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a b s t r a c t 

In this paper, we investigate the utilization of peer-to-peer wireless energy sharing to relieve the users 

from the burden of cord-based charging. The devices of users can make use of energy available from 

other users’ devices based on their meeting patterns so that the battery level of their devices could be 

maintained within an acceptable level without the need of charging it through a cable frequently. We first 

use dynamic programming-based optimization to find out the minimum number of cord-based charging 

sessions to obtain the highest possible mobile charging relief through collaborative charge sharing among 

pairs of nearby user devices. Then, we map our problem to roommate matching problem and find out 

the best matching among users that will achieve the highest network-wide relief while satisfying all 

users with their assigned partners. With an extensive empirical analysis based on real device charging 

patterns and meeting patterns between mobile users, we evaluate the charging relief offered to users in 

various scenarios. The results show that users can get up to 13–17% relief from their charging burden 

using cooperative energy exchanges without changing their existing usage habits. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

The increasing computation and communication capabilities

f mobile devices have provided various advanced applications

acilitating our lives. However, this made people highly dependent

n these devices that run on limited batteries and need to be

harged frequently. In its most common form today, users charge

heir mobile devices using cables. However, finding a power outlet

ay not be an easy task especially when the users are outside or

n dense indoor areas (e.g., airport) with relatively limited number

f outlets. 

With the recent integration of wireless charging [1] capability

nto mobile devices, the users are provided with some convenience

or the charging without cables. The user device is charged by

lacing it on a charging pad or another item such as a desk [2] or

 cup holder in a car [3] with integrated wireless power trans-

itter capability. However, the charging pad or equipment still

eeds to be connected to a power source. Recently, this somewhat

imited usage of wireless charging has further been extended with

nergy transfer between mobile devices [4–6] . Through bidirec-

ional chargers, mobile devices could exchange energy without the
� This work was supported in part by NSF award CNS-1647217. 
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eed of being connected to an outlet. Such a peer-to-peer (P2P)

nergy sharing opportunity brings flexibility to users for finding

ower ubiquitously and mitigates the risks of facing an emergency

ituation with depleted battery [7–9] . 

In this paper, we investigate the potential benefit of P2P energy

haring 1 between mobile devices on reducing the burden of tradi-

ional cord-based charging process (referred to as wall charging in

he rest of the paper). Depending on the meeting schedules with

ther users, a user can make use of excessive energy available

rom other users’ devices to skip some of the wall chargings while

till maintaining the device’s charge within an acceptable level.

imilarly, it can share its own energy with others to help them

elieve from the wall charging sessions. Our goal is to maximize

he charging relief of users by letting them skip as many wall

harging sessions as possible through utilization of energy shared

y other users in the vicinity. We aim to discover the potential

enefit of P2P energy sharing on the existing charging habits of

sers. Hence, we assume that the charging patterns of user devices
While this can be achieved via power sharing cables, a more convenient way 

ill be through wireless power transfer (see some prototypes [5,6] developed by 

esearch community and a recent smartphone [4] with this capability in the mar- 

et). We do not restrict the proposed solution in this paper to only wireless power 

ransfer based energy sharing, but we discuss impact of parameters (e.g., transfer 

fficiency) associated with wireless power transfer on the performance of the pro- 

osed solutions. 

https://doi.org/10.1016/j.adhoc.2019.101882
http://www.ScienceDirect.com
http://www.elsevier.com/locate/adhoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.adhoc.2019.101882&domain=pdf
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s  
as well as the timing and durations of their meetings with other

users (from which shareable energy amounts could be derived)

are known in advance. 

The proposed collaborative charging scheme aims to benefit

from the current charging habits of users. Most of the users charge

their devices opportunistically with short charging sessions and

more frequently than they really need [7,10] to keep their devices

with as much power as possible. Thus, in order to understand to

what extent collaborative charging offers relief (i.e., percentage of

reduction in the number of wall chargings) thanks to the charge

sharing among users, we also find out the optimum relief users

could have obtained with conservative charging without depleting

energy in their devices. In conservative charging, we find out the

minimum number of wall charging sessions that could have been

sufficient to maintain power for a user based on the user’s own

charging pattern. In collaborative charging, however, we allow

both sharing and receiving of energy between users and try to

minimize the total number of wall charging sessions for a pair

of users. We exploit dynamic programming approach to find out

the optimal charging schedules for both cases. Then, in order to

find out the highest network-wide charging relief among users,

we map our problem to roommate matching problem and find

the best matching among users while satisfying them with their

assigned partners. 

The preliminary version of this study is published in [11] with

initial algorithms for the skipping of user wall charging sessions.

In this paper, we revise and optimize the dynamic programming

approach as well as study the network-wide mobile charging relief

optimization through assignment of charging partners to users. We

also conduct empirical analysis using several real-world datasets

with user meeting and charging patterns and quantify the potential

charging relief in realistic scenarios. 

The rest of the paper is organized as follows. We discuss the

related work in Section 2 . In Section 3 , we define the problem

together with an analysis towards its solution. In Section 4 , we

provide the details of dynamic programming based optimiza-

tion algorithms for both conservative and collaborative charging

schemes. Next, in Section 5 , we provide a solution for the

network-wide optimization through mapping it to roommate

matching problem. In Section 6 , we provide and discuss both

numerical and empirical results for the proposed solutions. Finally,

we conclude the paper and outline future work in Section 7 . 

2. Related work 

With the recent development in wireless power transfer tech-

nologies, a number of studies have been conducted on how to

utilize this technology to improve the energy management in

mobile networks. Previous work have mainly focused on applying

these technologies to prolong the lifetime of wireless ad hoc and

sensor networks [12–14] having low energy requirements. 

Recently, the wireless charging of smartphones have attracted a

lot of interest. In [15] , charging of a device while it is in the user’s

pocket is achieved by using magnetic field beamforming. This has

been extended to the charging of multiple devices in the vicinity

of a power hotspot [16] . It has been shown that with increasing

number of devices, the efficiency of wireless charging at distances

can increase. Besides these studies that focus on uni-directional

but long distance charging, there are several recent studies that

look at the P2P energy sharing among smartphones. In [5,6] ,

some prototypes are developed to realize actual charge sharing.

In [17] , authors exploit P2P wireless energy exchange to balance

the energy within a mobile social network and propose various

algorithms to be used in the sharing protocol. In [18] , the impact

of P2P energy sharing on network formation and in [19] its benefit

on group based charging has been studied. In [8] and [20] the
airwise assignment of users for energy exchanges has been

tudied. A more general work can be found in [9] , in which

uthors focus on enhancing the energy usage of wireless networks

ith wireless energy sharing to minimize the chances of ending

p with insufficient energy for their consumption. An energy

haring based content delivery process is also studied in [21] .

hile these studies provide an idea on the potential benefit of

ireless energy exchange to users, the concept is studied without

n integrated analysis of charging habits of individual user devices

nd meeting patterns between the users that can exchange energy.

n this paper, different from previous work, we define the burden

f charging in terms of the number of charging sessions that the

evices stay plugged to the outlet (i.e., wall charging) and discuss

he minimization of that number exploiting the energy shared by

ther users without changing the charging and movement patterns

f any user. We also provide a satisfactory network-wide solution

or all users by mapping our problem to roommate matching

roblem and assign partners to each user while satisfying all users

ith their assignments. The notations used throughout the paper

re given in Table 1 . 

. Problem statement 

In this section, we define the problem and provide the neces-

ary notation towards its solution. A charging pattern of a user de-

ice consists of alternating charging and discharging sessions. Let

c and δd denote the set of all charging and discharging sessions

or a user, respectively: 

δc = { δc (1) , δc (2) , . . . , δc (n ) } 
d = { δd (1) , δd (2) , . . . , δd (n ) } where, 

δd (i ) .l s = δc (i ) .l e , ∀ i ∈ { 1 . . . n } and 

δc (i + 1) .l s = δd (i ) .l e , ∀ i ∈ { 1 . . . (n − 1) } 
e define the time from the start of one wall charging to the start

f next one as a charging cycle . Here, each ( δc ( i ), δd ( i )) represents a

harging cycle with one charging and one discharging session. The

ttributes l s and l e represent the starting and ending charge levels

integers in [0–100]) for each of these periods. 

We consider that when a mobile user meets another mobile

ser, they can exchange energy between each other wirelessly.

ecent studies [5,6] have shown that mobile devices could easily

e equipped with necessary hardware and software support to

ealize this. We assume that the users know each other and are

nterested in sharing their excessive energy with their friends

on-intrusively. That is, they do not want to change their regu-

ar movement patterns and their own usage of the device. The

mount of energy that could be exchanged depends on several fac-

ors including transfer speed, efficiency, duration of their meeting,

aximum shareable energy by the sender without causing it have

ess than an acceptable energy level and the available capacity in

he receiver. 

The optimization problem is studied for two different cases;

i) conservative charging, and (ii) cooperative charging. While the

ormer looks at the problem from only one user’s perspective by

rying to minimize the number of wall charging sessions while

till keeping the device with sufficient power to operate, in the

atter, we consider both receiving and sharing of energy between

he users and aim to optimize the problem jointly from the

erspective of both users. We formulate these problems using

ecision points that occur at the beginning of each cycle. Next, we

iscuss the details of the problem within each context. 

.1. Conservative charging 

In this case, we study the problem from the perspective of a

ingle user who aims to skip as many wall chargings as possible.
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Table 1 

Notation used in the paper. 

Notation Description 

δc ( i ) i th charging session of user. 

δd ( i ) i th discharging session of user. 

δA 
c [ t] Total energy gained by user A during wall charging in t th decision block. 

δA 
d 

[ t] Total energy lost by user A during discharging in t th decision block. 

S A → B 
t The energy shared from A to B during the t th decision block. 

l s Starting charging level attribute of a charging or discharging session. 

l e Ending charging level attribute of a charging or discharging session. 

l min Minimum acceptable energy level of user devices. 

l init Initial charge level of the user. 

X A t Charging decision variable for user A in t th decision block. 

D Matrix that stores the number of wall chargings required for each charge level by every decision block. 

T Matrix that stores the index of the D matrix from which the corresponding D matrix entry is derived. 

U A t The total unplugged time of user A in t th decision block. 

M 

A,B 
t The meeting event between users A and B in t th decision block. 

T S The speed of energy transfer between users. 

T E The efficiency of energy transfer. 

n A Number of charging sessions of user A . 

R A (B ) User A’s charging relief from collaborative charging with user B . 

J(R A (u i )) Energy saving with charging skip pattern associated with R A (u i ) . 

PL [ A ] Preference list of user A to be matched with other users for collaborative charging. 

Fig. 1. Charging patterns and decision points of two users. 
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ote that in this case user is not sharing energy with others nor

eceiving energy from them. This case is studied in order to un-

erstand the potential charging relief users could have obtained by

heir own scheduling. Moreover, it also forms the base for the for-

ulation of complicated collaborative charging case. 

Fig. 1 shows example charging patterns for two different users

or a certain time frame. Depending on the applications that are

unning on the device the discharging rate might vary at different

imes. Similarly, depending on the equipment used for charging

r due to the active usage while charging, the charging of the

evice could happen at different rates. Note that in some charging

essions there could be some idle charging duration in which the

evice stays plugged after being fully charged (e.g., overnight

harging). While such cases could help increase the charging relief

s the charging amount in the previous skipped sessions could

e compensated during those idle charging times, we do not

onsider them in this paper for the sake of brevity. However, all

he formulations could be easily adapted to integrate such cases.

oreover, It has been shown by several studies conducted with

martphones [22,23] that the battery voltage and state of charge

SOC) or battery level has almost a linear relation after the first

ew battery levels, thus we assume a linear but potentially with

ifferent rate charging and discharging sessions. 

The conservative charging problem here is defined as follows.

iven an existing charging pattern of a user, what is the minimum

umber of wall charging instances that would be sufficient for

he user device while keeping the same device functionality and
harging habits? In such scenario, the only way a user may try to

kip some of its wall chargings is purely by benefiting from the

nnecessarily frequent charging in its own charging schedule. 

We formulate the problem using decision points that occur at

he beginning of each charging cycle. Decision points divide a given

ser charging pattern into blocks of time periods known as deci-

ion blocks . Each block starts with the start of a charging session

or a user and ends with the completion of a discharging session.

n this case, since there is a single user, each decision block cor-

esponds to an individual charging cycle of the user. For user A’s

harging pattern shown in Fig. 1 , there are six decision blocks with

tarting times D = { 0 , 4 , 7 , 10 , 12 , 15 } . Similarly, for user B, there

re five decision blocks with starting times D = { 2 , 5 , 8 , 10 , 13 } . 
Assume that there are n decision blocks and let δc [ t ] and δd [ t ]

enote the total energy gained (i.e., δc ( t ). l e − δc ( t ). l s ) during wall

harging and total energy lost (i.e., δd ( t ). l e − δd ( t ). l s ) during dis-

harging throughout the t th decision block. The objective function

n conservative charging is then formally described as: 

in 

n ∑ 

t=1 

X t (1) 

ubject to D t .l e = (D t .l s + δc [ t] X t − δd [ t]) } , ∀ t ∈ [1 , n ] (2) 

D t .l e ≥ l , ∀ t ∈ [1 , n ] (3) 
min 



4 A. Dhungana, T. Arodz and E. Bulut / Ad Hoc Networks 0 0 0 (2019) 101882 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

w  

X  

t

4

 

t  

p  

e  

e  

s  

i  

m  

d  

s

4

 

t  

d  

a  

l

i  

a  

t  

c  

w  

v

 

c  

o  
D 1 .l s = δc (1) .l s (4)

D t+1 .l s = D t .l e ∀ t ∈ [1 , (n − 1)] (5)

where, l min is the minimum acceptable level (e.g., 1%) and X t is

the charging decision variable ∈ {0,1}, with 0 meaning the current

charging session is skipped. 

3.2. Cooperative charging 

In this case, users are allowed to both send and receive energy

between each other. Therefore, the optimal skipping pattern has to

be determined considering the amount of energy that will be ex-

changed between users. The decision points (i.e., start of charging

cycles) coming from both users will form decision blocks with par-

titioned charging cycles of users. Moreover, some decision points

might divide a charging session of a user into two or more parts. 

The set of decision points that come from both users in Fig. 1 is

D = {0, 2, 4, 5, 7, 8, 10, 12, 13, 15}, which is D A ∪ D B . When a

decision point causes a split in the charging session of a user, since

we assume skipping of wall chargings completely (i.e., no partial

skipping allowed), the skip decision made for a portion of a wall

charging inside a decision block should match with the decision

made for the remaining portion of the same wall charging in the

next decision points. In order to reach the optimal skipping solu-

tion that maintains this, for every such decision point, both results

(skipping or not) have to be stored until the split of a charging pe-

riod with decision points is over and only the optimal one should

be picked. The splitting of a charging session can create different

types of decision blocks based on which the solution is modeled: 

• Full( u ) : The decision block contains the entire charging ses-

sion of the user u . 

• First_Split( u ) : The decision block contains only the begin-

ning portion of the split charging session of the user u . 

• Mid_Split( u ) : The decision block contains neither the start

nor the end of the user u ’s charging session but has a middle

part. 

• Last_Split( u ) : The decision block contains only the ending

portion of the split charging session of the user u . 

For example, in Fig. 1 , the third decision block (i.e., from time

4 to 5) is First _ Split( A ) and the next one (i.e., from time 5 to 7)

is Last _ Split( A ) and Full( B ). It is possible that a decision block can

only include discharging session for a user (e.g., user B in third

decision block). Such blocks could be considered for users like a

Full split with no charging. Moreover, some of the combinations

of these block types for a pair of users is not possible. For exam-

ple, while there is a First _ Split( A ), there cannot be a Mid _ Split( B ).

The valid combinations have to be carefully analyzed towards the

solution. 

Let δA 
c [ t] and δA 

d 
[ t] denote the total energy gained by user

A during wall charging and total energy lost by user A during

discharging throughout the t th decision block. Moreover, let S A → B 
t 

denote the energy shared from A to B during the t th decision block

and T E denote the efficiency of transfer. The objective function in

cooperative charging is then formally described as: 

min 

n ∑ 

t=1 

(
X 

A 
t + X 

B 
t 

)
(6)

subject to D 

A 
t+1 .l e = D 

A 
t .l s + δA 

c [ t] X 

A 
t − δA 

d [ t] + T E S B → A 
t − S A → B 

t (7)

D 

B 
t+1 .l e = D 

B 
t .l s + δB 

c [ t] X 

B 
t − δB [ t] + T E S A → B 

t − S B → A 
t (8)
d 

0  
D 

k 
t .l e ≥ l min , ∀ t ∈ [1 , n ] , ∀ k ∈ { A, B } (9)

D 

k 
1 .l s = δk 

c (1) .l s ∀ k ∈ { A, B } (10)

D 

k 
t+1 .l s = D 

k 
t .l e ∀ t ∈ [1 , (n − 1)] , ∀ k ∈ { A, B } (11)

here, l min is the minimum acceptable level (e.g., 1%) and X A t , and

 

B 
t ∈ {0,1} are the charging decision variables for A and B , respec-

ively, with 0 meaning the current charging session is skipped. 

. Dynamic programming based optimization 

We use a dynamic programming based approach to find out

he optimal charging pattern in both problems. At each decision

oint, the algorithm tries to recursively find the best charging lev-

ls that will result in the minimum number of wall chargings for

ach user. The solution includes two matrices: D and T. D matrix

tores the integer value that represents the number of wall charg-

ngs required for each charge level by every decision block and T

atrix stores the index of the D matrix from which that value is

erived. In the subsequent sections, we provide the details of the

olution for each of these cases. 

.1. Optimization for conservative charging 

In this case, a two dimensional D matrix is considered where

he first dimension represents the decision points and the second

imension represents the charge level for the user of interest. The

lgorithm takes the list of wall charging amounts ( δc []), and the

ist of discharging amounts ( δd []) for the user as a parameter. l init 

s the initial charging level for the given charging pattern. For ex-

mple, for A’s pattern in Fig. 1 , l init is 20%. Values from D [0][ l min ]

o D [0][0] is initialized to 0 because it is ensured that each of these

harging levels could be achieved at the beginning without any

all charging. All other values in D matrix are initialized to some

ery high integer value. 

Algorithm 1: Conservative charging decision algorithm. 

1 Input: δc [] : Charging amounts; δd [] : discharging amounts 

2 Output: Number of minimum wall charging sessions for the 

user 

3 for each decision block D t do 

4 for each charging level 0 ≤ l ≤ 100 do 

5 current = D[t][ l] 

6 for each X t ∈ {0, 1} do 

7 l new 

= min (100, l + δc [t] X t ) - δd [t] 

8 if l new 

≥ l min then 

9 if current+ X t < D[t+1][ l new 

] then 

10 D[t+1][ l new 

] = current+ X t 
11 T[t+1][ l new 

] = l 

12 end 

13 end 

14 end 

15 end 

16 end 

17 return min { D [ n ][ l] ∀ l ≥ l min } 

The details of the dynamic programming based solution for the

onservative charging is shown in Algorithm 1 . The main principle

n which the algorithm works is, for each charge level (i.e., from

 to 100) at each decision block ( D t ), it finds out what charge
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Fig. 2. Total duration with energy exchange opportunity determined by the inter- 

section of user meetings, charging patterns and charging decisions of users. 
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Table 2 

(Source, destination) index assignments for D matrix’s fourth di- 

mension based on charging decisions of users with different types 

of decision blocks. 

User A User B 

Full/None First Split Mid-Split Last Split 

Full/None (0,0) (0, X B t ) ( X B t , X 
B 
t ) ( X B t , 0) 

First Split (0, X A t ) N/A N/A ( X B t , X 
A 
t ) 

Mid-Split ( X A t , X 
A 
t ) N/A N/A N/A 

Last Split ( X A t , 0) ( X A t , X 
B 
t ) N/A N/A 
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a  
evel could be reached by either decision (skipping ( X t = 0) or not

 X t = 1)) and updates the number of wall chargings at that level

ith the smallest ever seen as long as it is more than the mini-

um acceptable level and less than 100%. Note that if the smallest

all charging count is achieved with a skip from previous decision

oint, the number of wall chargings from previous decision point is

ransferred. On the other hand, if the wall charging in that decision

lock is used, the number of wall chargings from previous decision

oint is incremented by 1 and used in the update. The same logic

s applied recursively for all charging cycles to find the optimal

kip sequence at the end. The running time of the algorithm is

 (100| D |), while brute force solution has O (2 | D | ) complexity. 

Once the algorithm finishes, we apply a general solution read-

ut approach to find the actual wall charging sessions used. We

tart at the last decision block and get the index with the min-

mum number of charging sessions from D matrix. Each position

n D matrix is associated with its previous cell using T matrix. If

he value in current index of D matrix has increased compared to

ts previous value, then the wall charging session at that decision

lock is used, otherwise it is skipped. 

.2. Optimization for cooperative charging 

In cooperative charging, in order to increase the overall charg-

ng relief for users, they consider exchanging energy between each

ther. However, for each energy exchange opportunity within the

ecision blocks, the amount of actual energy exchange amounts

hould be decided to obtain the optimal charging pattern at the

nd. The energy exchange between users can potentially happen

hen they actually meet and are not charging. Hence, the amount

f energy that could be shared between these devices will be

etermined by their meeting and charging patterns as well as

heir charging decisions. In Fig. 2 , an example decision block with

 single meeting between two users is illustrated. If both users

ecide to skip their charging session in the decision block, the

nergy exchange opportunity duration will be equal to the total

eeting duration. However, if one of the users decides to use its

all charging in that decision block, that portion of their meeting

as to be excluded as we assume it is not practical to exchange

nergy for users while being charged. 

Let U A t denote the total unplugged time of user A in decision

lock t ∈ {1, 2, . . . , n}. The charging session in a decision block

ill always be earlier than the discharging session within the

lock by definition of blocks. U A t should be either from the start of
harging till the end of discharging or from the start of discharging

ill its end depending on the charging decision. More formally: 

 

A 
t = 

{ (
δA 

d 
[ t] .t s , δA 

d 
[ t] .t e 

)
if X 

A 
t = 1 (

δA 
c [ t] .t s , δA 

d 
[ t] .t e 

)
otherwise 

(12) 

ere, t s and t e denote the start and end times, respectively. 

Let M 

A,B 
t denote the meeting event between users A and B ,

 S denote the speed of wireless energy transfer and T E denote

he efficiency of transfer. The total amount of energy that can

e exchanged between A and B in decision block t , E A,B 
t , can be

omputed by: 

 

A,B 
t = I A,B 

t ∗ T S ∗ T E where , (13) 

 

A,B 
t = M 

A,B 
t 

⋂ 

U 

A 
t 

⋂ 

U 

B 
t (14) 

ere, I A,B 
t is the intersection of total meeting duration between A

nd B and total unplugged times of A and B. 

It is also important to remark that E A,B 
t should be considered as

he maximum energy that could be exchanged but the actual en-

rgy exchange between users depends on the current charge level

f each user device. A user device’s charge level cannot exceed

00% and cannot be less than l min by definition. Moreover, note

hat in order to reach an optimal solution at the end, the optimal

nergy exchange values at each individual decision block could be

ess than E A,B 
t even though device capacity restrictions allow it. 

In this case, D matrix is defined as a four dimensional matrix.

he first dimension represents the decision points and the second

nd third dimensions represent the charge level for each user.

he last dimension is used to keep track of decisions made for

harging sessions split into multiple decision blocks. Due to the

inary decision used for skipping a charging session as a whole,

he charging decision made for all portions of a charging session

t different decision blocks has to match. Consider the example

n Fig. 3 . In the first decision block (from t to t + 1 ), there is

 First_Split(A) and a Full(B). Thus, updates based on different

harging decisions made for user A on D matrix are written into

ifferent indexes at the fourth dimension. In the second decision

lock, as there is a Mid_Split(A), only the updates with consistent

ecisions are allowed to be made on D matrix’s corresponding

ndex at fourth dimension (e.g., there can not be skip (i.e., 0)

fter not skipping in previous block). In the next decision block,

here is a Last_Split(A) and a First_Split(B). In this case, optimal

ecision for A should be selected and written on the first index

0) at fourth dimension. However, due to the split of B, the

orresponding fourth dimension index for the updates is found

sing the B’s charging decision. In the fourth decision block, as

here is a Last_Split(B) with a Full(A), the final decision for user

’s charging session is made and written into the first index at

ourth dimension. The fifth block has a Full(A) and a Full(B), thus,

nly the first index at fourth dimension is used for the updates. 

In Table 2 , we provide (source, destination) index assignments

t the fourth dimension of D matrix with different decision block



6 A. Dhungana, T. Arodz and E. Bulut / Ad Hoc Networks 0 0 0 (2019) 101882 

Fig. 3. Dynamic programming table cell updates in the fourth dimension on a sample charging pattern of two users with different charging types included in decision 

blocks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 2: Cooperative charging decision pattern algorithm. 

1 Input: δc [] / δd [] : Charging/discharging amounts; M [] : meeting 

patterns 

2 Output: Number of minimum total charging sessions for both 

users. 

3 for each decision block D t do 

4 ( c A , c B ) ← Decide the charging types for both users 

5 for each charging level 0 ≤ l A ≤ 100 do 

6 for each charging level 0 ≤ l B ≤ 100 do 

7 for each ( X A t , X 
B 
t ) case do 

8 I A,B 
t ← Max duration for energy exchange with 

( c A , c B ) 

9 (sc, dt) ← Fourth dimension indexes based on 

current case 

10 for each 0 ≤ k ≤ I A,B 
t do 

11 
−→ 

A = min(100, l A + δA 
c [t] X t ) - k* T S - δA 

d 
[t] 

12 
← −
B = min(100, l B + δB 

c [t] X t ) + (k* T S * T E ) - δB 
d 

[t] 

13 
← −
A = min(100, l A + δA 

c [t] X t ) + (k* T S * T E ) - 
δA 

d 
[t] 

14 
−→ 

B = min(100, l B + δB 
c [t] X t ) - k* T S - δB 

d 
[t] 

15 for each ( l A , l B ) ∈ {( 
−→ 

A , 
← −
B ), ( 

← −
A , 

−→ 

B )} do 

16 if l A ≥ l min and l B ≥ l min then 

17 new = D[t][ l A ][ l B ][ sc]+ X A t + X B t 

18 if new < D[t+1][ l A ][ l B ][ dt] then 

19 D[t+1][ l A ][ l B ][ dt] = new 

20 T[t+1][ l A ][ l B ] = ( l A , l B , sc, k ) 

21 end 

22 end 

23 end 

24 end 

25 end 

26 end 

27 end 

28 end 

29 return min { D [ n ][ l A ][ l B ][0] ∀ l A , l B ≥ l min } 

u  

f  

l  

t

type combinations. For example, for the second decision block in

Fig. 3 , which has a Mid_Split(A) and a Full(B), if A’s decision is to

skip, source index will be 0 and written to 0 to keep the consis-

tent decision. Note that some of the combinations are not possible

due to the definition of decision blocks that start with the start of

charging sessions. 

The details of the dynamic programming based solution for

cooperative charging is presented in Algorithm 2 . The algorithm

takes the list of all wall charging and discharging events with

amounts, start and end times and finds out the minimum wall

charging sessions needed to keep the both devices always more

than l min . The algorithm covers all four possible charging decision

cases for a pair of nodes and finds out the maximum duration that

could be used for energy exchanges. Then, for each possible du-

ration less than this maximum, it finds the corresponding charge

levels that will be reached by each user (lines 10–14). Considering

either direction of energy exchange (i.e., when A sends and B

receives ( 
−→ 

A , 
← −
B ) or when A receives and B sends ( 

← −
A , 

−→ 

B )), it then

updates the D matrix values based on previous iteration (lines

15–23). Note that the corresponding (source, destination) index

values at the fourth dimension is determined using the afore-

mentioned principle (line 9). The running time of this algorithm

is O ((100) 2 | D |( E )), where E is the average shareable energy range.

Brute force solution has O (4 | D | ) complexity. 

5. Network-wise optimization 

The previous section finds out the optimal collaborative charg-

ing decision patterns for a pair of nodes. In a network of smart-

phone users, each user can potentially consider exchanging energy

with all other users. The Algorithm 2 could be extended with ad-

ditional dimensions to find out an optimal solution for every size

of group of users at the expense of increased complexity. On the

other hand, sharing energy with multiple other users may not be

practical and users may have concerns about their privacy. To this

end, in this section, we focus on grouping of users into pairs and

let them exchange energy with only one other user. A centralized

graph based matching solution could provide the highest network-

wide mobile charging relief among users. However, in reality, this

may not address the individual preferences of users and may result

in users not satisfied with their assignments. To address this issue,

we map our problem to stable roommate matching problem (SRP).

The goal is to find a stable matching among a group of users such

that there will not exist a pair of nodes which are not assigned to

each other and both prefer each other to their assigned partners
nder the current matching. Note that this problem is distinct

rom the stable-marriage problem as the stable-roommates prob-

em allows matches between any pair of nodes, not just between

wo disjoint classes such as men and women [24] . 
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Algorithm 3: Collaborative charging partner matching algo- 

rithm. 

1 Input: a set of users N , and their preference lists PL 

2 Output: Matched collaborative charging partner for all, if 

exists. 

3 //step 1 

4 for each free user i ∈ [1, N ] as proposer do 

5 if PL [proposer] is not empty then 

6 u ← PL [ proposer].first() 

7 if u is not proposed earlier then 

8 Match ( u , proposer) 

9 else 

10 current ← u .hasProposalsFrom() 

11 if u prefers current over proposer then 

12 Remove u from PL [proposer] and proposer from 

PL [ u ] 

13 else 

14 current.setFree() 

15 Remove u from PL [current] and current from 

PL [ u ] 

16 Match ( u , proposer) 

17 end 

18 end 

19 end 

20 end 

21 for each user i matched to a user m do 

22 Remove i from PL [r] and r from PL [ i ], ∀ r with rank( r) > 

rank( m ) 

23 end 

24 //step 2 

25 for each user p i with |PL [ p i ] | > 1 do 

26 Find a cycle ( p i , q i , p i +1 , q i +1 , . . . q s −1 , p s = p i ) , where 

27 q i = second preference in PL [ p i ] and p i +1 = last preference 

in PL [ q i ] 

28 Remove q i from PL [ p i +1 ] and p i +1 from PL [ q i ] ∀ i 

29 end 

30 return matching if � a user i with |PL [ i ] | > 1 

Table 3 

Optimal charging decisions in each charging scenario. 

Scenario Charging sessions 1 2 3 4 5 6 

Conservative A’s decisions 1 1 1 0 1 0 

B’s decisions 0 1 1 0 1 N/A 

Cooperative A’s decisions 1 1 0 1 0 0 

B’s decisions 0 1 0 1 1 N/A 

Table 4 

Charging decisions for each decision block in cooperative case. 

Decision blocks 1 2 3 4 5 6 7 8 9 10 

Energy (B → A) 0 19 0 0 0 0 0 0 0 0 

A’s decisions 1 0 1 1 0 0 1 0 0 0 

Energy (A → B) 0 0 0 0 0 5 0 0 0 4 

B’s decisions 0 0 0 1 0 0 1 0 1 0 

 

h  

s  

o

 

To this end, we first run the collaborative charging algorithm

or every pair of nodes in the network. Then, for a given node, say

, we calculate the relieves obtained from each other user. Let n A 
enote the total number of charging sessions of user A. The charg-

ng relief that user A obtains from a collaborative charging, R A , is
efined as the ratio of skipped charging sessions to the total num-

er of charging sessions. That is: 

 A = 

n A −
∑ n A 

t=1 
X 

A 
t 

n A 

(15) 

enoting R A (B ) as the user A’s relief from collaborative charging

ith the user B, we then form a preference list for user A, PL [ A ] ,

n the descending order of obtained relief. In some cases, however,

here may be more than one user that provide the same relief to

he user. To break such tie situations, we use reduction in the en-

rgy amount obtained due to the skipped charging sessions. 

L [ A ] = { u 1 , u 2 , . . . , u n | 
R A (u i ) > R A (u i +1 ) or 

R A (u i ) = R A (u i +1 ) and J(R A (u i )) > J(R A (u i +1 )) } (16) 

ere, J(R A (u i )) represents the energy saving with skipped pattern

ssociated with R A (u i ) . Once each user forms its preference list

s described, we then adapt Irving’s algorithm [25] to find out

 stable matching among users, if it exists. Note that since the

atchings will be mutual, we assume that there are even number

f users in the network. 

Algorithm 3 shows the details of the proposed matching

rocess. For each free user not assigned a partner, the first user

n the preference list is proposed. If the proposed user has not

een matched with any other user yet, it immediately accepts

he proposal and a pending matching is assigned. On the other

and, if the proposed user has already been matched with some

ther user, it checks if the new proposer has better rank in its

reference list than the current matched user. If that is the case,

revious proposer is set free and it is matched with this new

roposer. Otherwise, both users remove each other from their

reference lists mutually. Once a user is assigned a partner, it also

eletes all other users in its preference list with ranking more than

he assigned user. In some rare cases, this process may end up

ith some users having still more than 1 users in their preference

ists. In that case, a further elimination is conducted with some

pecial cycles of users described in lines 25–29. At the end, if each

ser has only one other user in their preference lists, the stable

atching is obtained. 

. Evaluation 

In this section, we first provide results of running conservative

nd cooperative charging on an example pattern of two users.

hen, we conduct an empirical analysis using various mobile

atasets with user meeting and charging patterns and find out the

otential charging relief in realistic scenarios. 2 

.1. Numerical example 

We have used the charging patterns for two users shown in

ig. 1 and run the optimization algorithms for both cases. Table 3

hows the optimal charging decision results for both cases. In

onservative case, decision blocks consist of charging cycles but in

ollaborative charging the number of decision blocks is more than

he actual charging cycles. Thus, in Table 4 , we show the actual

ecisions made for each decision block in collaborative charging. 
2 The Java codes developed to generate the results in this section are 

vailable at https://github.com/aashish33128/Mobile- Charging- Relief/tree/master/ 

nergySharing . 

A  

p  

s  

a  
In conservative scenario, the results show that node A could

ave skipped 4 th and 6 th charging blocks, while node B could have

kipped its 1 st and 4 th blocks (skipping 1 st and 3 rd would also be

ptimal). This results in a total of 4 skips for both nodes. 

In cooperative charging scenario, out of 10 decision blocks, user

 is able to skip 6 of them. However, not all of these are inde-

endent decisions as well as some of these decision blocks with

kip decisions have only discharging. Thus, there is no skipping of

ctual charging. Similarly, for user B, 7 of them can be skipped.

https://github.com/aashish33128/Mobile-Charging-Relief/tree/master/EnergySharing
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Fig. 4. Charging patterns and skips after cooperative charging. Arrows show the direction and the amount of energy shared between the users. 
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Note that there are multiple energy exchanges between users in

order to get to the optimal point. As the decision blocks do not

correspond to the actual individual charging cycles of users, the

skipping decisions for each decision block have to be converted to

the skipping pattern for charging cycles. From Fig. 4 and Table 4 ,

we can deduce the original charging decision sequence for user

A and user B shown in Table 3 . This results in a total of 5 skips

for both nodes, showing the advantage of cooperative P2P sharing

over conservative case. To achieve that both node A and B share

energy between each other and receive energy from each other.

Fig. 4 shows the charging patterns after the optimal skips are

done. Here, we assume that when a user skips a wall charging,

a minimal/zero discharge happens during that duration in this

example, however, a discharge could have been applied with an

average discharging rate during a skipped charging sessions and

algorithms could be updated accordingly. 

6.2. Empirical results 

6.2.1. Datasets 

Mobile devices should be in close proximity to be able to trans-

fer power. In order to see the potential benefit of the proposed

P2P energy sharing for charging relief of users in real settings,

we have used several mobile network datasets with meeting

patterns of user devices. These datasets mainly contain the logs of

device-to-device (D2D) interactions of different types of wireless

devices carried by people. While the D2D communication range is

in the order of several meters, such interactions could be consid-

ered as an indication of users seeing each other and potentially

asking for energy exchange from each other. Each of these datasets

represents a different environment with a different number of

users and durations [26] : 

• Haggle dataset: [27] These are the Bluetooth sightings

recorded between the iMotes carried by 41 attendants of In-

focom Conference held in Miami in 2005. It spans a four day

period. 

• Cambridge dataset: [28] These are the Bluetooth recordings

among 36 students with iMotes from Cambridge University

for a duration of almost two months. 

• MIT Reality dataset: [29] It consists of the mobility traces

of 97 Nokia 6600 smart phones carried by MIT students and

staff during an academic year. We used data from the three

month period of Spring semester. 

While the above datasets provide information about the meet-

ing patterns of users, they do not include battery charge level in-

formation of the devices. Assuming that the battery energy levels

of the devices are independent from the contact patterns of their
sers, we use another dataset to extract that information and com-

ine charging and meetings patterns of user devices using the time

omain of these datasets. 

• DeviceAnalyzer dataset [30] : It includes all kinds of logs of

Android users who downloaded the app worldwide. For the

experiment, we have extracted 9 days of battery charging

status information from 40 users. 

Having these datasets, we have used the following method-

logy to merge the charging and meeting patterns of users from

ifferent datasets. We first extract the meeting count distribution

mong pairs ( Fig. 5 a), the hourly meeting time distribution in

 day ( Fig. 5 b) and the meeting duration distribution among all

eetings ( Fig. 5 c). Then using the 40 users data from DeviceAna-

yzer [30] with charging patterns, we assign them meetings from

he aforementioned meeting count, time and duration distribu-

ions. Note that the user meeting patterns from different datasets

re different from each other. In general, users in Haggle dataset

ave the highest number of daily meetings with the shortest

urations. However, as expected naturally, the meeting time distri-

utions are similar (e.g., with the highest frequency around lunch

ime). 

.2.2. Simulation results 

We first run the conservative charging algorithm for each of

he 40 users and collaborative charging algorithm for each of the

80 pairs of nodes to obtain the mobile charging relief in each

ase (with T S = 1%/min and T E = 1 ). Each of the results here is

he average of 10 different runs. Fig. 6 shows the CDF of the relief

mong all users and pairs for conservative and collaborative charg-

ng, respectively. Note that each cooperative charging result with

ifferent dataset used for meeting pattern generation is shown

ith a legend of the corresponding dataset. The results show that

lmost half of the users can not have any charging relief with

onservative charging, while there are some users who can obtain

p to 50% relief. In collaborative case, only in a few of the pairs,

sers cannot experience any relief. Moreover, the number of users

hat can experience high relief increases remarkably thanks to the

ower of sharing. Comparing the collaborative charging results

btained with different datasets, we observe that users obtain

he highest relief with Haggle dataset while the lowest relief is

btained with MIT dataset. This is because in Haggle dataset users

ave more meeting than in others, which then provides more

nergy exchange opportunity to users yielding higher charging

elief. MIT data has the smallest number of meetings. Even though

he durations are longer than in other datasets, due to the fewer

umber of meetings, the lowest relief is obtained. However, it is

till more than the relief users can achieve by conservative charg-

ng. Cambridge dataset has characteristics in between the other
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Fig. 5. Statistics from real mobile network traces: (a) distribution of number of 

meetings between pairs of nodes, (b) hourly distribution of meeting times between 

nodes during a day, and (c) distribution of meeting durations. 

Fig. 6. CDF of mobile charging relief obtained among all users and pairs with con- 

servative and collaborative charging, respectively. 

Fig. 7. Average mobile charging relief with conservative and different collaborative 

charging cases. 

Fig. 8. Average mobile charging relief with different number of days of data used. 
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wo datasets. Thus, a performance in between their performance

s obtained. 

In Fig. 7 , we show the average mobile charging relief obtained

or users in the network with conservative and collaborative charg-

ng. For collaborative charging, the results show the average relief

btained by users assigned after running optimal charging partner

ssignments in Algorithm 3 . Results with Haggle dataset shows the

ighest average relief due to the aforementioned reasons. This is

lso the double of the relief users could experience with conserva-

ive charging only. 

Next, to understand the impact of data size on the results, we

btain average charging relief with fewer than 9 days of Device-

nalyzer dataset. Fig. 8 shows these results. Here, each data point

ndicates the cumulative usage of dataset. For example, results at

oint 5 shows the results obtained with 5 days of data from the

eginning. The results show that the average user charging relief

emains somewhat constant after a few days, given the same meet-

ng patterns. The jump on the last day and the small savings in the

rst 3 days are due to the impact of partial charging/discharging

essions included in these end cases. We also observe that most

f the users have discharging only sessions during the first day,

hich reduces the average charging relief for all users in the net-

ork. Similarly, for the last charging cycle, most of these cycles

ave only the portion of their charging session without any dis-

harging. Thus, most of these last charging sessions are skipped

asily increasing the average relief for the 9 day result. 

Fig. 9 shows the impact of transfer efficiency and speed on

verage mobile charging relief in Haggle dataset. As expected,

he results clearly show that the relief will increase if the wire-

ess energy sharing between devices is more efficient (when

 S = 1%/min). The figure also shows that when the transfer speed

s 0, it is equal to the conservative case results but when the trans-
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Fig. 9. Impact of wireless power transfer efficiency and speed on the average mo- 

bile charging relief. 
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fer speed increases, there is a significant gain in charging relief

(when T E = 1 ). However, the result is not increasing linearly be-

cause contact duration becomes dominant and optimal energy that

is exchanged within the decision block does not change much. A

slower but efficient transfer also performs well. 

7. Conclusion 

In this paper, motivated by the recent technologies enabling

wireless energy sharing between mobile devices, we investigate

to what extent the burden of charging process on users could be

released. We develop a dynamic programming based optimization

model and find out the minimum number of charging sessions

that would be sufficient for users to keep their devices with the

power they need through utilization of excessive energy from

other users in the vicinity. We first study both conservative and

collaborative charging. Then, in order to achieve a network-wide

charging relief among a group of users, we map our problem

to roommate matching problem and find out the best matching

among users that will achieve the highest network-wide relief

while satisfying all users with their assigned partners. With the

empirical results based on different datasets of user meetings and

charging patterns, we observe that users can achieve up to 13–17%

relief without affecting their existing usage habits of mobile de-

vices. In our future work, we will embed an online charge sharing

algorithm among peers using the predictions of charging and

meeting patterns in mobile social networks [31,32] . Moreover, we

will study a market mechanism and pricing for energy exchanges

for the environments with users that do not know each other. 
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