimized using an ILP based solution approach. We then developed a heuristic based method with the goal of reducing
the complexity of ILP based approach, while providing a cost-efficient approximate solution. Through extensive simulation results
covering various scenarios, we have demonstrated that the proposed heuristic approach can produce UAV trajectories that result in
AoI values that are close to the optimal values with much less running times, showing the practicality of the solution.

As the subject of our future efforts, we will aim to extend the proposed solution in an online manner. That is, the current
tudy assumes that the data generation times of IoT devices are known in advance even if they are after the start of UAV missions.
owever, in a more practical world, this information can be known later, thus the UAV trajectories may need to be adapted during

heir missions. Additionally, for long UAV missions, charging needs of UAVs can be taken into account during these missions. Thus,
e will also consider the availability of charging stations and online adaption of UAV trajectories accordingly.
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