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Abstract—Identifying positions of mobile devices within in-
door environments allows for the development of advanced
applications with context and environmental awareness. Classic
localization methods require GPS; an expensive, high power
consuming and inaccurate solution for indoor situations. Relative
positioning allows nodes to recognize their location in relation
to neighboring nodes to develop an internal mapping of their
own position compared to those around them. This enables a
quick deployment of a given system in new, unknown indoor
environments without requiring prerequisite human mapping
steps. In this paper, we develop a Monte Carlo Localization
(MCL) based anchorless, relative positioning algorithm which
simplifies the problem to considering three states of interaction
between devices: approaching, retreating and invisible. Consider-
ing three states contributes to existing MCL methods which so far
only consider binary states of visible or invisible. Through our
anchorless approach, we show by simulations that TrinaryMC
can provide more accurate positioning information than existing
anchor based methods without relying on GPS, hence decreasing
hardware costs and energy consumption from the use of GPS
modules as well as reducing communication overhead compared
to state-of-the-art MCL methods.

I. INTRODUCTION

Indoor localization aims to identify people, robots or as-
sets as they move through indoor settings where ubiquitous
solutions such as GPS are unable to provide accurate results.
Localization in these settings are utilized in applications for
different purposes such as tracking objects and navigation.
Primarily, indoor localization is achieved by obtaining GPS-
based coordinates or by recognizing the closeness of specific
static targets such as at a key entrance or exit to a building
or commonly used stairwells which may be identified by
unique signatures on a device’s sensors such as unique radio
spectrum fingerprint [1]-[3]. These systems not only require
high setup costs in both materials and human involvement, but
they also suffer from diminishing returns as models produce
less accurate results as environments change over time.

Relative positioning on the other hand aims to provide
similar features in dynamic environments. Instead of judging
the closeness of a node to some static landmark, closeness to
neighboring dynamic nodes within the network are considered.
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By this, no additional infrastructure is required for static-
landmark recognition. Further, because a level of uncertainty is
inherent to the expectations of relative positioning, the model
should be generalized so as to provide useful results without
requiring a time consuming manual human-setup stage.

In this paper, we study relative positioning of mobile nodes
which communicate in an ad hoc and opportunistic fashion.
We aim to locate the positions of nodes relative to each other
while minimizing the required data communication between
any pair of neighboring nodes. Many indoor localization and
relative positioning solutions [4]-[6] use Received Signal
Strength Indication (RSSI) levels to judge the physical distance
of devices to one another, however this can result in poor
estimations due to the high variance in RSSI values. Addition-
ally, because the rate of change of RSSI is so rapid, sharing
this constantly updating RSSI value to neighbors beyond one
communication hop would cause high packet congestion; thus,
it can overwhelm the network bandwidth. Instead, we look to
remove this issue by replacing RSSI with three simple states:
approaching, retreating and invisible. We develop a Monte
Carlo Localization (MCL) algorithm which considers this
trinary state information to perform predictions. Existing state-
of-the-art MCL algorithms [7]-[10] only consider the binary
state of visible and invisible. We evaluate the capabilities of our
proposed solution through simulations to show that TrinaryMC
can produce higher accuracy than existing MCL methods.
Furthermore, because existing MCL algorithms require GPS
enabled anchor nodes, our anchorless algorithm removes the
need for high energy consuming GPS hardware while also
minimizing the amount of communication overhead required.

The rest of the paper is structured as follows. We discuss
the related work in Section II. In Section III, we describe the
details of the proposed approach. In Section IV, we provide
our simulation results. Finally, we provide concluding remarks
and outline the future work in Section V.

II. RELATED WORKS

Early work in indoor localization employed Radio Fre-
quency Identification (RFID), successfully applying the tech-
nology to fields such as manufacturing and healthcare [11],
[12]. However RFID localization requires the use of static
readers placed throughout a building to supply adequate cover-
age in addition to specialized equipment to tag items which are
to be localized. Bluetooth beaconing takes a similar approach
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by replacing RFID with Bluetooth Low Energy (BLE) [6] [13].
The primary advantage of such a system is the ubiquity of BLE
enabled smart devices specifically in applications requiring
the tracking of human subjects. Still, static hardware must be
placed throughout a building to provide adequate coverage.

Relative positioning has been the interest of more recent
work in identifying the location of devices in indoor set-
tings. Studies such as DiscoveryTree [14] create a multi-hop
mesh tree network which allows devices to simply recognize
whether a given node is within the network and if so, which
other nodes are in range. Bellrock [15] utilizes the mobile
devices as Bluetooth beacons when they are stationary and
stops beaconing when the devices move to prevent tracking of
individuals’ movements for privacy preservation. Many other
works [4], [5] take the approach of determining the distance
of pairs of nodes through RSSI readings, often employing
Multi-dimensional Scaling (MDS) approaches. However, shar-
ing constantly changing RSSI information between neighbors
could very easily overwhelm the bandwidth of the network.
Furthermore, as argued in [16], without extensive and time-
consuming testing, raw RSSI values are suggested to be
unacceptable for use in mapping to distances between devices.
The authors do suggest that by testing devices, parameters can
be set to achieve slightly higher results, however as shown in
[6], [17], radio hardware between different manufacturers and
even those produced in the same product line can produce
very different RSSI values. Thus, because testing cannot be
completed in any large network between each pair of devices,
RSSI cannot be an adequate solution. Some works [18] con-
sider not the distance but instead the relative velocity between
nodes while others [19] remove the use of unreliable RSSI by
only considering binary contacts between nodes.

One method popularized for use in decentralized local-
ization is Monte Carlo Localization [20]. These techniques
simulate internally multiple possible situations a given mobile
node may be in subject to some constraints such as location
of neighbor node and transmission range of a given neighbor
node to choose a most likely final predicted location. Existing
MCL methods expect the presence of anchor nodes; nodes
with access to their exact location through GPS or some other
method. For example, solutions in [10], [21] rely exclusively
on the presence of anchor nodes to guide predictions. Other
works such as [7], [8], [22] relax this constraint by using
non-anchor nodes in addition to anchor nodes when making
predictions. However, none of the existing works specifically
focus on the cases when no anchors are present. Our aim is
to provide a method which does not rely on anchor nodes in
order to have low hardware cost per node and less reliance on a
small group of nodes within the network. Because our method
itself is an MCL algorithm, we now introduce the details of
the four state-of-the-art MCL algorithms which we will use
for comparison in Section IV.

A. Standard Monte Carlo Localization (St-MCL)

Each MCL method employs a very similar set of procedures
for predicting positioning. The idea is to collect a group of

samples in each time instance which can then be used in
aggregate to determine the most probable location for the given
node. All MCL algorithms; including our own, execute the
following general procedure:

e Initialization Step - occurs only at startup or when all
samples are filtered out. Creates an initial set of random
samples subject to some conditions.

e Sampling Step (Move Samples) - using samples in pre-
vious time instance, new samples are created by moving
previous samples randomly within a radius of v,,4, (i.e.,
maximum velocity) around the previous sample.

e Filtering Step (Resample) - after predicting new locations,
any sample not adhering to a given set of constraints
are filtered out as invalid samples. If the number of
samples left after filtering is above some threshold, then
random samples are filtered out to prevent sample sets
from exploding in quantity over multiple rounds.

This simple method as described in [21] is the basis for our
first comparison implementation. This algorithm relies entirely
on accurate anchor nodes to achieve reliable results.

B. Orbit (Orbit-MCL)

One of the areas where common improvements are made
to MCL methods is in minimizing the possible area with
which samples are taken from. One such work is [8] where the
authors consider graph theory when developing a new MCL
method called Orbit. One of the key features they recognize is
that when considering negative information (node A cannot see
B), there are cases when multiple disjoint regions may occur in
the sampling stage. In this work, they determine that ignoring
regions with fewer than one-third the number of samples as
the largest region produces much higher accuracy.

C. Low Communication Cost Monte Carlo (LCC-MCL)

Each of the previous methods relies exclusively on anchor
nodes to inform their predictions, however the LCC-MCL
method [7] considers not only anchor nodes but also nor-
mal, non-anchor nodes. Non-anchor nodes share their own
predicted location with selected neighbors which then use
the location, along with appropriate weights, to predict their
own location. The issue with this is that sharing predicted
locations of each and every node requires high numbers of
packets to update the state between neighbors. The authors
mitigate this issue by only sharing locations with neighbors
which are believed to be close by. Determining whether nodes
are close by one another is a matter of finding the intersection
of each node’s set of neighbors. If the number of intersecting
neighbors is above a threshold, the nodes are considered close
by, in which case, communication occurs.

III. TRINARYMC ALGORITHM

Our TrinaryMC method improves the existing state-of-the-
art Monte Carlo Localization methods by entirely removing
reliance on GPS enabled anchor nodes to produce relative
positioning. In addition, our method is able to infer additional
information about the state of neighboring nodes beyond
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what is common in all existing methods while decreasing
communication overhead compared to existing methods. Our
method relies on first recognizing the following trinary states
occurring between pairs of neighboring nodes: approaching
(1), retreating (2) and invisible (0), where each state value is
identified in our system as the integer shown in parenthesis.
Each node transmits a beacon packet at given intervals to
announce their presence. Neighboring nodes recognize this
packet and record the presence of this neighbor along with
the perceived state: approaching or retreating'. Each node can
further propagate the list of its one-hop neighbors to its neigh-
bors and let the nodes recognize the network structure [23] up
to some number k-hops away. Our algorithm is applicable for
any value of £ > 0; however, we find that smaller values
such as k£ = 2 result in adequate accuracy while keeping the
messaging overhead low. To collect the current state between
all neighbors, we create a local state matrix, My, and denote
the current state between two nodes ¢ and j at time ¢ by Mt(w ),

A. Differences with existing MCL algorithms

1) Initialization Step: In existing MCL algorithms, each
sample contains only one (x,y) coordinate pair prediction for
a given source node s, however in our method, a single sample
must include an (z,y) coordinate pair p for each neighbor
of s. To accomplish this, the predicted coordinate pair for
s is set to p® = (0,0). Then, for each neighbor n, we
determine a random p(™) satisfying our state matrix Mt(s). One
important factor to recognize while collecting initial samples
is that even though we concern ourselves with trinary states, in
the initialization step, the only states that matter are invisible
and visible because no information exists from previous time
instances to distinguish approaching from retreating. After the
initialization step is completed, we repeat the sampling and
filtering step for each future time instance.

2) Sampling Step (Move Samples): In the sampling step,
the goal is to take the set of samples S from ¢t — 1 and
move each neighbor n so that M, continues to be satisfied at
time ¢. Creating new samples based on samples from previous
time instances is common to other MCL methods, however,
because our goal is unique in recognizing trinary states, the
method which we accomplish this is novel to MCL. Common
to existing MCL algorithms, in this step, each neighbor is
moved at most vy, 4, distance from its previous location. Four
cases exist: first, the case when a neighbor keeps the same
state from ¢ — 1 to t. The second case is when a neighbor is
visible (retreating) at ¢ — 1 and then is invisible at . In this
case, we must ensure that our sample point exits the range of
the given paired node. The third case is when a neighbor is
invisible at ¢ — 1, but visible at ¢ (approaching). In this case,
we do not have any predictions of where the node was at ¢t —1,
so we do not consider any previous information. Instead, we
simply randomly select a point which satisfies all conditions

'Through our experiments with actual devices, we find that a smartphone
can identify these states with > 95% accuracy by using the change in RSSI
from a given neighbor, even between smartphones of different manufacturers.
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Fig. 1. Process taken to generate a single sample given a state matrix Mt(A)
shown on the left containing 3 k-hop (where k=2) neighbors A, B and C.
The process takes 3 steps, one for each neighbor. In the first step, the current
source node A is placed at position EO, 0). The second step places neighbor

B within the radius of A because MtA’B> = 1 indicating A can see B. The
third step places C' based on the fact that B sees C, but A does not see C.

in M,;. Finally, we handle the case of either approaching to
retreating or retreating to approaching.

3) Final Predictions: The final location of a node relative to
its neighbors is predicted from all samples in S. To this end,
we simply take the average distance of each pair of nodes
(1,7) € K where K is a list of neighbors and ¢ # j:

dy Tk = Sesllsi — 551l ()

pred —

where ||s; — s;|| is the Euclidean distance between sample
points s; and s;.

B. Generating Samples

As the general steps taken by the entire algorithm have
been discussed, we now provide the details of our method for
generating samples. Fig. 1 provides an example case which we
will use to illustrate a given iteration of generating samples.
We begin by assuming the role of a node A with three
neighbors (K), including itself. Given K, we assume at A
we can collect M;. In the figure, we see the values of M; on
the left. With M}, we begin the process of creating a sample
by randomly selecting positions for each neighbor in K. In the
first step, we place A by default at (0,0), the local center. In
the second step, we place B randomly. Because Mt(A’B) =1,
the placement of B must be within the radius of A. In the
illustration, this is successful, but in the event of a failure
(at this step or any further steps in this process), we simply
retry from the beginning of this process. Now that B has been
placed, we move to the third step by placing C' following the
conditions specified in M;. We can see, because Mt(A’C) =0,
C is a 2-hop neighbor of A, thus we successfully complete
this step with C' in range of B. After all conditions in M; are
considered, we have created a single sample for S.

In subsequent steps of the algorithm, we take S from time
t as a base to further create S’ for time ¢+ 1 which adheres to
the constraints of M, ;. To accomplish this, we simply loop
through each neighbor (n) in K. If the neighbor was also in
K, then we use the coordinate value (x,y) from S to produce
n in S’. The new coordinate must be within a radius of v,,q
of (z,y) in addition to adhering to the trinary conditions of
the pair between ¢ and ¢ + 1. We can see this case in Fig. 2.
Assuming A and B have been placed in S’, the shaded area
around C represents the maximum distance C' can travel in
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Fig. 2. Possible movement for neighbor C' based on v,z is shown in gray,
but not all of these locations are possible given the conditions in M 1. Any
point in the area with the dashed perimeter (intersection of circles A, B and
the vmaz area) is valid for C’s next location if only the contact matrix is
considered as in the case of other MCL methods. Our TrinaryMC method
further reduces the valid areas where C' can move thanks to the consideration
of three states; thus, it produces more accurate samples.

this time instance. Because C' must transition to approaching
A after being invisible at time ¢, the region in which valid
samples can be taken shrinks significantly.

C. Alternative Algorithms

Our trinary algorithm can be simplified in a couple of ways.
We use these simplified algorithms to further evaluate our
trinary approach later on. First, we consider a simple case
where we assume no memory exists between ¢t — 1 and ¢ for
each node. In this case, we have no reason to move samples
or resample. Thus, this first simplified algorithm only runs the
initialization step at each time instance no matter if |S| > 0
or not in ¢t — 1. We call this the binary-no-memory method,
binary because without memory of ¢ — 1, neither approaching
nor retreating can be recognized.

A middle ground algorithm between this binary-no-memory
algorithm and our frinary algorithm is running the trinary
algorithm using only the binary states visible and invisible.
For this, we continue to recognize the movement of samples
between time instances; thus, we must retain the sampling
step and the filtering step. We evaluate this second simplified
algorithm in Section IV as the binary method. In the following
section we show through simulations that over time, the binary
method performs better than the binary-no-memory method
and the trinary method performs better than the binary method
as would be expected.

IV. SIMULATIONS

In this section, we compare our method to state-of-the-art
MCL techniques, namely the Standard Monte Carlo Local-
ization algorithm (St-MCL) [21], Orbit (Orbit-MCL) [8] and
finally the Low Communication Cost MCL (LCC-MCL) [7].
In addition to comparing our trinary method to existing MCL
methods, we also compare it to our binary-no-memory (bin-
no-mem) and the binary methods as described in Section III-C.
Our simulation uses a 500m x 500m area where 50 mobile
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Fig. 3. As the ratio of anchor seed nodes increases, the number of packets
communicated through the network also increases except for our TrinaryMC
method as well as the LCC-MCL method.

nodes move using the random waypoint mobility model with
a velocity randomly assigned from [1 — 10] m/s.

First, we consider the communication required for each
method. The primary gain in this aspect for our TrinaryMC
method compared to existing methods is that our method
needs to share message with first and second hop neighbors
only when a trinary state change occurs between a pair of
devices. In St-MCL, updates are shared between each k-
hop neighbor whenever an anchor node receives a new GPS
location. Because we simulate time discretely, all anchor nodes
move every single time instance. The Orbit-MCL and LCC-
MCL methods also require communication for each anchor po-
sition change but also require updates from non-anchor nodes
to provide additional accuracy in their methods. The LCC-
MCL method keeps in mind this additional communication
and provides a method to lower this cost. Instead of sharing
GPS position updates from all anchor and non-anchor nodes
to all neighboring nodes, a closeness metric is obtained to
determine whether a given neighbor is close enough to gain
insight from the new GPS position. As the ratio of anchor
seed nodes increases, the amount of communication required
also increases for all methods except for our TrinaryMC and
LCC-MCL as can be seen in Fig. 3. For TrinaryMC, this is
because the model does not consider anchors whatsoever. For
LCC-MCL this occurs as a result of the use of the closeness
metric to determine which nodes to communicate with instead
of simply whether the node is an anchor or not. Closeness does
not change as more nodes become anchor seeds.

Now, we consider the communication radius (r) of each
node. As r increases, more neighbors on average are seen
within any hop range of the nodes, as shown in Fig. 4. Note
that, when 7 is smaller than 30m, the number of one-hop
neighbors on average is smaller than 1. In these cases, as we
cannot make predictions without any data from neighbors, we
ignore them in our analysis.

We now consider how we evaluate the error for given sets
of nodes after running each method. For this, we simply take
the difference for each sample prediction compared to the
actual distance of each given node pair. Fig. 5 shows the error
obtained in our three methods, binary no-memory, binary and
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Fig. 4. Average number of k-hop neighbors seen given some communication
radius (7).
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Fig. 5. Comparison of our methods as communication radius changes (thus
more neighbors are seen per node) and as k increases (also causing more
neighbors to be seen).

trinary. We take the calculated average error per node after
100 time steps divided by the communication radius (r) to
produce a percent error relative to . We can see that as radius
increases, error decreases, which can be attributed to the fact
that more neighbors are seen with higher r. Further, we can
see when k = 2, we achieve better accuracy than we do with
k = 1. We can attribute this increase in accuracy again to
more neighbors, which help create fewer possible locations
when generating samples. We also observe that our trinary
method provides lower error than the binary method, which
itself produces lower error than the binary no-memory method.

Existing MCL algorithms require anchor nodes or seed
nodes which can sense their exact location at any given
time through a method such as GPS. Because our method is
anchorless, TrinaryMC is not affected by an increase of seeds.
We explore how changing the percentage of seed nodes within
the network affects St-MCL and how TrinaryMC compares to
St-MCL as a result in Fig. 6. We can see when only 20% of
nodes are labeled as seeds, accuracy decreases significantly,
ranging from 40% and 70% of r. However, with 50% of
nodes as seeds, we begin to reach the same average error as in
our trinary case. Another observation we can make from this
figure is that as communication radius for nodes increases,
average error decreases. This is explained by the fact that a
larger communication radius reveals more neighbors which
then results in a more restricted area when predicting samples.

08 —%— trinary (k=1) —8— St-MCL seeds=20%
0.7F —+— trinary (k=2) —©— St-MCL seeds=50% |
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Fig. 6. TrinaryMC method comparing to the Standard Monte Carlo Localiza-
tion (St-MCL) methods for different number of anchor seeds in the network.
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Fig. 7. Comparison of TrinaryMC to state-of-the-art MCL methods when
different percentage of the nodes in the network are marked as anchor nodes
and communication radius, » = 50, and k = 2.

Next, with » = 50 and k = 2, Fig. 7 compares our algorithm
with additional state-of-the-art methods. We again see the
trend where a lower ratio of seeds (below 50%) produces worst
accuracy results than TrinaryMC for each of the existing state-
of-the-art algorithms. We also notice that both Orbit-MCL
and LCC-MCL perform better than St-MCL when the ratio
is between 0.3 and 0.7, but perform similarly to one another.
Having a high ratio of seed nodes in the network however is
not reasonable because of considerations such as hardware cost
as well as the issue of battery consumption from modules such
as GPS. Thus, even though the solution may provide better
results with greater number of seeds, the solution is highly
impractical and costly.

We finally compare the RSSI based distance estimation
with our method. Many existing works use the Log-distance
path model to explain how RSSI is affected by distance in
given path-loss exponent (n) [24]. The value for n implies
the amount of noise and environmental effect on the RSSI.
Surveying existing works [24], [25], we see common values
for n between 2 and 4. In Fig. 8, we show how different values
for n affect the average error from the low end of (n,n+0.5)
up to (n,n + 1.0). We can see the average error with RSSI
based distance estimation is equal when n = 2 and better on
average as m increases than the binary-no-memory method.
However, we can see that our trinary method performs better
on the average until n reaches 2.8. Still, in the worst case, we
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Fig. 8. Results of simulation of RSSI values with different path-loss exponent
and variance, and their comparison with our methods.

can see that RSSI performs worse than the binary method up
to n = 3. This suggests that our method can perform as good
as the RSSI method or better in very uncertain environments
such as highly congested areas with more noise or indoor
environments with high signal reflections.

V. CONCLUSION

In this work, we present an anchorless relative positioning
method which utilizes multi-hop neighbor state information
using the trinary states: approaching, retreating and invisible.
We developed a Monte Carlo Localization algorithm using
these states to produce relative positioning results better than
existing Monte Carlo Localization methods which rely on
anchor nodes present within the network. Because of our
improvement of removing all reliance on anchor nodes, our
method can decrease energy consumption from the use of
GPS radio hardware, decrease hardware cost by removing
the need for GPS modules whatsoever on all device, and
decrease the reliance on the limited individual anchor nodes
in a system. Additionally, we show that our method results
in less communication overhead compared to state-of-the-
art algorithms. Our method benefits as more devices join
the system as each not only contributes information about
themselves, but also their own k-hop neighbors, thus giving
each node a further look into the network allowing for more
accurate sampling.
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